

The University of York

Discussion Papers in Economics

No. 1999/12
The Covariance Structure of the S-GARCH and M-GARCH Models
by

Menelaos Karanasos

Department of Economics and Related Studies
University of York
Heslington
York, YO10 5DD

THE COVARIANCE STRUCTURE OF THE S-GARCH AND M-GARCH MODELS

Menelaos Karanasos *
University of York, Heslington, York, YO10 5DD, UK

Abstract

The purpose of this paper is to examine the variance-covariance structure of multivariate GARCH models that have been introduced in the literature the last decade, and have been greatly favoured by time series analysts and econometricians. In particular, we analyze the second moments of the sum of GARCH models (S-GARCH) examined in Karanasos, Psaradakis and Sola (1999), and the multivariate GARCH models (M-GARCH) introduced by Bollerslev, Engle and Wooldridge (1988), Bollerslev (1990) and Engle and Kroner (1995).

Key Words: Autocovariances, Multivariate GARCH, Autocovariance Generating Function, Wold Representation.

JEL Classification: C22

* For correspondence: Email: mk16@york.ac.uk, Tel: 01904 433799, Fax: 01904433759.

I would like to thank M. Karanassou, M. Sola, and G. Christodoulakis for helpful comments and suggestions.

1 Introduction

One of the most popular class of non-linear processes are the generalized autoregressive conditional heteroscedasticity models ${ }^{1}$ (GARCH). The existence of the huge literature which uses these processes in modelling conditional volatility in high frequency financial assets demonstrates the popularity of the various GARCH models (seeГfor example Γ the recent surveys by BollerslevГChou and Kroner (1992) ГВera and Higgins (1993) ГBollerslev Γ Engle and Nelson (1994) ГDiebold and Lopez (1995) ГEngle (1995) ГPalm (1996) ГShephard (1996) and Pagan (1996); see also the book by Gourieroux (1997) for a detail discussion of the GARCH models and financial applications). Parallel to the success of the standard linear ARMA-type of time series models arising from the use of the conditional versus the unconditional mean the key insight offered by the GARCH model and its various extensions Γ lies in the distinction between the conditional and the unconditional second order moments.

Since leptokurtic distributions of asset returns and slowly decaying autocovariances of squared returns are among the stylized facts of financial high-frequency time-series Γ theoretical expressions for the unconditional second moments of GARCH models are of both statistical interest and of practical significance. SpecificallyГ given the expressions for the second moments of the squared errors Γ practitioners can compare the estimates of the kurtosis of the errors and the autocovariances of the squared errors obtained directly from the data with those obtained from their model. This enable them to decide on how well their GARCH model fits the data. In addition Γ given the results on the existence of the second moments Γ the practitioner can check what his/her estimates imply about those moments. The fourth moment of the errors and the covariance structure of the squared errors and of the conditional variance of the $\mathrm{GARCH}(\mathrm{plq})$ model have already been given in the literature (see KaranasosГ1999 аГГГhereafter KГand He and TerasvirtaГ 1997 hereafter HT.).

As economic variables are inter-related Γ generalisation of univariate models to the multivariate set-up is quite natural-this is more so for the GARCH ${ }^{2}$ models. The motivation for the multivariate GARCH models (MGARCH) stems from the fact that many economic variables react to the same information Γ and hence Γ have nonzero conditional covariances. Thus Γ multivariate GARCH-type models provide a natural framework for analyzing the joint dynamic behaviour of volatility of financial assets and/or markets and they are particular useful in multivariate financial models (such as the CAPM or dynamic hedging models). In the MGARCH models the conditional covariance matrix (ccm) depends non-trivially on the past of the process ${ }^{3}$.

From the many different multivariate functional forms the diagonal GARCH model

[^0]originally suggested by BollerslevГEngle and Wooldridge (1988) Гhereafter BEWГand the constant conditional correlation (ccc) GARCH put forward in B (1990) Г have become perhaps the most common. BEW specified that the conditional variances/covariances depend only on its own lagged errors and lagged values ${ }^{4}$. In B's representation the ccm is time varying Dbut the conditional correlations are assumed to be constant ${ }^{5}$.

The preceding models appear often in the literature of the late eighties early nineties though usually without any theoretical discussion. In particular Γ various cases of the diagonal representation of the MGARCH model (with various mean specifications) have been applied by many researchers. For exampleГit has been used by BEW(1988) for their analysis of returns on bills「bonds and stocks Γ by Engel and Rodrigues (1989) to test the international CAPMГby Kaminsky and Peruga (1990) to examine the risk premium in the forward market for foreign exchange ${ }^{2}$ by McCurby and Morgan (1991) to test the uncovered interest rate parityГand by Baillie and Myers (1991) to estimate optimal hedge ratios in commodity markets. B (1990) illustrated the validity of the ccc MGARCH model for a set of five nominal European U.S. dollar exchange rates following the inception of the European Monetary System. The ccc MGARCH model has also been used by CecchettiГCumby and Figlewski (1988) to estimate the optimal future hedgeГМcCurby and Morgan (1989) to examine risk premia in foreign currency futures marketГSchwert and Seguin (1990) to analyze stock returns Γ Baillie and Bollerslev (1990) to model risk premia in forward foreign exchange rate markets Γ Kroner and Claessens (1991) to analyze the optimal currency composition of external debt $\Gamma \mathrm{Ng}$ (1991) to test the CAPMГ and Kroner and Sultan (1993) to estimate futures hedge ratios.

Although the MGARCH models were introduced almost a decade ago and have been widely used in empirical applications Гits statistical properties have only recently been examined by researchers. EK(1995) examined the identification and maximum likelihood estimation of the vec「diagonal and BEKK representations of the MGARCH model. Lin (1997) Γ hereafter L Γ provided a comprehensive analytical tool for the impulse response analysis for all the aforementioned representations of the MGARCH model. Tse (1998) developed the Lagrange multiplier test for the hypothesis of constant correlation in Bollerslev's representation whereas Jeantheau (1998) Гand Ling and McAleer (1999) investigated the asymptotic theory of the quasi maximum likelihood estimator for an extension of the ccc MGARCH model.

However Γ the analysis of the covariance structure of the MGARCH model has not been considered yet. This article attempts to fill in this gap in the GARCH literature. The focus will be on the fourth moment of the errors and on the theoretical acf of the squared errors and of the conditional variances/covariances. In this context Γ the paper generalizes the results for the univariate GARCH model given in K (1999 aए) and HT(1997) to various multivariate GARCH models.

In Section 2 we present the covariance structure of the conditional variances/covariances

[^1]and of the squared errors for the $\mathrm{S}-\mathrm{GARCH}^{6}$ process (this is the sum of n processes which follow a diagonal MGARCH model). Our results include as a special case (when $n=1$) the covariance structure of the conditional variance and of the squared errors for the $\mathrm{GARCH}(\mathrm{pFq})$ model presented in K (1999a) $\mathrm{\Gamma HT}(1997)$ and $\mathrm{K}(1999 \mathrm{e})$. In Section 3 we contribute to the theoretical developments in the multivariate GARCH literature by presenting the theoretical acf of the conditional variances/covariances and of the squared errors of the vec^{7} and the ccc representations of the MGARCH models.

The goal of this article is to provide a comprehensive methodology for the analysis of the covariance structure in multivariate GARCH models. FirstГit derives the VARMA representations of the conditional variances/covariances and of the squared errors and it gives general conditions for stationarity Γ invertibility and identifiability of these representations. Second Γ it provides the univariate ARMA representations of the conditional variances/covariances ${ }^{8}$ and of the squared errors. Third Γ it uses two alternative (and equivalent) methods to obtain the autocovariances: (i) the Wold representation (wr) of a stationary stochastic process (ssp) and (ii) the canonical factorization (cf) of the autocovariance generating function (agf) of a ssp ${ }^{9}$. It should be noted that we only examine the case of distinct roots in the AR polynomials of the univariate ARMA representations and we express the autocovariances in terms of the roots of the AR polynomials and the parameters of the MA polynomials of the univariate ARMA representations.

[^2]
2 SUM OF GARCH MODELS

Let y_{t} be equal to the sum of n processes

$$
\begin{equation*}
y_{t}=\sum_{i=1}^{n} y_{i t}, \quad y_{i t}=\mu_{i, t-1}+\epsilon_{i t} \tag{2.1}
\end{equation*}
$$

The $\epsilon_{i t}$'s follow a diagonal multivariate GARCH process:

Each $h_{i t}$ follows a $\operatorname{GARCH}\left(p_{i}, q_{i}\right)$ process

$$
\begin{align*}
B_{i}(L) h_{i t} & =\omega_{i 0}+A_{i}(L) \epsilon_{i t}^{2}, \text { where } \tag{2.3}\\
B_{i}(L) & =-\sum_{k=0}^{p_{i}} \beta_{i k} L^{k}, \quad A_{i}(L)=\sum_{k=1}^{q_{i}} a_{i k} L^{k}, \quad \beta_{i 0}=-1 \tag{2.3a}
\end{align*}
$$

For simplicity and without loss of generality we will assume that the conditional covariances are constant: $h_{m k, t}=\omega_{m k, 0}, m, k=1 \cdots, n$

Corollary 1a. The ARMA representations of the conditional variances $\left(h_{i t}\right)$ are given by

$$
\begin{align*}
B_{i}^{\star}(L) h_{i t} & =\omega_{i 0}+A_{i}(L) v_{i t}, \quad v_{i t}=\epsilon_{i t}^{2}-h_{i t} \tag{2.4}\\
B_{i}^{\star}(L) & =B_{i}(L)-A_{i}(L)=\prod_{j=1}^{p_{i}^{\star}}\left(1-\beta_{i j}^{\prime} L\right), p_{i}^{\star}=\max \left(p_{i}, q_{i}\right) \tag{2.4a}
\end{align*}
$$

The $v_{i t}$'s are uncorrelated (although not independent) terms. The covariance matrix of the $v_{i t}$'s is denoted by ${ }^{10}$

$$
\bar{\sigma}_{v}=\left[\begin{array}{ccc}
\sigma_{11, v} & \sigma_{12, v} & \sigma_{1 n, v} \tag{2.5}\\
\cdots \cdots & \ldots & \cdots \\
\cdots \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\sigma_{n 1, v} & \cdots & \cdots
\end{array} \sigma_{n n, v} .\right]
$$

[^3]Proof. In (2.3) we add and subtract $A_{i}(L) h_{i t}$ and we get (2.4).
Assumption 1. All the roots of the autoregressive polynomials $\left(B_{i}^{\star}(L)\right)$ and all the roots of the moving average polynomials $\left(A_{i}(L)\right)$ are lie outside the unit circle (Stationarity and Invertibility conditions).

Assumption 2. The polynomials $B_{i}^{\star}(L)$ and $A_{j}(L)(i, j=1, \cdots, n)$ are left coprime. In other words the representation $\frac{B_{i}^{\star}(L)}{A_{j}(L)}$ is irreducible.

