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1 Introduction

One of the most popular class of non-linear processes are the generalized autoregressive
conditional heteroscedasticity models1 (GARCH). The existence of the huge literature
which uses these processes in modelling conditional volatility in high frequency �nancial
assets demonstrates the popularity of the various GARCH models (see, for example, the
recent surveys by Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993), Bollerslev,
Engle and Nelson (1994), Diebold and Lopez (1995), Engle (1995), Palm (1996), Shephard
(1996) and Pagan (1996); see also the book by Gourieroux (1997) for a detail discussion
of the GARCH models and �nancial applications). Parallel to the success of the standard
linear ARMA-type of time series models arising from the use of the conditional versus
the unconditional mean, the key insight o�ered by the GARCH model and its various
extensions, lies in the distinction between the conditional and the unconditional second
order moments.

Since leptokurtic distributions of asset returns and slowly decaying autocovariances
of squared returns are among the stylized facts of �nancial high-frequency time-series,
theoretical expressions for the unconditional second moments of GARCH models are of
both statistical interest and of practical signi�cance. Speci�cally, given the expressions
for the second moments of the squared errors, practitioners can compare the estimates of
the kurtosis of the errors and the autocovariances of the squared errors obtained directly
from the data with those obtained from their model. This enable them to decide on how
well their GARCH model �ts the data. In addition, given the results on the existence
of the second moments, the practitioner can check what his/her estimates imply about
those moments. The fourth moment of the errors and the covariance structure of the
squared errors and of the conditional variance of the GARCH(p,q) model have already
been given in the literature (see Karanasos, 1999 a,e, hereafter K, and He and Terasvirta,
1997, hereafter HT.).

As economic variables are inter-related, generalisation of univariate models to the
multivariate set-up is quite natural-this is more so for the GARCH2 models. The motiv-
ation for the multivariate GARCH models (MGARCH) stems from the fact that many
economic variables react to the same information, and hence, have nonzero conditional
covariances. Thus, multivariate GARCH-type models provide a natural framework for
analyzing the joint dynamic behaviour of volatility of �nancial assets and/or markets
and they are particular useful in multivariate �nancial models (such as the CAPM or
dynamic hedging models). In the MGARCH models the conditional covariance matrix
(ccm) depends non-trivially on the past of the process3.

From the many di�erent multivariate functional forms the diagonal GARCH model

1The ARCH model was originally proposed by Engle (1982), whereas Taylor (1986) and Bollerslev (1986),
hereafter B, independently of each other, presented the generalised ARCH model.

2The �rst paper on multivariate GARCH models was written by Engle, Granger and Kraft (1984). They used
a bivariate ARCH(1) process to combine forecasts in two models of US in
ation.

3The MGARCH model speci�es the conditional variances/covariances as a linear function of squared innova-
tions and past conditional variances/covariances. Although the processes themselves are nonlinear, the conditional
variances and covariances are linear. This modeling strategy leads to two major problems: on the one hand we
must establish su�cient conditions to ensure the positive de�niteness (pd) of the ccm, while on the other, to make
the estimation of the model feasible we must �nd a parsimonious representation of the data with a reasonable
number of parameters to be estimated. For these reasons various alternative representations have been proposed
in the literature.
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originally suggested by Bollerslev, Engle and Wooldridge (1988), hereafter BEW, and the
constant conditional correlation (ccc) GARCH put forward in B (1990), have become
perhaps the most common. BEW speci�ed that the conditional variances/covariances
depend only on its own lagged errors and lagged values4. In B's representation the ccm
is time varying, but the conditional correlations are assumed to be constant5.

The preceding models appear often in the literature of the late eighties early nineties
though usually without any theoretical discussion. In particular, various cases of the
diagonal representation of the MGARCH model (with various mean speci�cations) have
been applied by many researchers. For example, it has been used by BEW(1988) for their
analysis of returns on bills, bonds and stocks, by Engel and Rodrigues (1989) to test the
international CAPM, by Kaminsky and Peruga (1990) to examine the risk premium in
the forward market for foreign exchange, by McCurby and Morgan (1991) to test the
uncovered interest rate parity, and by Baillie and Myers (1991) to estimate optimal hedge
ratios in commodity markets. B (1990) illustrated the validity of the ccc MGARCH model
for a set of �ve nominal European U.S. dollar exchange rates following the inception
of the European Monetary System. The ccc MGARCH model has also been used by
Cecchetti, Cumby and Figlewski (1988) to estimate the optimal future hedge, McCurby
and Morgan (1989) to examine risk premia in foreign currency futures market, Schwert
and Seguin (1990) to analyze stock returns, Baillie and Bollerslev (1990) to model risk
premia in forward foreign exchange rate markets, Kroner and Claessens (1991) to analyze
the optimal currency composition of external debt, Ng (1991) to test the CAPM, and
Kroner and Sultan (1993) to estimate futures hedge ratios.