Corollary 1b. The conditional variance of y_{t} is equal to the sum of the n GARCH processes $h_{i t}{ }^{11}$:

$$
\begin{equation*}
h_{t}=V_{t-1}\left(y_{t}\right)=\omega_{0}^{\star}+\sum_{i=1}^{n} h_{i t} \tag{2.6}
\end{equation*}
$$

The ω_{0}^{\star} together with the proof is given in Appendix A.
Theorem 1. Under assumptions 1 and 2, the autocovariance generating function (agf) of the preceding process $\left(h_{t}\right)$ is given by ${ }^{12}$:

$$
\begin{gather*}
g_{z}(h)=\sum_{m=0}^{\infty} f_{m} \gamma_{m}\left(z^{m}+z^{-m}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{A_{i}(z) A_{j}\left(z^{-1}\right)}{B_{i}^{\star}(z) B_{j}^{\star}\left(z^{-1}\right)} \sigma_{i j, v}, \text { where } \tag{2.7}\\
\gamma_{m}=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k, i}^{m} \lambda_{i j}^{k, m}\right) \sigma_{i j, v}, f_{m}= \begin{cases}.5 & \text { if } m=0 \\
1 & \text { otherwise },\end{cases} \tag{2.7a}\\
\zeta_{i l, j}^{m}=\frac{\zeta_{i l}^{m}}{\prod_{k=1}^{p_{j}^{\star}}\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)}, \zeta_{i l}^{m}=\frac{\left(\beta_{i l}^{\prime}\right)^{p_{i}^{\star}-1+m}}{\prod_{i}^{\star}\left(\beta_{i l}^{\prime}-\beta_{i k}^{\prime}\right)}, \tag{2.7b}\\
\lambda_{l, m}^{i j}=\sum_{c=0}^{q_{j}} \sum_{d=1}^{q_{i}^{\prime}} a_{i d} a_{j, d+c}\left(\beta_{i l}^{\prime}\right)^{c}+\sum_{c=1}^{m^{\star}} \sum_{d=1}^{q_{j}^{\prime}} a_{j d} a_{i d+c}\left(\beta_{i l}^{\prime}\right)^{-c}, \lambda_{i j}^{k, m}=\sum_{c=m+1}^{q_{i}} \sum_{d=1}^{q_{j}^{\prime}} a_{j d} a_{i d+c}\left(\beta_{j k}^{\prime}\right)^{c-2 m} \tag{2.7c}
\end{gather*}
$$

and

$$
\left[\begin{array}{r}
p_{i}^{\star} \tag{2.7d}\\
q_{i}^{\prime} \\
q_{j}^{\prime} \\
m^{\star}
\end{array}\right]=\left[\begin{array}{c}
\max \left(p_{i}, q_{i}\right) \\
\min \left(q_{i}, q_{j}-c\right) \\
\min \left(q_{j}, q_{i}-c\right) \\
\min \left(m, q_{i}\right)
\end{array}\right]
$$

The proof of Theorem 1 is presented in Appendix A.

[^4]
3 MULTIVARIATE GARCH MODELS

3.1 Vec Representation

In what follows we examine the vec representation of the Multivariate GARCH(rIs) process of order p [MGARCH(rISp)].

The general form of the MGARCH(rISTp) model is given by

$$
\begin{align*}
& \bar{h}_{t}^{\star}=\Omega+\sum_{l=1}^{s}{ }_{l} A \bar{\epsilon}_{t-l}^{\star}+\sum_{l=1}^{r}{ }_{l} B^{\star} \bar{h}_{t-l}^{\star}, \text { where } \tag{3.1}\\
& \bar{h}_{t}^{\star}=\left[\begin{array}{c}
h_{1 t}^{\star} \\
\cdot \\
\cdot \\
\cdot \\
h_{p^{\star}}^{\star}
\end{array}\right], \bar{\epsilon}_{t-l}^{\star}=\left[\begin{array}{c}
\epsilon_{1 t-l}^{\star} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{p^{\star} t-l}
\end{array}\right], \Omega=\left[\begin{array}{c}
\omega_{1}^{\star} \\
\cdot \\
\cdot \\
\cdot \\
\omega_{p^{\star}}
\end{array}\right], p^{\star}=\frac{p(p+1)}{2} \tag{3.1a}
\end{align*}
$$

and

$$
\begin{gather*}
h_{i t}^{\star}= \begin{cases}h_{i t} & \text { if } i \leq p, \\
h_{l k, t} & \text { if } i=l \cdot p+k-\frac{l(l+1)}{2},\end{cases} \tag{3.1c}\\
\epsilon_{i, t-l}^{\star}= \begin{cases}\epsilon_{i, t-l}^{2} & \text { if } i \leq p, \\
\epsilon_{l, t-l} \epsilon_{k, t-l} & \text { if } i=n \cdot p+k-\frac{n(n+1)}{2} \\
i & =1, \cdots, p^{\star}, \\
\quad k=1, \cdots, p-1,\end{cases} \tag{3.1d}\\
k=n+1, \cdots, p
\end{gather*}
$$

An alternative expression for the MGARCH(rISIp) is:

$$
\begin{align*}
& B^{L \star} \bar{h}_{t}^{\star}=\Omega+A^{L} \bar{\epsilon}_{t}^{\star} \text {, where } \tag{3.2}
\end{align*}
$$

$$
\begin{align*}
& B_{i k}^{L \star}=\sum_{l=1}^{r} b_{i k}^{l \star} L^{l}, \quad A_{i j}^{L}=\sum_{l=1}^{s} a_{i j}^{l} L^{l} \tag{3.2b}
\end{align*}
$$

Corollary 2a. The VARMA representation of the conditional variances (and covariances) for the $\operatorname{MGARCH}(r, s, p)$ model is given by

$$
\begin{equation*}
\bar{h}_{t}^{\star}=\Omega+\sum_{l=1}^{r^{\prime}}{ }_{l} B \bar{h}_{t-l}^{\star}+\sum_{l=1}^{s}{ }_{l} A \bar{v}_{t-l}^{\star}, r^{\prime}=\max (r, s) \tag{3.3}
\end{equation*}
$$

where

$$
{ }_{l} B=\left\{\begin{array}{ll}
{ }_{l} B^{\star}+{ }_{l} A & \text { if } l<r, s \tag{3.3a}\\
{ }_{l} B^{\star} & \text { if } l, r>s \\
{ }_{l} A & \text { if } l, s>r
\end{array} \quad \bar{v}_{t-l}^{\star}=\left[\begin{array}{c}
v_{1, t-l}^{\star} \\
\cdot \\
\cdot \\
\cdot \\
v_{p^{\star}, t-l}^{\star}
\end{array}\right]\right.
$$

$v_{i, t-l}^{\star}$ are uncorrelated (although not independent) terms. They are given by

$$
v_{i, t-l}^{\star}= \begin{cases}\epsilon_{i, t-l}^{2}-h_{i, t-l} & \text { if } i \leq p \tag{3.3b}\\
\epsilon_{n, t-l} \epsilon_{k, t-l}-h_{n k, t-l} & \text { if }\left\{\begin{array}{l}
i=n p+k-\frac{n(n+1)}{2} \\
n=1, \cdots, p-1 \\
k=1 \cdots, p
\end{array}\right.\end{cases}
$$

Their covariance matrix is denoted by ${ }^{13}$

$$
\bar{\sigma}_{v}^{\star}=\left[\begin{array}{lr}
\sigma_{11, v} & \sigma_{1 p^{\star}, v} \tag{3.3c}\\
\cdots \cdots & \cdots \\
\cdots \cdots & \cdots \\
\cdots & \cdots \\
\sigma_{p^{\star} 1, v} & \sigma_{p^{\star} p^{\star}, v}
\end{array}\right]
$$

An alternative expression for the VARMA representation is given by:
$B^{L} \bar{h}_{t}^{\star}=\Omega+A^{L} \bar{v}_{t}^{\star}$, where

$$
B^{L}=\left[\begin{array}{ccc}
1-B_{11}^{L} & \ldots & -B_{1 p^{\star}}^{L} \tag{3.4a}\\
\cdots \cdots \cdots & \cdots & \cdots \\
\cdots \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
-B_{p^{\star} 1}^{L} & \cdots & 1-B_{p^{\star} p^{\star}}
\end{array}\right], \quad B_{i k}^{L}=\sum_{l=1}^{r^{\prime}} b_{i k}^{l} L^{l}, \quad b_{i k}^{l}= \begin{cases}b_{i k}^{l \star}+a_{i k}^{l} & \text { if } l<r, s \\
b_{i k}^{l \star} & \text { if } l, r>s \\
a_{l k}^{l} & \text { if } l, s>r\end{cases}
$$

Proof. In (3.1) we add and subtract $\sum_{l=1}^{s}{ }_{l} B^{\star} \bar{h}_{t-l}^{\star}$ to get (3.3).

[^5]Corollary $2 a^{\prime}$. The VARMA representation of the squared errors for the $\operatorname{MGARCH}(r, s, p)$ models is given by

$$
\begin{align*}
\bar{\epsilon}_{t}^{\star} & =\sum_{l=1}^{r^{\prime}}{ }_{l} B \bar{\epsilon}_{t-l}^{\star}+\sum_{l=0}^{r}{ }_{l} B^{\star} \bar{v}_{t-l}^{\star}, \text { or } B^{L} \bar{\epsilon}_{t}^{\star}=\Omega+B^{L \bullet} \bar{v}_{t}^{\star} \text {, where } \tag{3.5}\\
B^{L \bullet} & =\left[\begin{array}{lll}
B_{11}^{L \star} & \ldots & B_{1 p^{\star}}^{L \star} \\
\cdots \cdots \cdots \cdots & \cdots & \cdots \\
\cdots \cdots \cdots & \cdots & \cdots \\
B_{p^{\star} 1} & \ldots & B_{p^{\star} p^{\star}}^{L \star}
\end{array}\right] \tag{3.5a}
\end{align*}
$$

Proof. In (3.1) we add and subtract $\sum_{l=0}^{r}{ }_{l} B^{\star} \bar{\epsilon}_{t-l}^{\star}$ (where $\left.{ }_{0} B^{\star}=-I\right)$ to get (3.5).
Corollary 2b. The univariate ARMA representations of the conditional variances (and covariances) are given by

$$
\begin{equation*}
\prod_{l=1}^{\bar{p}}\left(1-B_{l} L\right) h_{i t}^{\star}=\sum_{j=1}^{p^{\star}} \sum_{l=1}^{\tilde{p}} B_{l}^{i j} L^{l} v_{j t}^{\star} \tag{3.6}
\end{equation*}
$$

where $\bar{p}=p^{\star} \times r^{\prime}$ and $\tilde{p}=\left(p^{\star}-1\right) r^{\prime}+s$. The B_{l} 's and $B_{l}^{i j}$,s are given in Appendix B (see eqs B.1-B.1b) and have been derived in K (1999c).

Corollary $2 b^{\prime}$. The univariate ARMA representations of the squared errors are given by

$$
\begin{equation*}
\prod_{l=1}^{\bar{p}}\left(1-B_{l} L\right) \epsilon_{i t}^{\star}=\sum_{j=1}^{p^{\star}} \sum_{l=0}^{\hat{p}} A_{l}^{i j} L^{l} v_{j t}^{\star} \tag{3.7}
\end{equation*}
$$

where $\hat{p}=\left(p^{\star}-1\right) r^{\prime}+r$. The B_{l} 's are as in (3.6). The $A_{l}^{i j}$,s can be derived from (3.5) in an analogous way to the $B_{l}^{i j}$'s in (3.6).

Assumption 3. All roots of $\left|B^{L}\right|$ and all roots of $\left|A^{L}\right|$ lie outside the unit circle. These conditions satisfy the stationarity and invertibility of the model.

Assumption 4. The polynomials B^{L} and A^{L} have no common left factors other than unimodular ones (this condition satisfy the irreducibility of the model) and satisfy other identificiability conditions given in Dunsmuir and Hannan (1976), and Deistler, Dunsmuir and Hannan (1978).

Theorem 2a. Under assumptions 3 and 4, the covariance between $h_{n_{1}, t}^{\star}$ and $h_{n_{2}, t-m}^{\star}$, $\left(n_{1}, n_{2}=1, \cdots, p^{\star}\right)$ is given by:

$$
\begin{align*}
\gamma_{n_{1}, n_{2}}^{m} & =\operatorname{cov}\left(h_{n_{1}, t}^{\star}, h_{n_{2}, t-m}^{\star}\right)=\sum_{j=1}^{p^{\star}} \sum_{i=1}^{p^{\star}} \sum_{f=1}^{\bar{p}} \zeta_{f m} \lambda_{f, m}^{n_{1} i, n_{2} j} \sigma_{i j, v}, \text { where } \tag{3.8}\\
\zeta_{f m} & =\frac{B_{f}^{\bar{p}-1+m}}{\prod_{g=1}^{\bar{p}}\left(1-B_{f} B_{g}\right) \prod_{\substack{g=1 \\
g \neq f}}^{\bar{p}}\left(B_{f}-B_{g}\right)}, \sigma_{i j, v}=\operatorname{cov}\left(v_{i t}^{\star}, v_{j t}^{\star}\right) \tag{3.8a}\\
\lambda_{f, m}^{n_{1} i, n_{2} j} & =\sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{1} i} B_{d+c}^{n_{2} j} B_{f}^{c}+\sum_{c=1}^{m^{\star}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{2} j} B_{d+c}^{n_{1} i} B_{f}^{-c}+\sum_{c=m+1}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{2} j} B_{d+c}^{n_{1} i} B_{f}^{c-2 m} \tag{3.8b}
\end{align*}
$$

and $m^{\star}=\min (m, \tilde{p})$. The proof follows immediately from the univariate ARMA representations (3.6) and Theorem 1.

Assumption 3a. All roots of $\left|B^{L}\right|$ and all roots of $\left|B^{L \bullet}\right|$ lie outside the unit circle. These conditions satisfy the stationarity and invertibility of the model.

Assumption $4 a$. The polynomials B^{L} and $B^{L \bullet}$ have no common left factors other than unimodular ones (this condition satisfy the irreducibility of the model) and satisfy other identificiability conditions given in Dunsmuir and Hannan (1976), and Deistler, Dunsmuir and Hannan (1978).

Theorem $2 a^{\prime}$. Under assumptions $3 a$ and $4 a$, the covariance between $\epsilon_{n_{1}, t}^{\star}$ and $\epsilon_{n_{2}, t-m}^{\star}$ $\left(n_{1}, n_{2}=1, \cdots, p^{\star}\right)$ is given by

$$
\begin{align*}
& \gamma_{n_{1}, n_{2}}^{m}=\operatorname{cov}\left(\epsilon_{n_{1}, t}^{\star} \epsilon_{n_{2}, t-m}^{\star}\right)=\sum_{j=1}^{p^{\star}} \sum_{i=1}^{p^{\star}} \sum_{f=1}^{\bar{p}} \zeta_{f m} \hat{\lambda}_{f, m}^{n_{1} i, n_{2} j} \sigma_{i j, v}, \text { where } \tag{3.9}\\
& \hat{\lambda}_{f, m}^{n_{1} i, n_{2} j}=\sum_{c=0}^{\hat{p}} \sum_{d=0}^{\hat{p}-c} A_{d}^{n_{1} i} A_{d+c}^{n_{2} j} B_{f}^{c}+\sum_{c=1}^{m^{\star}} \sum_{d=0}^{\hat{p}-c} A_{d} A_{d+c} B_{f}^{-c}+\sum_{c=m+1}^{\hat{p}} \sum_{d=1}^{\hat{p}-c} A_{d}^{n_{2} j} A_{d+c}^{n_{1} i} B_{f}^{c-2 m} \tag{3.9a}
\end{align*}
$$

and $m^{\star}=\min (m, \hat{p})$. The proof follows immediately from the univariate representations (3.7) and Theorem 1.

Corollary 2 $b^{\prime \prime}$. The covariances between $\epsilon_{n_{1}, t-l_{1}}^{2}$ and $h_{n_{1}, t-l_{2}}$ can be derived by using the following relations:

$$
\begin{equation*}
E\left(\epsilon_{n_{1}, t}^{2} \epsilon_{n_{2}, t-m}\right)=E\left(h_{n_{1}, t} \epsilon_{n_{2}, t-m}^{2}\right), \quad E\left(h_{n_{1}, t} h_{n_{2}, t-m}\right)=E\left(\epsilon_{n_{1}, t}^{2} h_{n_{2}, t-m}\right) \tag{3.10}
\end{equation*}
$$

together with Theorems $2 \mathrm{a}-2 a^{\prime}$.

Alternatively the above covariances can be derived by using Corollaries 2b-2b' (i.e. the univariate ARMA representations of the squared errors and of the conditional variances) and Theorem 1.

3.2 Constant Correlation Representation

NextГwe examine the constant conditional correlation Multivariate GARCH(rIs) process of order p $\left[M_{c} \mathrm{GARCH}(\mathrm{rISI})\right]$.

The general form of the $M_{c} \mathrm{GARCH}(\mathrm{rISIp})$ model is given by

$$
\begin{gather*}
\bar{h}_{t}=\Omega+\sum_{l=1}^{s}{ }_{l} A \bar{\epsilon}_{t-l}+\sum_{l=1}^{r}{ }_{l} B^{\star} \bar{h}_{t-l}, \text { or } B^{L \star} \bar{h}_{t}=\Omega+A^{L} \bar{\epsilon}_{t}, \text { where } \tag{3.11}\\
\bar{h}_{t}=\left[\begin{array}{c}
h_{1 t} \\
\cdot \\
\cdot \\
\cdot \\
h_{p t}
\end{array}\right], \bar{\epsilon}_{t-l}=\left[\begin{array}{c}
\epsilon_{1, t-l} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{p, t-l}
\end{array}\right],{ }_{l} A=\left[\begin{array}{cc}
a_{11}^{l} & a_{1 p}^{l} \\
\cdots \cdots & \cdots \\
\cdots & \cdots \\
\cdots a_{p 1}^{l} & a_{p p}^{l}
\end{array}\right],{ }_{l} B^{\star}=\left[\begin{array}{cc}
b_{11}^{l \star} & b_{1 p}^{l \star} \\
\cdots \cdots & \cdots \\
\ldots & \cdots \\
b_{p 1}^{l \star} & b_{p p}^{l \star}
\end{array}\right] \tag{3.11a}
\end{gather*}
$$

and the $B^{L \star}$ and A^{L} are given by (3.2a)- (3.2b) (where now p^{\star} is replaced by p). The conditional correlation between the errors is constant:

$$
\begin{equation*}
\frac{\operatorname{cov}_{t-1}\left(\epsilon_{i t}, \epsilon_{j t}\right)}{\sqrt{\operatorname{var}_{t-1}\left(\epsilon_{i t}^{2}\right) \operatorname{var}_{t-1}\left(\epsilon_{j t}^{2}\right)}}=\frac{h_{i j, t}}{h_{i t}^{5} h_{j t}^{5}}=p_{i j} \tag{3.11b}
\end{equation*}
$$

Corollary 2c. The VARMA representation of the conditional variances for the $M_{c} G A R C H(r, s, p)$ model is given by

$$
\begin{equation*}
\bar{h}_{t}=\Omega+\sum_{l=1}^{r^{\prime}}{ }_{l} B \bar{h}_{t-l}+\sum_{l=1}^{s} A \bar{v}_{t-l}, \text { or } B^{L} \bar{h}_{t}=\Omega+A^{L} \bar{v}_{t} r^{\prime}=\max (r, s) \tag{3.12}
\end{equation*}
$$

where

$$
{ }_{l} B=\left\{\begin{array}{ll}
{ }_{l} B^{\star}+{ }_{l} A & \text { if } l<r, s \tag{3.12a}\\
{ }_{l} B^{\star} & \text { if } l, r>s, \\
{ }_{l} A & \text { if } l, s>r
\end{array} \bar{v}_{t-l}=\left[\begin{array}{c}
v_{1 t-l} \\
\cdot \\
\cdot \\
\cdot \\
v_{p, t-l}
\end{array}\right]\right.
$$

and B^{L} is as in (3.4a) (where now p^{\star} is replaced by p).

The $v_{i t}$'s are uncorrelated although not independent terms and are given by $v_{i t}=$ $\epsilon_{i t}^{2}-h_{i t}$.

Their covariance matrix is denoted by ${ }^{14}$

$$
\bar{\sigma}_{v}=\left[\begin{array}{cc}
\sigma_{11, v} & \sigma_{1 p, v} \tag{3.12b}\\
\cdots \cdots & \cdots \\
\cdots \cdots & \cdots \\
\cdots & \cdots \\
\sigma_{p 1, v} & \sigma_{p p, v}
\end{array}\right]
$$

Proof. In (3.11) we add and subtract $\sum_{l=1}^{s}{ }_{l} A h_{t-l}$ and we get (3.12).
Corollary 2d. The univariate ARMA representations of (3.11) are given by

$$
\begin{equation*}
\prod_{l=1}^{\bar{p}}\left(1-B_{l} L\right) h_{i t}=\sum_{j=1}^{p} \sum_{l=1}^{\tilde{p}} B_{l}^{i j} L^{l} v_{j t}, \quad \bar{p}=p \times r^{\prime}, \quad \tilde{p}=(p-1) r^{\prime}+s \tag{3.13}
\end{equation*}
$$

where the B_{l} 's and $B_{l}^{i j}$'s are as in (3.6) (where now p^{\star} is replaced by p). The proof is similar to that of the $M G A R C H(r, s, p)$ model.

Theorem 2b. Under assumptions 3 and 4, the covariance between $h_{n_{1}, t}$ and $h_{n_{2}, t-m}$, $\left(n_{1}, n_{2}=1, \cdots, p\right)$ is given by ${ }^{15}$:

$$
\begin{align*}
\gamma_{n_{1}, n_{2}}^{m} & =\operatorname{cov}\left(h_{n_{1}, t}, h_{n_{2}, t-m}\right)=\sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{f=1}^{\bar{p}} \zeta_{f m} \lambda_{f, m^{\star}}^{n_{1} i, n_{2} j} \sigma_{i j, v}, \text { where } \tag{3.14}\\
\zeta_{f m} & =\frac{B_{f}^{\bar{p}-1+m}}{\prod_{g=1}^{\bar{p}}\left(1-B_{g} B_{f}\right) \prod_{\substack{g=1 \\
g \neq f}}^{\bar{p}}\left(B_{f}-B_{g}\right)} \tag{3.14a}\\
\lambda_{f, m}^{n_{1} i, n_{2} j} & =\sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{1} i} B_{d+c}^{n_{2} j} B_{f}^{c}+\sum_{c=1}^{m^{\star}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{2 j} j} B_{d+c}^{n_{1} i} B_{f}^{-c}+\sum_{c=m+1}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n_{2} j} B_{d+c}^{n_{1} i} B_{f}^{c-2 m} \tag{3.14b}
\end{align*}
$$

and $i, j, n_{1}, n_{2}=1, \cdots, p$.
The proof follows immediately from the univariate ARMA representations (3.13) and Theorem 1.