Although the MGARCH models were introduced almost a decade ago and have been
widely used in empirical applications , its statistical properties have only recently been
examined by researchers. EK(1995) examined the identi�cation and maximum likeli-
hood estimation of the vec, diagonal and BEKK representations of the MGARCH model.
Lin (1997), hereafter L, provided a comprehensive analytical tool for the impulse re-
sponse analysis for all the aforementioned representations of the MGARCH model. Tse
(1998) developed the Lagrange multiplier test for the hypothesis of constant correlation
in Bollerslev's representation whereas Jeantheau (1998), and Ling and McAleer (1999)
investigated the asymptotic theory of the quasi maximum likelihood estimator for an
extension of the ccc MGARCH model.

However, the analysis of the covariance structure of the MGARCH model has not been
considered yet. This article attempts to �ll in this gap in the GARCH literature. The
focus will be on the fourth moment of the errors and on the theoretical acf of the squared
errors and of the conditional variances/covariances. In this context, the paper generalizes
the results for the univariate GARCH model given in K (1999 a,e) and HT(1997) to
various multivariate GARCH models.

In Section 2 we present the covariance structure of the conditional variances/covariances

4These restrictions are intuitively reasonable and reduce the large number of parameters in the vec MGARCH
model (introduced by Engle and Kroner (1995), hereafter EK). Moreover, in the vec representation, and even
in the diagonal representation, the conditions to ensure that the ccm are positive de�nite (pd) a.s. for all t are
di�cult to impose and verify. Therefore, EK (1995) proposed a new parametrisation (they refer to it as the
BEKK representation) that easily imposes these restrictions.

5This assumption greatly simpli�es the computational burden in estimation, and conditions for the ccm to be
pd a.s. for all t are also easy to impose.
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and of the squared errors for the S-GARCH6 process (this is the sum of n processes
which follow a diagonal MGARCH model). Our results include as a special case (when
n = 1) the covariance structure of the conditional variance and of the squared errors for
the GARCH(p,q) model presented in K (1999a), HT(1997) and K(1999e). In Section 3
we contribute to the theoretical developments in the multivariate GARCH literature by
presenting the theoretical acf of the conditional variances/covariances and of the squared
errors of the vec7 and the ccc representations of the MGARCH models.

The goal of this article is to provide a comprehensive methodology for the analysis of
the covariance structure in multivariate GARCH models. First, it derives the VARMA
representations of the conditional variances/covariances and of the squared errors and it
gives general conditions for stationarity, invertibility and identi�ability of these repres-
entations. Second, it provides the univariate ARMA representations of the conditional
variances/covariances8 and of the squared errors. Third, it uses two alternative (and
equivalent) methods to obtain the autocovariances: (i) the Wold representation (wr) of
a stationary stochastic process (ssp) and (ii) the canonical factorization (cf) of the auto-
covariance generating function (agf) of a ssp9. It should be noted that we only examine
the case of distinct roots in the AR polynomials of the univariate ARMA representations
and we express the autocovariances in terms of the roots of the AR polynomials and the
parameters of the MA polynomials of the univariate ARMA representations.

6The S-GARCH model was introduced by Karanasos, Psaradakis and Sola (1999), hereafter KPS, who applied
it to option pricing.

7The vec representation includes the diagonal and the BEKK representations as special cases.
8The proof is not presented in this paper. For an analytical derivation of the univariate ARMA representations

see K(1999c).
9To our knowledge this is the �rst paper that applies the wr and the agf of a stochastic process to a multivariate

GARCH model. These have been widely used in the ARMA-VARMA literature (see, for example, Pandit (1973, p.
99), Nerlove, Grether and Carvalho (1979, pp. 30-43, 39, 70-85), Pandit and Wu (1983, pp. 87-89, 105, 129-130),
Brockwell and Davis (1987, pp. 87-89, 102-103, 180-182, 408-410), Reinsel (1993, pp. 7, 33-34), Hamilton(1994,
pp. 59-60, 61-63) and K(1999b)).
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2 SUM OF GARCH MODELS

Let yt be equal to the sum of n processes

yt =
nX

i=1

yit; yit = �i;t�1 + �it (2.1)

The �it 's follow a diagonal multivariate GARCH process:

��tjt�1 � N(0; �ht); ��t =

2
66664
�1t
:

:

:

�nt

3
77775 ; �ht =

2
664
h1t h12;t h1n;t
: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

hn1;t : : : : : hnt

3
775 (2.2)

Each hit follows a GARCH(pi; qi) process

Bi(L)hit = !i0 + Ai(L)�
2
it; where (2.3)

Bi(L) = �

piX
k=0

�ikL
k; Ai(L) =

qiX
k=1

aikL
k; �i0 = �1 (2.3a)

For simplicity and without loss of generality we will assume that the conditional cov-
ariances are constant: hmk;t = !mk;0; m; k = 1 � � � ; n

Corollary 1a. The ARMA representations of the conditional variances (hit) are given
by

B?
i (L)hit = !i0 + Ai(L)vit; vit = �2it � hit (2.4)

B?
i (L) = Bi(L)� Ai(L) =

p?iY
j=1

(1� � 0
ijL); p?i = max(pi; qi) (2.4a)

The vit's are uncorrelated (although not independent) terms. The covariance matrix
of the vit's is denoted by 10

��v =

2
664
�11;v �12;v �1n;v
: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

�n1;v : : : : : : �nn;v

3
775 (2.5)

10The derivation of the covariances of the vit's is presented in the next Section.
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Proof. In (2.3) we add and subtract Ai(L)hit and we get (2.4).
Assumption 1. All the roots of the autoregressive polynomials (B?

i (L)) and all the roots
of the moving average polynomials (Ai(L)) are lie outside the unit circle (Stationarity and
Invertibility conditions).