[^6]
4 Concluding Remarks

Since the observed volatilities of asset returns are regarded as realisations of the underlying stochastic processes it is not surprising that so much effort has been lavished on building models to measure and forecast them. The univariate and multivariate GARCH models and its various generalisations have been very popular in this respect and have been applied to various sorts of economic and financial data sets. However Γ they have seen relatively fewer theoretical advancements. This paper has contributed to the theoretical developments in the multivariate GARCH literature. In Section 2 we presented the autocovariance function of the S-GARCH model. MoreoverГin Section 3 we presented the autocovariance function of the vec (note that the vec representation includes the diagonal and the BEKK representations as special cases) and of the constant correlation representations of the multivariate GARCH model. The techniques used in this paper (i.e. the Wold representation and the autocovariance generating function of the univariate ARMA representations of the conditional variances and of the squared errors) can be applied to obtain the covariance structure of (i) more complex univariate GARCH models like the component GARCH and the GARCH-M-X models ${ }^{16}$ (see KГ1999d) and (ii) the multivariate GARCH in mean models ${ }^{17}$.

REFERENCES

AndersonГT. W. (1984) An introduction to multivariate statistical analysis $\Gamma 2 \mathrm{nd}$ edition TWiley.

BaillieГR.T.Г\& T. Bollerslev (1990) A multivariate generalized ARCH approach to modeling risk premia in forward foreign exchange rate markets. Journal of International Money and FinanceГ16Г109-124.

BaillieГR.T.Г\& R.J. Myers (1991) Bivariate GARCH estimation of optimal commodity futures hedge. Journal of Applied EconometricsГ16Г109-124.

BeraГА.K.Г\& M.L. Higgins (1993) ARCH models: properties Pestimation「and testing. Journal of Economic Surveys Г7Г305-362.

BollerslevГТ. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of EconometricsГ31Г307-327.

BollerslevГТ. (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH approach. Review of Economic and StatisticsГ 72Г 498 505.

BollerslevГТ.ГR.Y. Chou \& K.F. Kroner (1992) ARCH modeling in finance: a review of the theory and empirical evidence. Journal of EconometricsГ52Г5-59.

BollerslevГT.ГR.F. Engle \& D.B. Nelson (1994) ARCH models. in: R.F. Engle \& D.L. McFaddenГeds.Г Handbook of Econometrics ГVolume IVГ295-3038.

BollerslevГT.ГR.F. Engle \& J.M. Wooldridge (1988) A capital asset pricing model with time varying covariances. Journal of Political EconomyГ96Г116-131.

BrockwellГ P. J. \& R. A. Davis (1993) Time series: theory and methods Γ SpringerVerlag.

[^7]CecchettiГS.G.ГR.E. Cumby \& S. Figlewski (1988) Estimation of the optimal futures hedge. Review of Economics and StatisticsГ70Г623-630.

ChristodoulakisГG. (1998) Stochastic covariance structures: a primer on the multivariate GARCH framework. PhD Thesis. Department of EconomicsГBirkbeck College.

DeistlerГМ.ГDunsmuirГW. \& E. J. Hannan (1978) Vector linear time series models: corrections and extensions. Advances in Applied ProbabilityГ10Г360-377.

DieboldГF.X \& J.A. Lopez (1995) Modelling volatility dynamics. in: K.D. HooverГ edГ Мacroeconometrics: developments, tensions and prospectsГ427-466. Boston: Kluwer.

DingГ Z.Г \& C.W.J. Granger (1996) Modelling volatility persistence of speculative returns: a new approach. Journal of EconometricsГ73Г185-215.

DunsmuirГW. \& E. J. Hannan (1976) Vector linear time series models. Advances in Applied ProbabilityГ ГГ339-364.

EngelГ C. \& A. P. Rodriges (1989) Tests of international CAPM with time varying covariances. Journal of Applied EconometricsГ4Г119-128.

EngleГR.F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. EconometricaГ50Г987-1008.

EngleГR.F. (1995) ARCH Selected Readings. Oxford University Press.
EngleГR.F.ГC. W. J. Granger \& D. Kraft (1984) Combining competing forecasts of inflation using a bivariate ARCH model. Journal of Economic Dynamics and Contro Γ Г 6 151-165.

JeantheauГТ. (1998) Strong consistency of estimators for multivariate ARCH models. Econometric TheoryГ14Г70-86.

GourierouxГС. (1997) ARCH Models and Financial Applications 5 Springer.
GrierГK. B. \& M. J. Perry (1996) InflationГinflation uncertaintyГand relative price dispersion: evidence from bivariate GARCH-M models. Journal of Monetary Economics Γ 38Г 391-405.

HamiltonГJ.D. (1994) Time Series AnalysisГPrinceton.
НеГС. \& T. Terasvirta (1997) Fourth moment structure of the GARCH(pIq) process. Stockholm School of Economics Γ Working Paper Series in Economics and Finance No 168Γ forthcoming Econometric Theory.

Kaminsky「G. L. \& R. Peruga (1990) Can a time-varying risk premium explain excess returns in the forward market for foreign exchange? Journal of International Economics Γ 28Г47-70.

Karanasos Γ M. (1999a) Prediction in ARMA models with GARCH in mean effects. Discussion paper in Economics Γ University of York.

KaranasosГM. (1999b) The covariance structure of mixed ARMA and VARMA models. Discussion paper in Economics Γ University of York.

Karanasos Γ M. (1999c) The time series properties of multivariate GARCH models. Preprint.

KaranasosГM. (1999d) The covariance structure of the component GARCH and the GARCH-M-X models. Preprint.

Karanasos Γ M. (1999e) The 2nd moment and the autocovariance function of the squared errors of the GARCH model. Journal of EconometricsГ90Г63-76.

KaranasosГM.ГZ. Psaradakis \& M. Sola (1999) Cross-sectional aggregation and persistence in conditional variance. Preprint.

KarolyiГA. (1995) A multivariate GARCH model of international transmission of stock
returns and volatility: the case of United States and Canada. Journal of Business and Economic StatisticsГ13Г11-25.

KendallГМ. G.Г\& A. Stuart (1977) The Advanced theory of statistics Γ Vol. IГFourth EditionГCharles Griffin.

KronerГK.F.Г\& S. Claessens (1991) Optimal currency composition of external debt: applications to Indonesia and Turkey. Journal of International Money and Finance $\Gamma 10 \Gamma$ 131-148.

KronerГK. F. \& J. Sultan (1993) Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative AnalysisГ28Г535-551.
$\operatorname{Lin} \Gamma$ W. L. (1997) Impulse response function for conditional volatility in GARCH models. Journal of Business \& Economic StatisticsГ15Г15-25.

Ling 5 S. \& M. McAleer (1999) Asymptotic theory for a new vector ARMA-GARCH model. ManuscriptГDepartment of EconomicsГUniversity of Western Australia.

LongstaffTF.A. Г\& E.S. Schwartz (1992) Interest rate volatility and the term structure: a two-factor general equilibrium model. Journal of FinanceГ $4 Г 1259-1282$.

McCurbyГ T. H. \& I. G. Morgan (1989) Evidence of risk premia in foreign currency futures market. Queen's UniversityГDepartment of EconomicsГManuscript.

McCurbyГТ. H. \& I. G. Morgan (1991) Tests for systematic risk components in deviations from uncovered interest rate parity. Review of Economic StudiesГ58Г587-602.

MuirheadГR. J. (1982) Aspects of multivariate statistical theory ГWiley.
NerloveГМ.ГD. M. Grether \& J. L. Carvalho (1979) Analysis of economic time series: a synthesisएNew York: Academic Press.

NgT L. (1991) Tests of the CAPM with time varying covariances: a multivariate GARCH approach. Journal of FinanceГ 46 Г1507-1521.

PalmГF.C. (1996) GARCH models of volatility. In: G.S. Maddala \& C.R. Rao「eds. Handbook of StatisticsएVol 14Г209-240. Amsterdam: Elsevier.

PanditएS. M. \& S. M. Wu (1983) Time series and system analysis with applications Γ New York: Wiley.

ReinselГG. C. (1993) Elements of multivariate time series analysis Γ New York: Springer Verlag.

SchwertГG. W. Г\& P. J. Seguin (1990) Heteroskedasticity in stock returns. Journal of FinanceГ45Г1129-1155.

Shephard Γ N. (1996) Statistical aspects of ARCH and stochastic volatility. in: Cox Γ D. R.ГO. E. Barndorff-Nielsen \& D. V. HinkleyГeds.ГStatistical Models in Econometrics, Finance and other fieldsГ1-67.

Song Γ O. H. (1996) The effects of exchange rate volatilities on korean trade: multivariate GARCH-in-mean model based on partial conditional variances. Ph.D. Thesis Γ University of Hawaii.

TaylorГS. (1986) Modeling Financial Time Series. Wiley.
TseГY. K. (1998) A test for constant correlations in a multivariate GARCH model. Technical Report Γ Department of EconomicsГNational University of Singapore.

Appendix

A PROOF OF COROLLARY 1b, THEOREM 1

From (2.1) and (2.3) we get

$$
\begin{array}{r}
h_{t}=V_{t-1}\left(y_{t}\right)=V_{t-1}\left(\sum_{i=1}^{n} \epsilon_{i t}\right)=E_{t-1}\left[\sum_{i=1}^{n} \epsilon_{i t}^{2}+2 \sum_{k=l+1}^{n} \sum_{l=1}^{n-1} \epsilon_{l t} \epsilon_{k t}\right]= \\
\sum_{i=1}^{n} h_{i t}+2 \sum_{k=l+1}^{n} \sum_{l=1}^{n-1} h_{l k, t}=\sum_{i=1}^{n} h_{i t}+2 \sum_{k=l+1}^{n} \sum_{l=1}^{n-1} \omega_{l k, 0}=\omega_{0}^{\star}+\sum_{i=1}^{n} h_{i t} \tag{A.1}
\end{array}
$$

IMA

The infinite moving average (ima) representations of the $h_{i t}$'s are given by ${ }^{18}$

$$
\begin{equation*}
h_{i t}=\sum_{r=1}^{\infty} e_{i}^{r} v_{i t-r}, \text { where } e_{i}^{r}=\sum_{l=1}^{p_{i}^{\star}} \sum_{k=1}^{\min \left(r, q_{i}\right)} \zeta_{i l}^{r-k} a_{i k}, \quad \zeta_{i l}^{m}=\frac{\left(\beta_{i l}^{\prime}\right)^{p_{i}^{\star}-1+m}}{\prod_{\substack{k=1 \\ p_{i}^{\star} \\ k \neq l}}\left(\beta_{i l}^{\prime}-\beta_{i k}^{\prime}\right)} \tag{A.2}
\end{equation*}
$$

From the preceding equation we have

$$
\begin{equation*}
\operatorname{cov}\left(h_{i t}, h_{j, t-m}\right)=\sum_{r=1}^{\infty} e_{j}^{r} e_{i}^{r+m} \sigma_{i j, v} \tag{2a}
\end{equation*}
$$

After some algebra we get

$$
\begin{align*}
& \operatorname{cov}\left(h_{i t}, h_{j, t-m}\right)=\left(\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l}^{m} s_{j, i l}^{0} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k}^{m} s_{i, j k}^{0} \lambda_{i j}^{k, m}\right) \sigma_{i j, v}, \text { where } s_{j, i l}^{0}=\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k}^{0, i l}, \tag{A.2b}\\
& \zeta_{j k}^{0, i l}=\frac{\zeta_{j k}^{0}}{\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)}, \quad \lambda_{l, m}^{i j}=\sum_{c=0}^{q_{j}} \sum_{d=1}^{q_{i}^{\prime}} a_{i d} a_{j, d+c}\left(\beta_{i l}^{\prime}\right)^{c}+\sum_{c=1}^{m^{\star}} \sum_{d=1}^{q_{j}^{\prime}} a_{j d} a_{i, d+c}\left(\beta_{i l}^{\prime}\right)^{-c} \tag{A.2c}\\
&(\mathrm{~A} .2 c) \tag{A.2d}\\
& \lambda_{i j}^{k, m}=\sum_{c=m+1}^{q_{i}} \sum_{d=1}^{q_{j}^{\prime}} a_{j d} a_{i d+c}\left(\beta_{j k}^{\prime}\right)^{c-2 m},
\end{align*}
$$

[^8]and $q_{i}^{\prime}=\min \left(q_{i}, q_{j}-c\right) \Gamma q_{j}^{\prime}=\min \left(q_{j}, q_{i}-c\right) \Gamma m^{\star}=\min \left(m, q_{i}\right)$.
In the preceding equation Γ we use
\[

$$
\begin{equation*}
s_{j, i l}^{0}=\frac{1}{\prod_{k=1}^{p_{j}^{\star}}\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)} \tag{A.2e}
\end{equation*}
$$

\]

to get

$$
\begin{equation*}
\operatorname{cov}\left(h_{i t}, h_{j, t-m}\right)=\left(\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k, i}^{m} \lambda_{i j}^{k, m}\right) \sigma_{i j, v}, \text { where } \zeta_{i l, j}^{m}=\frac{\zeta_{i l}^{m}}{\prod_{k=1}^{p_{j}^{\star}}\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)} \tag{A.2f}
\end{equation*}
$$

Thus Γ we have

$$
\begin{align*}
h_{t} & =\omega_{0}^{\star}+\sum_{i=1}^{n} h_{i t} \Rightarrow \operatorname{cov}_{m}\left(h_{t}\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \operatorname{cov}\left(h_{i t}, h_{j, t-m}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left(\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{\hat{J}}^{\star}} \zeta_{j k, i}^{m} \lambda_{i j}^{k, m}\right) \sigma_{i j, v} \tag{A.2g}
\end{align*}
$$

$A G F$

From (2.3) we get

$$
\begin{align*}
\frac{1}{B_{i}^{\star}(z) B_{j}^{\star}\left(z^{-1}\right)} & =\frac{1}{\prod_{l=1}^{p_{i}^{\star}}\left(1-\beta_{i l}^{\prime} z\right) \prod_{l=1}^{p_{j}^{\star}}\left(1-\beta_{j l}^{\prime} z^{-1}\right)}=\sum_{k=1}^{p_{j}^{\star}} \sum_{l=1}^{p_{i}^{\star}} \frac{\zeta_{i l}^{0} \zeta_{j k}}{\left(1-\beta_{i l}^{\prime} z\right)\left(1-\beta_{j k}^{\prime} z^{-1}\right)} \tag{A.3}\\
A_{i}(z) A_{j}\left(z^{-1}\right) & =\left(\sum_{r=1}^{q_{i}} a_{i r} z^{r}\right)\left(\sum_{r=1}^{q_{j}} a_{j r} z^{-r}\right)=\sum_{l=0}^{q_{i}} \sum_{k=1}^{q_{i}^{\prime}} a_{j k} a_{i k+l} z^{l}+\sum_{l=1}^{q_{j}} \sum_{k=1}^{q_{i}^{\prime}} a_{i k} a_{j k+l} z^{-l}
\end{align*}
$$

From the preceding equations we have

$$
\begin{align*}
& \frac{A_{i}(z) A_{j}\left(z^{-1}\right)}{\left(1-\beta_{i l}^{\prime} z\right)\left(1-\beta_{j k}^{\prime} z^{-1}\right)}= \\
& =\frac{\zeta_{i l}^{0} \zeta_{j k}^{0}}{\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)} \sum_{m=0}^{\infty} f_{m}\left[\left(\lambda_{l, m}^{i j}\left(\beta_{i l}^{\prime}\right)^{m}+\lambda_{i j}^{k m}\left(\beta_{j k}^{\prime}\right)^{m}\right) z^{m}+\left(\lambda_{k, m}^{j i}\left(\beta_{j k}^{\prime}\right)^{m}+\lambda_{j i}^{l, m}\left(\beta_{i l}^{\prime}\right)^{m}\right) z^{-m}\right] \tag{A.3b}
\end{align*}
$$

Using

$$
\begin{equation*}
\sum_{k=1}^{p_{j}^{\star}} \frac{\zeta_{j k}^{0}}{\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)}=\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k}^{0, i l}=\frac{1}{\prod_{k=1}^{p_{j}^{\star}}\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)} \tag{A.3c}
\end{equation*}
$$

in (A.3)-(A.3b) we obtain

$$
\begin{align*}
& \frac{A_{i}(z) A_{j}\left(z^{-1}\right)}{B_{i}^{\star}(z) B_{j}^{\star}\left(z^{-1}\right)}+\frac{A_{j}(z) A_{i}\left(z^{-1}\right)}{B_{j}^{\star}(z) B_{i}^{\star}\left(z^{-1}\right)}= \\
& =\sum_{k=1}^{p_{j}^{\star}} \sum_{l=1}^{p_{i}^{\star}} \sum_{m=0}^{\infty} \frac{\zeta_{i l}^{0} \zeta_{j k}^{0}}{\left(1-\beta_{i l}^{\prime} \beta_{j k}^{\prime}\right)}\left[\left(\lambda_{l, m}^{i j}\left(\beta_{i l}^{\prime}\right)^{m}+\lambda_{i j}^{k, m}\left(\beta_{j k}^{\prime}\right)^{m}\right)\right. \\
& \left.+\left(\lambda_{k, m}^{j i}\left(\beta_{j k}^{\prime}\right)^{m}+\lambda_{j i}^{l, m}\left(\beta_{i l}^{\prime}\right)^{m}\right)\right]\left(z^{m}+z^{-m}\right) \\
& =\sum_{m=0}^{\infty}\left[\left(\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k, i}^{m} \lambda_{i j}^{k, m}\right)+\left(\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k, i}^{m} \lambda_{k, m}^{j i}+\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{j i}^{l, m}\right)\right]\left(z^{m}+z^{-m}\right) \tag{A.3d}
\end{align*}
$$

Using the preceding equation we see that

$$
\begin{align*}
h_{t} & =\omega_{0}^{\star}+\sum_{i=1}^{n} h_{i t} \Rightarrow g_{z}(h)=\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{A_{i}(z) A_{j}\left(z^{-1}\right)}{B_{i}^{\star}(z) B_{j}^{\star}\left(z^{-1}\right)} \sigma_{i j, v}= \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{m=0}^{\infty} f_{m}\left[\sum_{l=1}^{p_{i}^{\star}} \zeta_{i l, j}^{m} \lambda_{l, m}^{i j}+\sum_{k=1}^{p_{j}^{\star}} \zeta_{j k, i}^{m} \lambda_{k, m}^{i j}\right] \sigma_{i j, v}\left(z^{m}+z^{-m}\right) \tag{A.3e}
\end{align*}
$$

B PROOF OF THEOREM $2 a$

UNIVARIATE ARMA REPRESENTATIONS

The univariate representations of (3.3) are given by (in what follows B denotes matrix whereas \bar{B} denotes determinant)

$$
\begin{align*}
& \sum_{l=0}^{\bar{p}}{p^{\star}}^{B_{l m}^{\star}} L^{l} h_{i t}^{\star}=\prod_{l=1}^{\bar{p}}\left(1-B_{l} L\right) h_{i t}^{\star}=\sum_{j=1}^{p^{\star}} \sum_{l=1}^{\tilde{p}} p^{\star}, i j \\
& B_{l m}^{\star} L^{l} v_{j t}^{\star}= \tag{B.1}\\
&=\sum_{j=1}^{p^{\star}} \sum_{l=1}^{\tilde{p}} B_{l}^{i j} L^{l} v_{j t}^{\star}
\end{align*}
$$

where

$$
{p^{\star}}_{\bar{B}_{l m}^{\star}}^{\star}=\sum_{m=1}^{p^{\star}} \Re_{m l, r^{\prime}}^{\prime}{p^{\star}}^{B_{m}},,^{p^{\star}} \bar{B}_{m}=\prod_{k=1}^{m}\left(\sum_{f_{k}=f_{k-1}+1}^{p^{\star}-(m-k)}\right) \prod_{k=1}^{m}\left({ }^{p^{\star}} B_{f_{k}}^{f_{k}}\right)(-1)^{m}, \quad f_{0}=0
$$

where ${ }^{p^{\star}} \bar{B}_{m}$ denotes the sum of the determinants of all the $(m \times m)$ submatrices of the $\left(p^{\star} \times p^{\star}\right)$ matrix B. As an exampleГconsider the case where $p^{\star}=3$ and $m=2$:

$$
\begin{gathered}
p^{\star} \bar{B}_{m}={ }^{3} \bar{B}_{2}={ }^{3} \bar{B}_{12}^{12}+{ }^{3} \bar{B}_{13}^{13}+{ }^{3} \bar{B}_{23}^{23}=\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right|+\left|\begin{array}{ll}
b_{11} & b_{13} \\
b_{31} & b_{33}
\end{array}\right|+\left|\begin{array}{ll}
b_{22} & b_{23} \\
b_{32} & b_{33}
\end{array}\right| \\
\Re_{m l, r^{\prime}}^{\prime}=\left\{\begin{array}{ll}
\Re_{m l, r^{\prime}} & \text { if } l=m, \cdots, m \times r^{\prime} \\
0 & \text { otherwise }
\end{array}, \Re_{m l, r^{\prime}}=\prod_{k=1}^{m} \mho_{g_{k}=\max \left[1, l-\left[(m-k) r^{\prime}+\sum_{t=1}^{k-1} g_{t]} g_{t=1}^{k-1} g_{t}\right.\right.}^{\min \left[-(m-k), r^{\prime}\right]}\right.
\end{gathered}
$$

where $\Re_{m l, r^{\prime}}$ denotes the set of all the combinations of m numbers taking values from 1 to r^{\prime} and adding to l. As an example Γ consider the case where $r^{\prime}=2$ and $m=2$:

$$
\Re_{m l, r^{\prime}}^{\prime}=\Re_{2 l, 2}^{\prime}=\left\{\begin{array}{ll}
\Re_{2 l, 2} & \text { if } l=2,3,4 \\
0 & \text { otherwise }
\end{array}, \Re_{22,2}=11, \Re_{23,2}=12,21, \Re_{24,2}=22\right.
$$

${ }_{k_{1} k_{2} \cdots k_{m}}^{p_{m}^{\star}} \bar{B}_{m}\left(k_{i}=1, \cdots, r^{\prime}\right)$ denotes the ${ }^{p^{\star}} \bar{B}_{m}$ sum of determinants where now the b's in the ith column $(i=1, \cdots, m)$ are taken from the ${ }_{k_{i}} B$ matrix. As an example Γ consider the case where $p^{\star}=3$ and $m=3$:

$$
{ }_{121}{ }_{1} \bar{B}_{3}=-\left|\begin{array}{lll}
b_{11}^{1} & b_{12}^{2} & b_{13}^{1} \\
b_{21}^{1} & b_{22}^{2} & b_{23}^{1} \\
b_{31}^{1} & b_{32}^{2} & b_{33}^{1}
\end{array}\right|
$$