Assumption 2. The polynomials B?
i (L) and Aj(L) (i; j = 1; � � � ; n) are left coprime.

In other words the representation
B?
i (L)

Aj(L)
is irreducible.

Corollary 1b. The conditional variance of yt is equal to the sum of the n GARCH
processes hit

11:

ht = Vt�1(yt) = !?
0 +

nX
i=1

hit (2.6)

The !?
0 together with the proof is given in Appendix A.

Theorem 1. Under assumptions 1 and 2, the autocovariance generating function (agf)
of the preceding process (ht) is given by 12:

gz(h) =
1X

m=0

fm
m(z
m + z�m) =

nX
j=1

nX
i=1

Ai(z)Aj(z
�1)

B?
i (z)B

?
j (z

�1)
�ij;v; where (2.7)


m =
nX

j=1

nX
i=1

(

p?iX
l=1

�mil;j�
ij
l;m +

p?jX
k=1

�mjk;i�
k;m
ij )�ij;v; fm =

(
:5 ifm = 0

1 otherwise
;

(2.7a)

�mil;j =
�mil

p?jQ
k=1

(1� � 0
il�

0
jk)

; �mil =
(� 0

il)
p?i�1+m

p?iQ
k=1
k 6=l

(� 0
il � � 0

ik)

; (2.7b)

�
ij
l;m =

qjX
c=0

q0iX
d=1

aidaj;d+c(�
0
il)

c +
m?X
c=1

q0jX
d=1

ajdaid+c(�
0
il)

�c; �
k;m
ij =

qiX
c=m+1

q0jX
d=1

ajdaid+c(�
0
jk)

c�2m

(2.7c)

and

2
664
p?i
q0i
q0j
m?

3
775 =

2
664

max(pi; qi)
min(qi; qj � c)
min(qj; qi � c)
min(m; qi)

3
775 (2.7d)

The proof of Theorem 1 is presented in Appendix A.

11To our knowledge KPS (1999) were the �rst to analyze sum of GARCH processes.
12To our knowledge this is the �rst paper that uses the cf of the agf to analyse the covariance structure of the

MGARCH model. For an application of this method to the VARMA model see, for example, K (1999b).
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3 MULTIVARIATE GARCH MODELS

3.1 Vec Representation

In what follows we examine the vec representation of the Multivariate GARCH(r,s) process
of order p [MGARCH(r,s,p)].

The general form of the MGARCH(r,s,p) model is given by

�h?t = 
 +
sX

l=1

lA ��?t�l +
rX

l=1

lB
? �h?t�l; where (3.1)

�h?t =

2
66664
h?1t
:

:

:

h?p?t

3
77775 ; ��?t�l =

2
66664
�?1t�l

:

:

:

�?p?t�l

3
77775 ; 
 =

2
66664
!?
1

:

:

:

!p?

3
77775 ; p? =

p(p+ 1)

2
(3.1a)

lA =

2
664
al11 : : : al1p?
: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

alp?1 : : : alp?p?

3
775 ; lB

? =

2
664
bl?11 : : : bl?1p?
: : : : : : : : : : : : : :

: : : : : : : : : : : : : :

bl?p?1 : : : bl?p?p?

3
775 (3.1b)

and

h?it =

(
hit if i � p;

hlk;t if i = l � p+ k � l(l+1)
2

;
(3.1c)

�?i;t�l =

(
�2i;t�l if i � p;

�l;t�l�k;t�l if i = n � p+ k � n(n+1)
2

(3.1d)

i = 1; � � � ; p?;
n = 1; � � � ; p� 1;
k = n+ 1; � � � ; p

An alternative expression for the MGARCH(r,s,p) is:

BL?�h?t = 
 + AL��?t ; where (3.2)

BL? =

2
664
1�BL?

11 : : : �BL?
1p?

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

�BL?
p?1 : : : 1� BL?

p?p?

3
775 ; AL =

2
664
AL

11 : : : AL
1p?

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

AL
p?1 : : : AL

p?p?