When we multiply ${ }^{p^{\star}} \bar{B}_{m}$ by $\Re_{m l, r^{\prime}}$ we get

$$
\underset{\left(l_{1} \cdots l_{m}\right)_{1}}{p^{\star}} \bar{B}_{m}+\cdots+{ }_{\left(l_{1} \cdots l_{m}\right)_{f}}^{p^{\star}} \bar{B}_{m}
$$

where $\left(l_{1} \cdots l_{m}\right)_{f}$ denotes the set of all the f different combinations of m numbers which take values from 1 to p^{\star} and sum to l. As an example Γ consider the case where $p^{\star}=3$ and $m=2, \quad l=3$:

$$
\begin{gathered}
\Re_{23,2}{ }^{3} \bar{B}_{2}={ }_{12}^{3} \bar{B}_{2}+{ }_{21}^{3} \bar{B}_{2}=\left[\begin{array}{ll}
b_{11}^{1} & b_{12}^{2} \\
b_{21}^{1} & b_{22}^{2}
\end{array}\left|+\left|\begin{array}{ll}
b_{11}^{1} & b_{13}^{2} \\
b_{31}^{1} & b_{33}^{2}
\end{array}\right|+\left|\begin{array}{ll}
b_{22}^{1} & b_{23}^{2} \\
b_{32}^{1} & b_{33}^{2}
\end{array}\right|\right]+\right. \\
+\left[\left|\begin{array}{ll}
b_{11}^{2} & b_{12}^{1} \\
b_{21}^{2} & b_{22}^{1}
\end{array}\right|+\left|\begin{array}{ll}
b_{11}^{2} & b_{13}^{1} \\
b_{31}^{2} & b_{33}^{1}
\end{array}\right|+\left|\begin{array}{ll}
b_{22}^{2} & b_{23}^{1} \\
b_{32}^{2} & b_{33}^{1}
\end{array}\right|\right] \\
p^{\star}, i j_{1} \\
\bar{B}_{l m}^{\star}=\sum_{m=0}^{p^{\star}-1} \Re_{(m+1) l, r^{\prime} s}^{\prime}{ }^{p^{\star}, i j_{1}} \bar{B}_{m},{ }^{p^{\star}, i j_{1}} \bar{B}_{m}=\prod_{k=1}^{m}\left(\sum_{f_{k}=f_{k-1}+1}^{p^{\star}-(m-k)}\right) \prod_{k=1}^{m}\left({ }^{p^{\star}, i j_{1}} B_{1, f_{k}}^{1, f_{k}}\right)(-1)^{m}, f_{0}=1 \\
(\mathrm{~B} .1 b)
\end{gathered}
$$

where ${ }^{p^{\star}, i j} B$ denotes a $\left(p^{\star} \times p^{\star}\right)$ matrix. It is obtained from matrix B by substituting its ith column with the ith column of matrix A. As an exampleГconsider the case where $p^{\star}=3, \quad i=3$ and $j=1$:

$$
{ }^{3,31} B=\left[\begin{array}{lll}
b_{11} & b_{12} & a_{11} \\
b_{21} & b_{22} & a_{21} \\
b_{31} & b_{32} & a_{31}
\end{array}\right]
$$

$p^{\star}, i j_{1} B$ denotes a ($p^{\star} \times p^{\star}$) matrix. It is obtained from matrix ${ }^{p^{\star}, i j} B$ by moving the ith row (column) into the first row (column). As an example Γ consider the case where $p^{\star}=3, i=3$ and $j=1$:

$$
{ }^{3,31_{1}} B=\left[\begin{array}{lll}
a_{31} & b_{31} & b_{32} \\
a_{11} & b_{11} & b_{12} \\
a_{21} & b_{21} & b_{22}
\end{array}\right]
$$

Of all the $(m+1) \times(m+1)$ submatrices of the ($p^{\star} \times p^{\star}$) matrix ${ }^{p^{\star}, i j_{1}} B \Gamma^{p^{\star}, i j_{1}} B_{m}$ denotes the sum of those which include elements of its first row and column. As an example Γ consider the case where $p^{\star}=3, i=3, \quad j=1$ and $m=1$:

$$
\begin{gathered}
3,31_{1} B_{1}=\left[\begin{array}{ll}
a_{31} & b_{31} \\
a_{11} & b_{11}
\end{array}\right]+\left[\begin{array}{ll}
a_{31} & b_{32} \\
a_{21} & b_{22}
\end{array}\right] \\
\Re_{(m+1) l, r^{\prime} s}^{\prime}= \begin{cases}\Re_{(m+1) l, r^{\prime} s}^{\prime} & \text { if } l=m+1, \cdots, m r^{\prime}+s \\
0 & \text { otherwise }\end{cases} \\
\Re_{(m+1) l, r^{\prime} s}=\prod_{k^{\star}=1}^{m+1} \mho_{\left.g_{k^{\star}=\max \left[1, l-\left[\left(m+1-k^{\star}\right) r^{\star}+\sum_{t=1}^{k^{\star}} \sum_{t \in 1} g_{t}\right]\right.}^{\min ^{\star}-1} g_{t-},\left(m+1-k^{\star}\right), r^{\star}\right]}, r^{\star}= \begin{cases}s & \text { if } k^{\star}=1 \\
r^{\prime} & \text { otherwise }\end{cases}
\end{gathered}
$$

$\Re_{(m+1) l, r^{\prime} s}$ denotes the set of all the combinations of $(m+1)$ numbers which take values from 1 to r^{\prime} (except from the first one which take values from one to s) and sum to l. As an example Γ consider the case where $r^{\prime}=2, s=3, l=6$ and $m=2$:

$$
\Re_{36,23}=222,312,321
$$

The proof is given in $K(1999 c)$.

$$
\text { The covariance matrix } \bar{\sigma}_{v}^{\star}
$$

Using Theorem 1 and expression (B.1) we can show that

$$
\begin{gather*}
h_{i t}^{\prime}-h_{i t}^{\circ}=\sum_{j=1}^{p^{\prime}} \gamma_{i j, 0} v_{j, t}^{\prime}, \text { for } i=1, \cdots, p^{\prime} \text { where } \tag{B.2}\\
\underline{h_{i t}^{\prime}}
\end{gather*}
$$

The $h_{i t}^{\prime}$'s are given by

$$
h_{i t}^{\prime}= \begin{cases}E\left(h_{i t}^{2}\right) & \text { if } i \leq p \\
E\left(h_{n k, t}^{2}\right) & \text { if } p^{\star} \geq i>p, i=n \cdot p+k-\frac{n(n+1)}{2}, \begin{array}{l}
n=1, \cdots, p-1 \\
k=n+1, \cdots, p
\end{array} \\
E\left(h_{n^{\star} t} h_{k^{\star} t}\right) & \text { if } p^{\prime} \geq i>p^{\star}, i=n^{\star} p^{\star}+k^{\star}-\frac{n^{\star}\left(n^{\star}+1\right)}{2}, \\
n^{\star}=1, \cdots, p^{\star}-1 \\
k^{\star}=n^{\star}+1, \cdots, p^{\star}\end{cases}
$$

and the n^{\star} and k^{\star} are given by

$$
\begin{gather*}
n^{\star}= \begin{cases}n^{\star} & \text { if } n^{\star} \leq p, \\
l_{n} \cdot m_{n} & \text { if } n^{\star}>p, n^{\star}=l_{n} p+m_{n}-\frac{l_{n}\left(l_{n}+1\right)}{2} .\end{cases} \\
k^{\star}= \begin{cases}k^{\star} & \text { if } k^{\star} \leq p, \\
l_{k} \cdot m_{k} & \text { if } k^{\star}>p, l_{k} p+m_{k}-\frac{l_{k}\left(l_{k}+1\right)}{2}\end{cases} \tag{B.2b}\\
l_{n}=1, \cdots, p-2, \quad l_{k}=1, \cdots, p-1 \\
m_{n}=l_{n}+1, \cdots, p, m_{k}=l_{k}+1, \cdots, p \\
\underline{h_{i t}^{\circ}}
\end{gather*}
$$

The $h_{i t}^{\circ}$'s are given by

$$
h_{i t}^{\circ}= \begin{cases}{\left[E\left(h_{i t}\right)\right]^{2}} & \text { if } i \leq p \tag{B.2c}\\ {\left[E\left(h_{n k, t}\right)\right]^{2}} & \text { if } p^{\star} \geq i>p \\ E\left(h_{n^{\star} t}\right) E\left(h_{k^{\star} t}\right) & \text { if } p^{\prime} \geq i>p^{\star}, \text { and } E\left(h_{i t}\right)=\frac{\omega_{i}^{\star}}{B(1)}\end{cases}
$$

The n^{\star} and k^{\star} are given by (B.2a)-(B.2b).
$\underline{\gamma_{i j, 0}}$
a) $p^{\star} \geq i \geq 1$

When $p^{\star} \geq i$ the $\gamma_{i j, 0}$'s are given by

$$
\begin{gather*}
\gamma_{i j, 0}= \begin{cases}\sum_{f=1}^{\bar{p}} \zeta_{f 0} \lambda_{f, 0}^{i, j} & \text { if } j \leq p^{\star}, \\
2 \sum_{f=1}^{\bar{p}} \zeta_{f 0} \lambda_{f, 0}^{i, n^{\star} k^{\star}} & \text { if } j>p^{\star}, j=n^{\star} p^{\star}+k^{\star}-\frac{n^{\star}\left(n^{\star}+1\right)}{2}\end{cases} \\
\lambda_{f 0}^{i, j}=2 \sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{i j} B_{d+c}^{i j}\left(B_{f}\right)^{c}, \lambda_{f 0}^{i, n^{\star} k^{\star}}=\sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{i n^{\star}} B_{d+c}^{i k^{\star}}\left(B_{f}\right)^{c}+\sum_{c=1}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{i k^{\star}} B_{d+c}^{i n^{\star}}\left(B_{f}\right)^{c} \\
\zeta_{f 0}=\frac{B_{f}^{\bar{p}-1}}{\prod_{g=1}^{\bar{p}}\left(1-B_{f} B_{g}\right) \prod_{\substack{\bar{p}=1 \\
g \neq f}}^{\bar{p}}\left(B_{f}-B_{g}\right)} \\
\quad \text { b) } p^{\prime} \geq i>p^{\star}
\end{gather*}
$$

when $p^{\prime} \geq i>p^{\star} \Gamma i=n^{\prime} p^{\star}+k^{\prime}-\frac{n^{\prime}\left(n^{\prime}+1\right)}{2} \Gamma n^{\prime}=1, \cdots, p^{\star}-1 \Gamma k^{\prime}=n^{\prime}+1, \cdots, p^{\star}$ the $\gamma_{i j, 0}$'s are given by

$$
\begin{align*}
\gamma_{i j, 0}= \begin{cases}\sum_{f=1}^{\bar{p}} \zeta_{f 0} \lambda_{f 0}^{n^{\prime} k^{\prime}, j} & \text { if } j \leq p^{\star} \\
\sum_{f=1}^{\bar{p}} \zeta_{f 0}\left[\lambda_{f 0}^{n^{\prime} k^{\prime}, n^{\star} k^{\star}}+\lambda_{f 0}^{n^{\prime} k^{\prime}, k^{\star} n^{\star}}\right] & \text { if } p^{\prime} \geq j>p^{\star}\end{cases} \\
\lambda_{f 0}^{n^{\prime} k^{\prime}, j}=\sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n^{\prime} j} B_{d+c}^{k^{\prime} j}\left(B_{f}\right)^{c}+\sum_{c=1}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{k^{\prime} j} B_{d+c}^{n^{\prime} j}\left(B_{f}\right)^{c} \\
\lambda_{f 0}^{n^{\prime} k^{\prime}, n^{\star} k^{\star}}=\sum_{c=0}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{n^{\prime} n^{\star}} B_{d+c}^{k^{\prime} k^{\star}} B_{f}^{c}+\sum_{c=1}^{\tilde{p}} \sum_{d=1}^{\tilde{p}-c} B_{d}^{k^{\prime} k^{\star}} B_{d+c}^{n^{\prime} n^{\star}}\left(B_{f}\right)^{c}
\end{align*}
$$

The n^{\star} Гand k^{\star} are as in (B.2a)-(B.2b).