3
775 ; and

(3.2a)

BL?
ik =

rX
l=1

bl?ikL
l; AL

ij =
sX

l=1

alijL
l (3.2b)
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Corollary 2a. The VARMA representation of the conditional variances (and covari-
ances) for the MGARCH(r,s,p) model is given by

�h?t = 
+
r0X
l=1

lB �h?t�l +
sX

l=1

lA �v?t�l; r0 = max(r; s) (3.3)

where

lB =

8><
>:

lB
?+ lA if l < r; s

lB
? if l; r > s

lA if l; s > r

; �v?t�l =

2
66664
v?1;t�l

:

:

:

v?p?;t�l

3
77775 (3.3a)

v?i;t�l are uncorrelated (although not independent) terms. They are given by

v?i;t�l =

8>>><
>>>:
�2i;t�l � hi;t�l if i � p

�n;t�l�k;t�l � hnk;t�l if

8><
>:
i = np + k � n(n+1)

2

n = 1; � � � ; p� 1

k = 1 � � � ; p

(3.3b)

Their covariance matrix is denoted by13

��?
v =

2
664
�11;v �1p?;v
: : : : : : : : : : : : : :

: : : : : : : : : : : : : :

�p?1;v �p?p?;v

3
775 (3.3c)

An alternative expression for the VARMA representation is given by:

BL�h?t = 
 + AL�v?t ; where (3.4)

BL =

2
664
1�BL

11 : : : �BL
1p?

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

�BL
p?1 : : : 1� Bp?p?

3
775 ; BL

ik =
r0X
l=1

blikL
l; blik =

8><
>:
bl?ik + alik if l < r; s

bl?ik if l; r > s

allk if l; s > r

(3.4a)

Proof. In (3.1) we add and subtract
sP

l=1
lB

? �h?t�l to get (3.3).

13The derivation of the �ij;v's is given in Appendix B.
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Corollary 2a0. The VARMA representation of the squared errors for the
MGARCH(r,s,p) models is given by

��?t =
r0X
l=1

lB ��?t�l +
rX

l=0

lB
? �v?t�l; or BL��?t = 
 +BL��v?t ; where (3.5)

BL� =

2
664
BL?

11 : : : BL?
1p?

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

Bp?1 : : : BL?
p?p?

3
775 (3.5a)

Proof. In (3.1) we add and subtract
rP

l=0
lB

? ��?t�l (where 0B
? = �I) to get (3.5).

Corollary 2b. The univariate ARMA representations of the conditional variances (and
covariances) are given by

�pY
l=1

(1� BlL)h
?
it =

p?X
j=1

~pX
l=1

B
ij
l L

lv?jt (3.6)

where �p = p? � r0 and ~p = (p? � 1)r0 + s. The Bl's and B
ij
l 's are given in Appendix B

(see eqs B.1-B.1b) and have been derived in K (1999c).
Corollary 2b0. The univariate ARMA representations of the squared errors are given

by

�pY
l=1

(1�BlL)�
?
it =

p?X
j=1

p̂X
l=0

A
ij
l L

lv?jt (3.7)

where p̂ = (p?� 1)r0+ r. The Bl's are as in (3.6). The Aij
l 's can be derived from (3.5)

in an analogous way to the Bij
l 's in (3.6).

Assumption 3. All roots of jBLj and all roots of jALj lie outside the unit circle. These
conditions satisfy the stationarity and invertibility of the model.

Assumption 4. The polynomials BL and AL have no common left factors other than
unimodular ones (this condition satisfy the irreducibility of the model) and satisfy other
identi�ciability conditions given in Dunsmuir and Hannan (1976), and Deistler, Dun-
smuir and Hannan (1978).
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Theorem 2a. Under assumptions 3 and 4, the covariance between h?n1;t and h?n2;t�m,
(n1; n2 = 1; � � � ; p?) is given by:


mn1;n2 = cov(h?n1;t; h
?
n2;t�m) =

p?X
j=1

p?X
i=1

�pX
f=1

�fm�
n1i;n2j
f;m �ij;v; where (3.8)

�fm =
B

�p�1+m
f

�pQ
g=1

(1�BfBg)
�pQ

g=1
g 6=f

(Bf �Bg)

; �ij;v = cov(v?it; v
?
jt) (3.8a)

�
n1i;n2j
f;m =

~pX
c=0

~p�cX
d=1

Bn1i
d B

n2j
d+cB

c
f +

m?X
c=1

~p�cX
d=1

B
n2j
d Bn1i

d+cB
�c
f +

~pX
c=m+1

~p�cX
d=1

B
n2j
d Bn1i

d+cB
c�2m
f

(3.8b)

and m? = min(m; ~p). The proof follows immediately from the univariate ARMA
representations (3.6) and Theorem 1.

Assumption 3a. All roots of jBLj and all roots of jBL�j lie outside the unit circle.
These conditions satisfy the stationarity and invertibility of the model.

Assumption 4a. The polynomials BL and BL� have no common left factors other
than unimodular ones (this condition satisfy the irreducibility of the model) and satisfy
other identi�ciability conditions given in Dunsmuir and Hannan (1976), and Deistler,
Dunsmuir and Hannan (1978).

Theorem 2a0. Under assumptions 3a and 4a, the covariance between �?n1;t and �?n2;t�m

(n1; n2 = 1; � � � ; p?) is given by


mn1;n2 = cov(�?n1;t�
?
n2;t�m) =

p?X
j=1

p?X
i=1

�pX
f=1

�fm�̂
n1i;n2j
f;m �ij;v; where (3.9)

�̂
n1i;n2j
f;m =

p̂X
c=0

p̂�cX
d=0

An1i
d A

n2j
d+cB

c
f +

m?X
c=1

p̂�cX
d=0

AdAd+cB
�c
f +

p̂X
c=m+1

p̂�cX
d=1

A
n2j
d An1i

d+cB
c�2m
f

(3.9a)

and m? = min(m; p̂). The proof follows immediately from the univariate representa-
tions (3.7) and Theorem 1.