Multivariate Normal Distribution

From the definition of the Multivariate ARCH model pproposed by EGK (1984) we have

$$
\begin{align*}
\epsilon_{i t} & =h_{i t}^{1 / 2} e_{i t}, \quad i=1, \cdots, p \tag{B.3}\\
E_{t-1}\left(e_{i t} e_{j t}\right) & =p_{i j}=\frac{h_{i j, t}}{h_{i t}^{1 / 2} h_{j t}^{1 / 2}}
\end{align*}
$$

Using the moment generating function of the multivariate normal distribution we obtain the moments of the $e_{i t}{ }^{\prime} s^{19}$:

$$
\begin{align*}
E_{t-1}\left(e_{i t}^{2} e_{j t}^{2}\right) & =1+2 p_{i j}^{2} & E_{t-1}\left(e_{i t}^{3} e_{j t}\right) & =3 p_{i j} \\
E_{t-1}\left(e_{i t}^{2} e_{j t} e_{n t}\right) & =p_{j n}+2 p_{i j} p_{i n} & E_{t-1}\left(e_{i t} e_{j t} e_{n t} e_{k t}\right) & =p_{i j} p_{n k}+p_{i n} p_{j k}+p_{i k} p_{j n}(\tag{B.3b}
\end{align*}
$$

Inserting the preceding equations in (3.3b) and using (B.3a) we get

$$
\begin{align*}
\operatorname{var}\left(v_{i t}\right) & =2 E\left(h_{i, t}^{2}\right) \\
\operatorname{cov}\left(v_{i t}, v_{j t}\right) & =2 E\left(h_{i j, t}^{2}\right) \\
\operatorname{cov}\left(v_{i t}, v_{j n, t}\right) & =2 E\left(h_{i j, t} \cdot h_{i n, t}\right) \\
\operatorname{cov}\left(v_{i j, t}, v_{i n, t}\right) & =E\left(h_{i t} \cdot h_{j n, t}\right)+E\left(h_{i j, t} \cdot h_{i n, t}\right) \\
\operatorname{cov}\left(v_{i j, t}, v_{n k, t}\right) & =E\left(h_{i k, t} \cdot h_{j n, t}\right)+E\left(h_{i n, t} \cdot h_{j k, t}\right) \tag{B.4}
\end{align*}
$$

$$
\operatorname{var}\left(v_{i j, t}\right)=E\left(h_{i t} h_{j t}\right)+E\left(h_{i j, t}^{2}\right)
$$

In what follows Γ using the preceding equations (B.4) we express the $v_{j, t}^{\prime}$'s as functions of the $h_{i t}^{\prime}$'s:

$$
\text { i) } p^{\star} \geq j
$$

When $p^{\star} \geq j$ then the $v_{j t}^{\prime}$'s are given by

$$
v_{j t}^{\prime}=\operatorname{var}\left(v_{j, t}\right)=\left\{\begin{array}{rlr}
2 E\left(h_{j, t}^{2}\right)=2 h_{j, t}^{\prime} & \text { if } j \leq p, \tag{B.5}\\
\operatorname{var}\left(v_{n k, t}\right) & =E\left(h_{n, t} \cdot h_{k, t}\right)+E\left(h_{n k, t}^{2}\right)= & \text { if } p^{\star} \geq j>p
\end{array}\right.
$$

where

$$
\begin{array}{ll}
j=n \cdot p+k-\frac{n(n+1)}{2}, & n=1, \cdots, p-1 \\
k=n+1, \cdots, p, & j^{\star}=n p^{\star}+k-\frac{n(n+1)}{2}
\end{array}
$$

[^9]ii) $j>p^{\star}$

If $j>p^{\star}$ एwhere

$$
j=n^{\star} p^{\star}+k^{\star}-\frac{n^{\star}\left(n^{\star}+1\right)}{2}, n^{\star}=1, \cdots, p^{\star}-2, k^{\star}=n^{\star}+1, \cdots, p^{\star}
$$

we can distinguish three cases:

$$
\text { a) } \quad n^{\star} \leq p \quad k^{\star} \leq p
$$

If $n^{\star} \leq p \Gamma \quad k^{\star} \leq p \Gamma$ then the $v_{j, t}^{\prime}$'s are given by

$$
\begin{equation*}
v_{j t}^{\prime}=\operatorname{cov}\left(v_{n^{\star}, t}, v_{k^{\star}, t}\right)=2 E\left(h_{n^{\star} k^{\star}, t}^{2}\right)=2 h_{j^{\star}, t}^{\prime} \tag{5a}
\end{equation*}
$$

where $j^{\star}=n^{\star} p+k^{\star}-\frac{n^{\star}\left(n^{\star}+1\right)}{2} \Gamma$
b) $\quad n^{\star} \leq p \Gamma \quad k^{\star}>p$

If $n^{\star} \leq p \Gamma k^{\star}>p \Gamma$ where

$$
k^{\star}=l_{k} p+m_{k}-\frac{l_{k}\left(l_{k}+1\right)}{2}, l_{k}=1, \cdots, p-1, m_{k}=l_{k}+1, \cdots, p
$$

then the $v_{j, t}^{\prime}$'s are given by

$$
\begin{align*}
& v_{j t}^{\prime}=\operatorname{cov}\left(v_{n^{\star}, t}, v_{l_{k} m_{k}, t}\right)=2 E\left(h_{n^{\star}, t} \cdot h_{n^{\star} m_{k}, t}\right)=2 h_{j^{\star}, t}^{\prime} \\
& j^{\star}=n^{\star}\left(p^{\star}+p\right)+m_{k}-n^{\star}\left(n^{\star}+1\right) \tag{B.5b}
\end{align*}
$$

$\left(\right.$ when $\left.l_{k}=n^{\star}\right)$

$$
\begin{array}{ll}
v_{j t}^{\prime}=\operatorname{cov}\left(v_{n^{\star}, t}, v_{l_{k} m_{k}, t}\right)=2 E\left(h_{n^{\star} l_{k}, t} \cdot h_{n^{\star} m_{k}, t}\right)=2 h_{j^{\star}, t}^{\prime} & j^{\star}=n^{\prime} p^{\star}+k^{\prime}-\frac{n^{\prime}\left(n^{\prime}+1\right)}{2} \\
n^{\prime}=n^{\star} p+l_{k}-\frac{n^{\star}\left(n^{\star}+1\right)}{2} & k^{\prime}=n^{\star} p+m_{k}-\frac{n^{\star}\left(n^{\star}+1\right)}{2}
\end{array}
$$

$\left(\right.$ when $\left.l_{k}, m_{k} \neq n^{\star}\right)$

$$
\text { c) } \quad n^{\star}>p \Gamma k^{\star}>p
$$

If $n^{\star}>p \Gamma k^{\star}>p$ एwhere

$$
\begin{array}{rlrl}
n^{\star} & =l_{n} p+m_{n}-\frac{l_{n}\left(l_{n}+1\right)}{2} & l_{n}, l_{k}=1, \cdots, p-2 \\
k^{\star} & =l_{k} p+m_{k}-\frac{l_{k}\left(l_{k}+1\right)}{2} \\
m_{k} & =l_{k}+1, \cdots, p & & m_{n}=l_{n}+1, \cdots, p
\end{array}
$$

then the $v_{j t}^{\prime}$'s are given by

$$
v_{j t}^{\prime}=\operatorname{cov}\left(v_{l_{n} m_{n}, t}, v_{l_{k} m_{k}, t}\right)=E\left(h_{l_{n} l_{k}, t} \cdot h_{m_{n} m_{k}, t}\right)+E\left(h_{l_{n} m_{k}, t} \cdot h_{m_{n} l_{k}, t}\right)=h_{j^{\star}, t}^{\prime}+h_{j^{\circ}, t}^{\prime}
$$

(when $l_{n}, m_{n} \neq l_{k}, m_{k}$)
where

$$
\begin{array}{cl}
j^{\star}=n^{\circ} p^{\star}+k^{\circ}-\frac{n^{\circ}\left(n^{\circ}+1\right)}{2} \quad & n^{\circ}=\min \left(n^{\prime}, k^{\prime}\right), k^{\circ}=\max \left(n^{\prime}, k^{\prime}\right) \\
n^{\prime}=l_{n}^{\prime} p+m_{n}^{\prime}-\frac{l_{n}^{\prime}\left(l_{n}^{\prime}+1\right)}{2} \quad k^{\prime}=l_{k}^{\prime} p+m_{k}^{\prime}-\frac{l_{k}^{\prime}\left(l_{k}^{\prime}+1\right)}{2} \\
v_{j t}^{\prime}=\operatorname{cov}\left(v_{l_{n} m_{n}, t}, v_{l_{n} m_{k}, t}\right)=E\left(h_{l_{n}, t} \cdot h_{m_{n} m_{k}, t}\right)+E\left(h_{l_{n} m_{n}, t} \cdot h_{l_{n} m_{k}, t}\right)=h_{j^{\star}, t}^{\prime}+h_{j^{\circ}, t}^{\prime} \tag{5e}
\end{array}
$$

$\left(\right.$ when $\left.l_{k}=l_{n}\right)$
where

$$
\begin{array}{rlrl}
j^{\star} & =l_{n} p^{\star}+k^{\prime}-\frac{l_{n}\left(l_{n}+1\right)}{2} & & j^{\circ}=n^{\circ} p^{\star}+k^{\circ}-\frac{n^{\circ}\left(n^{\circ}+1\right)}{2} \\
k^{\prime} & =l_{k}^{\prime} p+m_{k}^{\prime}-\frac{l_{k}^{\prime}\left(l_{k}^{\prime}+1\right)}{2} & & n^{\circ}=l_{n}^{\prime} p+m_{n}^{\prime}-\frac{l_{n}^{\prime}\left(l_{n}^{\prime}+1\right)}{2} \\
k^{\circ} & =l_{k}^{\circ} p+m_{k}^{\circ}-\frac{l_{k}^{\circ}\left(l_{k}^{\circ}+1\right)}{2} & l_{k}^{\prime}=\min \left(m_{n}, m_{k}\right) \\
m_{k}^{\prime} & =\max \left(m_{n}, m_{k}\right) & l_{n}^{\prime}=\min \left(l_{n}, m_{n}\right) \\
m_{n}^{\prime} & =\max \left(l_{n}, m_{n}\right) & l_{k}^{\circ}=\min \left(l_{n}, m_{k}\right) \\
m_{k}^{\circ} & =\max \left(l_{n}, m_{k}\right) & &
\end{array}
$$

Having the $v_{j t}^{\prime}$'s as functions of the $h_{i t}^{\prime}$'s we substitute (B.5)-(B.5e) into (B.2) and we express the $h_{i t}^{\prime}$'s as functions of the $h_{i t}^{\circ}$'s:

$$
\begin{equation*}
\Gamma^{\prime} \cdot \bar{h}_{t}^{\prime}=\bar{h}_{t}^{\circ} \Rightarrow \bar{h}_{t}^{\prime}=\Gamma^{\star} \cdot \bar{h}_{t}^{\circ} \Rightarrow h_{i t}^{\prime}=\sum_{j=1}^{p^{\prime}} \gamma_{i j}^{\star} h_{j t}^{\circ} \text {, where } \tag{B.6}
\end{equation*}
$$

Γ^{\prime} is a $p^{\prime} \times p^{\prime}$ matrix. It's mnth element is $\gamma_{m n}^{\prime}$.
\bar{h}_{t}^{\prime} is a $p^{\prime} \times 1$ vector matrix. It's m1th element is $h_{m t}^{\prime}$.
\bar{h}_{t}° is a $p^{\prime} \times 1$ vector matrix. It's m1th element is $h_{m t}^{\circ}$.
Using Theorem 1 and expression (B.1) we get (3.8) where the $\sigma_{i j, v}$'s are given by (B.4).