Corollary 2b00. The covariances between �2n1;t�l1
and hn1;t�l2 can be derived by using the

following relations:

E(�2n1;t�n2;t�m) = E(hn1;t�
2
n2;t�m); E(hn1;thn2;t�m) = E(�2n1;thn2;t�m)

(3.10)

together with Theorems 2a-2a0.
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Alternatively the above covariances can be derived by using Corollaries 2b-2b0 (i.e. the
univariate ARMA representations of the squared errors and of the conditional variances)
and Theorem 1.

3.2 Constant Correlation Representation

Next, we examine the constant conditional correlation Multivariate GARCH(r,s) process
of order p [McGARCH(r,s,p)].

The general form of the McGARCH(r,s,p) model is given by

�ht = 
 +
sX

l=1

lA ��t�l +
rX

l=1

lB
? �ht�l; or BL?�ht = 
 + AL��t; where (3.11)

�ht =

2
66664
h1t
:

:

:

hpt

3
77775 ; ��t�l =

2
66664
�1;t�l

:

:

:

�p;t�l

3
77775 ; lA =

2
664
al11 al1p
: : : : : : : : :

: : : : : : : : :

alp1 alpp

3
775 ; lB

? =

2
664
bl?11 bl?1p
: : : : : : : : :

: : : : : : : : :

bl?p1 bl?pp

3
775

(3.11a)

and the BL? and AL are given by (3.2a)- (3.2b) (where now p? is replaced by p). The
conditional correlation between the errors is constant:

covt�1(�it; �jt)q
vart�1(�2it)vart�1(�2jt)

=
hij;t

h:5ith
:5
jt

= pij (3.11b)

Corollary 2c. The VARMA representation of the conditional variances for the
McGARCH(r,s,p) model is given by

�ht = 
+
r0X
l=1

lB �ht�l +
sX

l=1

lA �vt�l; or BL�ht = 
 + AL�vt r
0 = max(r; s)

(3.12)

where

lB =

8><
>:

lB
?+ lA if l < r; s

lB
? if l; r > s

lA if l; s > r

; �vt�l =

2
66664
v1t�l

:

:

:

vp;t�l

3
77775 (3.12a)

and BL is as in (3.4a) (where now p? is replaced by p).
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The vit's are uncorrelated although not independent terms and are given by vit =
�2it � hit.

Their covariance matrix is denoted by14

��v =

2
664
�11;v �1p;v
: : : : : : : : : : : :

: : : : : : : : : : : :

�p1;v �pp;v

3
775 (3.12b)

Proof. In (3.11) we add and subtract
sP

l=1
lAht�l and we get (3.12).

Corollary 2d. The univariate ARMA representations of (3.11) are given by

�pY
l=1

(1� BlL)hit =

pX
j=1

~pX
l=1

B
ij
l L

lvjt; �p = p� r0; ~p = (p� 1)r0 + s (3.13)

where the Bl's and B
ij
l 's are as in (3.6) (where now p? is replaced by p). The proof is

similar to that of the MGARCH(r,s,p) model.
Theorem 2b. Under assumptions 3 and 4, the covariance between hn1;t and hn2;t�m,

(n1; n2 = 1; � � � ; p) is given by15:


mn1;n2 = cov(hn1;t; hn2;t�m) =

pX
j=1

pX
i=1

�pX
f=1

�fm�
n1i;n2j
f;m? �ij;v; where (3.14)

�fm =
B

�p�1+m
f

�pQ
g=1

(1�BgBf)
�pQ

g=1
g 6=f

(Bf �Bg)

(3.14a)

�
n1i;n2j
f;m =

~pX
c=0

~p�cX
d=1

Bn1i
d B

n2j
d+cB

c
f +

m?X
c=1

~p�cX
d=1

B
n2j
d Bn1i

d+cB
�c
f +

~pX
c=m+1

~p�cX
d=1

B
n2j
d Bn1i

d+cB
c�2m
f

(3.14b)

and i; j; n1; n2 = 1; � � � ; p.
The proof follows immediately from the univariate ARMA representations (3.13) and

Theorem 1.

14The derivation of the �ij;v's is given in Appendix B.
15The derivation of the covariances between the squared errors is omitted since it is similar to that of the vec

representation.
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4 Concluding Remarks

Since the observed volatilities of asset returns are regarded as realisations of the under-
lying stochastic processes it is not surprising that so much e�ort has been lavished on
building models to measure and forecast them. The univariate and multivariate GARCH
models and its various generalisations have been very popular in this respect and have
been applied to various sorts of economic and �nancial data sets. However, they have
seen relatively fewer theoretical advancements. This paper has contributed to the the-
oretical developments in the multivariate GARCH literature. In Section 2 we presented
the autocovariance function of the S-GARCH model. Moreover, in Section 3 we presen-
ted the autocovariance function of the vec (note that the vec representation includes the
diagonal and the BEKK representations as special cases) and of the constant correlation
representations of the multivariate GARCH model. The techniques used in this paper
(i.e. the Wold representation and the autocovariance generating function of the univari-
ate ARMA representations of the conditional variances and of the squared errors) can be
applied to obtain the covariance structure of (i) more complex univariate GARCH models
like the component GARCH and the GARCH-M-X models16 (see K, 1999d) and (ii) the
multivariate GARCH in mean models17.
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Appendix

A PROOF OF COROLLARY 1b, THEOREM 1

From (2.1) and (2.3) we get

ht = Vt�1(yt) = Vt�1(
nX
i=1

�it) = Et�1[
nX

i=1

�2it + 2
nX

k=l+1

n�1X
l=1

�lt�kt] =

nX
i=1

hit + 2
nX

k=l+1

n�1X
l=1

hlk;t =
nX

i=1

hit + 2
nX

k=l+1

n�1X
l=1

!lk;0 = !?
0 +

nX
i=1

hit (A.1)

IMA

The in�nite moving average (ima) representations of the hit's are given by18

hit =
1X
r=1

erivit�r; where eri =

p?iX
l=1

min(r;qi)X
k=1

�r�k
il aik; �mil =

(� 0
il)

p?i�1+m

p?iQ
k=1
k 6=l

(� 0
il � � 0

ik)
(A.2)

From the preceding equation we have

cov(hit; hj;t�m) =
1X
r=1

erje
r+m
i �ij;v (A.2a)

After some algebra we get

cov(hit; hj;t�m) = (

p?iX
l=1

�mil s
0
j;il�

ij
l;m +

p?jX
k=1

�mjks
0
i;jk�

k;m
ij )�ij;v; where s0j;il =

p?jX
k=1

�
0;il
jk ;

(A.2b)

�
0;il
jk =

�0jk

(1� � 0
il�

0
jk)

; �
ij
l;m =

qjX
c=0

q0iX
d=1

aidaj;d+c(�
0
il)

c +
m?X
c=1

q0jX
d=1

ajdai;d+c(�
0
il)

�c

(A.2c)

�
k;m
ij =

qiX
c=m+1

q0jX
d=1

ajdaid+c(�
0
jk)

c�2m; (A.2d)

18The ima representation of a GARCH model is given in K(1999a).
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and q0i = min(qi; qj � c), q0j = min(qj ; qi � c), m? = min(m; qi).
In the preceding equation, we use

s0j;il =
1

p?jQ
k=1

(1� � 0
il�

0
jk)

(A.2e)

to get

cov(hit; hj;t�m) = (

p?iX
l=1

�mil;j�
ij
l;m +

p?jX
k=1

�mjk;i�
k;m
ij )�ij;v; where �mil;j =

�mil
p?jQ
k=1

(1� � 0
il�

0
jk)

(A.2f)

Thus, we have

ht = !?
0 +

nX
i=1

hit ) covm(ht) =

nX
j=1

nX
i=1

cov(hit; hj;t�m)

=
nX

j=1

nX
i=1

(

p?iX
l=1

�mil;j�
ij
l;m +

p?jX
k=1

�mjk;i�
k;m
ij )�ij;v (A.2g)

�

AGF

From (2.3) we get

1

B?
i (z)B

?
j (z

�1)
=

1
p?iQ
l=1

(1� � 0
ilz)

p?jQ
l=1

(1� � 0
jlz

�1)

=

p?jX
k=1

p?iX
l=1

�0il�jk

(1� � 0
ilz)(1� � 0

jkz
�1) (A.3)

Ai(z)Aj(z
�1) = (

qiX
r=1

airz
r)(

qjX
r=1

ajrz
�r) =

qiX
l=0

q0iX
k=1

ajkaik+lz
l +

qjX
l=1

q0iX
k=1

aikajk+lz
�l

(A.3a)

From the preceding equations we have
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Ai(z)Aj(z
�1)

(1� � 0
ilz)(1� � 0

jkz
�1)

=

=
�0il�

0
jk

(1� � 0
il�

0
jk)

1X
m=0

fm[(�
ij
l;m(�

0
il)

m + �kmij (� 0
jk)

m)zm + (�jik;m(�
0
jk)

m + �
l;m
ji (�

0
il)

m)z�m]

(A.3b)

Using

p?jX
k=1

�0jk

(1� � 0
il�

0
jk)

=

p?jX
k=1

�
0;il
jk =

1
p?jQ
k=1

(1� � 0
il�

0
jk)

(A.3c)

in (A.3)-(A.3b) we obtain

Ai(z)Aj(z
�1)

B?
i (z)B

?
j (z

�1)
+

Aj(z)Ai(z
�1)

B?
j (z)B

?
i (z

�1)
=

=

p?jX
k=1

p?iX
l=1

1X
m=0

�0il�
0
jk

(1� � 0
il�

0
jk)