The covariance matrix $\bar{\sigma}_{v}$

Using Theorem 1 and expression (3.13) we obtain

$$
\begin{gather*}
h_{i t}^{\prime}-h_{i t}^{\circ}=\sum_{j=1}^{p^{\star}} \gamma_{i j, 0} v_{j, t-1}^{\prime}, \quad i=1, \cdots, p^{\star} \tag{B.7}\\
\underline{h_{i t}^{\prime}}
\end{gather*}
$$

The $h_{i t}^{\prime}$'s are given by

$$
h_{i t}^{\prime}= \begin{cases}E\left(h_{i t}^{2}\right) & \text { if } i \leq p, \\ E\left(h_{n t} \cdot h_{k t}\right) & \text { if } p^{\star} \geq i>p\end{cases}
$$

where

$$
\begin{aligned}
& i=n \cdot p+k-\frac{n(n+1)}{2}, n=1, \cdots, p-1 \\
& k=n+1, \cdots, p
\end{aligned},
$$

The $h_{i t}^{\circ}$'s are given by

$$
h_{i t}^{\circ}= \begin{cases}{\left[E\left(h_{i t}\right)\right]^{2}} & \text { if } i \leq p \\ E\left(h_{n t}\right) E\left(h_{k t}\right) & \text { if } p^{\star} \geq i>p, \text { and } E\left(h_{i t}\right)=\frac{\omega_{i}^{\star}}{B(1)} \\ \multicolumn{1}{|c}{\underline{\gamma_{i j, 0}}}\end{cases}
$$

$$
\text { a) } p \geq i \geq 1
$$

When $p \geq i \geq 1$ the $\gamma_{i j, 0}$'s are given by

$$
\gamma_{i j}= \begin{cases}\sum_{f=1}^{p} \zeta_{f 0} \lambda_{f, 0}^{j_{i}, j_{i}} & \text { if } j \leq p \\ 2 \sum_{f=1}^{p} \zeta_{f 0} \lambda_{f, 0}^{n_{i} k_{i}} & \text { if } p^{\star} \geq j>p\end{cases}
$$

where

$$
j=n^{\star} p+k^{\star}-\frac{n^{\star}\left(n^{\star}+1\right)}{2}, n^{\star}=1, \cdots, p-1, k^{\star}=1+n, \cdots, p
$$

and $\lambda_{f 0}^{j_{i}, j_{i}} \Gamma \lambda_{f 0}^{n_{i}, k_{i}}$ and $\zeta_{f 0}$ are as in $(3.8 a-3.8 b) \Gamma$

$$
\text { b) } p^{\star} \geq i>p
$$

When $p^{\star} \geq i>p$ where

$$
i=n^{\prime} p+k^{\prime}-\frac{n^{\prime}\left(n^{\prime}+1\right)}{2}, n^{\prime}=1, \cdots, p-1, k^{\prime}=n^{\prime}+1, \cdots, p
$$

the $\gamma_{i j, 0}$'s are given by

$$
\gamma_{i j, 0}= \begin{cases}\sum_{f=1}^{\bar{p}} \zeta_{f 0} \lambda_{f 0}^{n^{\prime} k^{\prime}, j} & \text { if } p \geq j \geq 1 \tag{B.7d}\\ \sum_{f=1}^{\bar{p}} \zeta_{f 0}\left[\lambda_{f 0}^{n^{\prime} k^{\prime}, n^{\star} k^{\star}}+\lambda_{f 0}^{n^{\prime} k^{\prime}, k^{\star} n^{\star}}\right] & \text { if } p^{\star} \geq j>p\end{cases}
$$

where the $\lambda_{f 0}^{n^{\prime} k^{\prime}, j}$ and $\lambda_{f 0}^{n^{\prime} k^{\prime}, n^{\star} k^{\star}}$ are as in (B. $2 e^{\prime}-$ B. $2 e^{\prime \prime}$).
Moreover Γ from the definition of the constant conditional correlation Multivariate GARCH model Γ proposed by B (1990) [we have

$$
\begin{equation*}
\epsilon_{i t}=h_{i t}^{1 / 2} e_{i t}, \quad E_{t-j}\left(e_{i t} e_{j t}\right)=p_{i j}, \quad i=1, \cdots, p \tag{B.8}
\end{equation*}
$$

Using the moment generating function of the multivariate normal distribution we obtain the moments of the $e_{i t}$'s:

$$
\begin{equation*}
E_{t-1}\left(e_{i t}^{2} e_{j t}^{2}\right)=1+2 p_{i j}^{2} \tag{8a}
\end{equation*}
$$

Using the preceding equation and the definition of the $v_{i t}$'s we get

$$
\begin{equation*}
\operatorname{cov}\left(v_{i t}, v_{j t}\right)=2 p_{i j}^{2} E\left(h_{i, t} h_{j, t}\right) \tag{B.9}
\end{equation*}
$$

Using the preceding equation Γ we obtain the $v_{j, t}^{\prime}$'s

$$
v_{j, t}^{\prime}= \begin{cases}\operatorname{var}\left(v_{j, t}\right)=2 E\left(h_{j, t}^{2}\right)=2 h_{j t}^{\prime} & \text { if } j \leq p \tag{B.10}\\ \operatorname{cov}\left(v_{n, t}, v_{k, t}\right)=2 p_{n k}^{2} E\left(h_{n t} \cdot h_{k t}\right)=2 p_{n k}^{2} h_{j t}^{\prime} & \text { if } p^{\star} \geq j>p\end{cases}
$$

where

$$
j=n p+k-\frac{n(n+1)}{2}, n=1 \cdots, p-1, k=n+1, \cdots, p
$$

Inserting the preceding equation in (B.7) we obtain

$$
\begin{equation*}
\Gamma^{\prime} \cdot \bar{h}_{t}^{\prime}=\bar{h}_{t}^{\circ} \Rightarrow \bar{h}_{t}^{\prime}=\Gamma^{\star} \cdot \bar{h}_{t}^{\circ} \Rightarrow h_{i t}^{\prime}=\sum_{j=1}^{p^{\star}} \gamma_{i j}^{\star} h_{j t}^{\circ} \text {, where } \tag{B.11}
\end{equation*}
$$

Γ^{\prime} is a $p^{\star} \times p^{\star}$ matrix. It's mnth element is $\gamma_{m n}^{\prime}$.
\bar{h}_{t}^{\prime} is a $p^{\star} \times 1$ vector matrix. It's m1th element is $h_{m t}^{\prime}$.
\bar{h}_{t}° is a $p^{\star} \times 1$ vector matrix. It's m1th element is $h_{m t}^{\circ}$.
Using Theorem 1 and expression (3.13) we get (3.14) where the $\sigma_{i j, v}$'s are given by (B.10-B.11).

[^0]: ${ }^{1}$ The ARCH model was originally proposed by Engle (1982), whereas Taylor (1986) and Bollerslev (1986), hereafter B, independently of each other, presented the generalised ARCH model.
 ${ }^{2}$ The first paper on multivariate GARCH models was written by Engle, Granger and Kraft (1984). They used a bivariate $\operatorname{ARCH}(1)$ process to combine forecasts in two models of US inflation.
 ${ }^{3}$ The MGARCH model specifies the conditional variances/covariances as a linear function of squared innovations and past conditional variances/covariances. Although the processes themselves are nonlinear, the conditional variances and covariances are linear. This modeling strategy leads to two major problems: on the one hand we must establish sufficient conditions to ensure the positive definiteness (pd) of the $c \mathrm{~cm}$, while on the other, to make the estimation of the model feasible we must find a parsimonious representation of the data with a reasonable number of parameters to be estimated. For these reasons various alternative representations have been proposed in the literature.

[^1]: ${ }^{4}$ These restrictions are intuitively reasonable and reduce the large number of parameters in the vec MGARCH model (introduced by Engle and Kroner (1995), hereafter EK). Moreover, in the vec representation, and even in the diagonal representation, the conditions to ensure that the ccm are positive definite (pd) a.s. for all t are difficult to impose and verify. Therefore, EK (1995) proposed a new parametrisation (they refer to it as the BEKK representation) that easily imposes these restrictions.
 ${ }^{5}$ This assumption greatly simplifies the computational burden in estimation, and conditions for the ccm to be pd a.s. for all t are also easy to impose.

[^2]: ${ }^{6}$ The S-GARCH model was introduced by Karanasos, Psaradakis and Sola (1999), hereafter KPS, who applied it to option pricing.
 ${ }^{7}$ The vec representation includes the diagonal and the BEKK representations as special cases.
 ${ }^{8}$ The proof is not presented in this paper. For an analytical derivation of the univariate ARMA representations see $\mathrm{K}(1999 \mathrm{c})$.
 ${ }^{9}$ To our knowledge this is the first paper that applies the wr and the agf of a stochastic process to a multivariate GARCH model. These have been widely used in the ARMA-VARMA literature (see, for example, Pandit (1973, p. 99), Nerlove, Grether and Carvalho (1979, pp. 30-43, 39, 70-85), Pandit and Wu (1983, pp. 87-89, 105, 129-130), Brockwell and Davis (1987, pp. 87-89, 102-103, 180-182, 408-410), Reinsel (1993, pp. 7, 33-34), Hamilton(1994, pp. 59-60, 61-63) and $K(1999 b)$).

[^3]: ${ }^{10}$ The derivation of the covariances of the $v_{i t}$'s is presented in the next Section.

[^4]: ${ }^{11}$ To our knowledge KPS (1999) were the first to analyze sum of GARCH processes.
 ${ }^{12}$ To our knowledge this is the first paper that uses the cf of the agf to analyse the covariance structure of the MGARCH model. For an application of this method to the VARMA model see, for example, K (1999b).

[^5]: ${ }^{13}$ The derivation of the $\sigma_{i j, v}$'s is given in Appendix B.

[^6]: ${ }^{14}$ The derivation of the $\sigma_{i j, v}$'s is given in Appendix B.
 ${ }^{15}$ The derivation of the covariances between the squared errors is omitted since it is similar to that of the vec representation.

[^7]: ${ }^{16}$ The component GARCH model was introduced by Ding and Granger (1996) whereas the GARCH-M-X model was introduced by Longstaff and Schwartz (1992).
 ${ }^{17}$ The MGARCH models are discussed by, for example, Song (1996) and Grier and Perry (1996).

[^8]: ${ }^{18}$ The ima representation of a GARCH model is given in $\mathrm{K}(1999 a)$.

[^9]: ${ }^{19}$ For the properties of the multivariate normal distribution see Kendall and Stuart (1977, pp. 372-392), Muirhead (1982, pp. 2-20) or Anderson (1984, pp. 6-50).