[(�ijl;m(�
0
il)

m + �
k;m
ij (� 0

jk)
m)

+ (�jik;m(�
0
jk)

m + �
l;m
ji (�

0
il)

m)](zm + z�m)

=
1X

m=0

[(

p?iX
l=1

�mil;j�
ij
l;m +

p?jX
k=1

�mjk;i�
k;m
ij ) + (

p?jX
k=1

�mjk;i�
ji
k;m +

p?iX
l=1

�mil;j�
l;m
ji )](z

m + z�m)
(A.3d)

Using the preceding equation we see that

ht = !?
0 +

nX
i=1

hit ) gz(h) =
nX

j=1

nX
i=1

Ai(z)Aj(z
�1)

B?
i (z)B

?
j (z

�1)
�ij;v =

=
nX

j=1

nX
i=1

1X
m=0

fm[

p?iX
l=1

�mil;j�
ij
l;m +

p?jX
k=1

�mjk;i�
ij
k;m]�ij;v(z

m + z�m) (A.3e)

�
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B PROOF OF THEOREM 2a

UNIVARIATE ARMA REPRESENTATIONS

The univariate representations of (3.3) are given by (in what follows B denotes matrix
whereas �B denotes determinant)

�pX
l=0

p? �B?
lm Llh?it =

�pY
l=1

(1�BlL)h
?
it =

p?X
j=1

~pX
l=1

p?;ij �B?
lm Llv?jt =

=

p?X
j=1

~pX
l=1

B
ij
l L

lv?jt (B.1)

where

p? �B?
lm =

p?X
m=1

<0
ml;r0

p? �Bm;
p? �Bm =

mY
k=1

(

p?�(m�k)X
fk=fk�1+1

)
mY
k=1

(p
?

B
fk
fk
)(�1)m; f0 = 0

(B.1a)

where
p? �Bm denotes the sum of the determinants of all the (m � m) submatrices of

the (p? � p?) matrix B. As an example, consider the case where p? = 3 and m = 2:

p? �Bm =
3 �B2 =

3 �B12
12 +

3 �B13
13 +

3 �B23
23 =

����b11 b12
b21 b22

����+
����b11 b13
b31 b33

����+
����b22 b23
b32 b33

����

<0
ml;r0 =

(
<ml;r0 if l = m; � � � ; m� r0

0 otherwise
; <ml;r0 =

mY
k=1

f

min[l�
k�1P

t=1

gt�(m�k);r0]

gk=max[1;l�[(m�k)r0+
k�1P

t=1

gt]]

gk

where <ml;r0 denotes the set of all the combinations of m numbers taking values from
1 to r0 and adding to l. As an example, consider the case where r0 = 2 and m = 2:

<0
ml;r0 = <0

2l;2 =

(
<2l;2 if l = 2; 3; 4

0 otherwise
; <22;2 = 11; <23;2 = 12; 21; <24;2 = 22

p?

k1k2���km
�Bm (ki = 1; � � � ; r0) denotes the

p? �Bm sum of determinants where now the b's
in the ith column (i = 1; � � � ; m) are taken from the kiB matrix. As an example, consider
the case where p? = 3 and m = 3:

3
121

�B3 = �

������
b111 b212 b113
b121 b222 b123
b131 b232 b133

������
When we multiply

p? �Bm by <ml;r0 we get
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p?

(l1���lm)1
�Bm+ � � �+

p?

(l1���lm)f
�Bm

where (l1 � � � lm)f denotes the set of all the f di�erent combinations of m numbers which
take values from 1 to p? and sum to l. As an example, consider the case where p? = 3
and m = 2; l = 3:

<23;2
3 �B2 =

3
12
�B2+

3
21
�B2 = [

����b111 b212
b121 b222

����+
����b111 b213
b131 b233

����+
����b122 b223
b132 b233

����]+

+[

����b211 b112
b221 b122

���� +
����b211 b113
b231 b133

���� +
����b222 b123
b232 b133

����]

p?;ij1 �B?
lm =

p?�1X
m=0

<0
(m+1)l;r0s

p?;ij1 �Bm;
p?;ij1 �Bm =

mY
k=1

(

p?�(m�k)X
fk=fk�1+1

)
mY
k=1

(p
?;ij1B

1;fk
1;fk

)(�1)m; f0 = 1
(B.1b)

where p?;ijB denotes a (p? � p?) matrix. It is obtained from matrix B by substituting
its ith column with the ith column of matrix A. As an example, consider the case where
p? = 3; i = 3 and j = 1:

3;31B =

2
4b11 b12 a11
b21 b22 a21
b31 b32 a31

3
5

p?;ij1B denotes a (p? � p?) matrix. It is obtained from matrix p?;ijB by moving the
ith row (column) into the �rst row (column). As an example, consider the case where
p? = 3; i = 3 and j = 1:

3;311B =

2
4a31 b31 b32
a11 b11 b12
a21 b21 b22

3
5

Of all the (m + 1) � (m + 1) submatrices of the (p? � p?) matrix p?;ij1B, p?;ij1Bm

denotes the sum of those which include elements of its �rst row and column. As an
example, consider the case where p? = 3; i = 3; j = 1 and m = 1:

3;311B1 =

�
a31 b31
a11 b11

�
+

�
a31 b32
a21 b22

�

<0
(m+1)l;r0s =

(
<0

(m+1)l;r0s if l = m + 1; � � � ; mr0 + s

0 otherwise

<(m+1)l;r0s =
m+1Y
k?=1

f

min[l�
k?�1P

t=1

gt�(m+1�k?);r?]

gk?=max[1;l�[(m+1�k?)r?+
k?�1P

t=1

gt]]

gk?; r? =

(
s if k? = 1

r0 otherwise
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<(m+1)l;r0s denotes the set of all the combinations of (m+1) numbers which take values
from 1 to r0 (except from the �rst one which take values from one to s) and sum to l. As
an example, consider the case where r0 = 2; s = 3; l = 6 and m = 2:

<36;23 = 222; 312; 321

The proof is given in K(1999c). �

The covariance matrix ��?
v

Using Theorem 1 and expression (B.1) we can show that

h0it � h�it =

p0X
j=1


ij;0v
0
j;t; for i = 1; � � � ; p0 where (B.2)

h0it

The h0it's are given by

h0it =

8>>>>><
>>>>>:

E(h2it) if i � p

E(h2nk;t) if p? � i > p; i = n � p+ k � n(n+1)
2

;
n = 1; � � � ; p� 1

k = n + 1; � � � ; p

E(hn?thk?t) if p0 � i > p?; i = n?p? + k? � n?(n?+1)
2

;
n? = 1; � � � ; p? � 1

k? = n? + 1; � � � ; p?

(B.2a)

and the n? and k? are given by

n? =

(
n? if n? � p;

ln �mn if n? > p; n? = lnp+mn �
ln(ln+1)

2
:

k? =

(
k? if k? � p;

lk �mk if k? > p; lkp+mk �
lk(lk+1)

2

(B.2b)

ln = 1; � � � ; p� 2;
mn = ln + 1; � � � ; p;

lk = 1; � � � ; p� 1
mk = lk + 1; � � � ; p

h�it
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The h�it's are given by

h�it =

8><
>:
[E(hit)]

2 if i � p;

[E(hnk;t)]
2 if p? � i > p

E(hn?t)E(hk?t) if p0 � i > p?; and E(hit) =
!?i
B(1)

(B.2c)

The n? and k? are given by (B.2a)-(B.2b).


ij;0

a) p? � i � 1

When p? � i the 
ij;0's are given by


ij;0 =

8>><
>>:

�pP
f=1

�f0�
i;j
f;0 if j � p?;

2
�pP

f=1

�f0�
i;n?k?

f;0 if j > p?; j = n?p? + k? � n?(n?+1)
2

(B.2d)

�
i;j
f0 = 2

~pX
c=0

~p�cX
d=1

B
ij
d B

ij
d+c(Bf )

c; �
i;n?k?

f0 =

~pX
c=0

~p�cX
d=1

Bin?

d Bik?

d+c(Bf)
c +

~pX
c=1

~p�cX
d=1

Bik?

d Bin?

d+c(Bf)
c

�f0 =
B

�p�1
f

�pQ
g=1

(1� BfBg)
�pQ

g=1
g 6=f

(Bf � Bg)

(B.2d0)

b) p0 � i > p?

when p0 � i > p?, i = n0p? + k0 � n0(n0+1)
2

, n0 = 1; � � � ; p? � 1, k0 = n0 + 1; � � � ; p?

the 
ij;0's are given by


ij;0 =

8>><
>>:

�pP
f=1

�f0�
n0k0;j
f0 if j � p?

�pP
f=1

�f0[�
n0k0;n?k?

f0 + �
n0k0;k?n?

f0 ] if p0 � j > p?
(B.2e)

�
n0k0;j
f0 =

~pX
c=0

~p�cX
d=1

B
n0j
d B

k0j
d+c(Bf )

c +

~pX
c=1

~p�cX
d=1

B
k0j
d B

n0j
d+c(Bf )

c (B.2 e0)

�
n0k0;n?k?

f0 =

~pX
c=0

~p�cX
d=1

Bn0n?

d Bk0k?

d+c B
c
f +

~pX
c=1

~p�cX
d=1

Bk0k?

d Bn0n?

d+c (Bf )
c (B.2e00)

The n?, and k? are as in (B.2a)-(B.2b).
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v0jt

Multivariate Normal Distribution

From the de�nition of the Multivariate ARCH model, proposed by EGK (1984) we
have

�it = h
1=2
it eit; i = 1; � � � ; p (B.3)

Et�1(eitejt) = pij =
hij;t

h
1=2
it h

1=2
jt

(B.3a)

Using the moment generating function of the multivariate normal distribution we
obtain the moments of the eit's

19:

Et�1(e
2
ite

2
jt) = 1 + 2p2ij Et�1(e

3
itejt) = 3pij

Et�1(e
2
itejtent) = pjn + 2pijpin Et�1(eitejtentekt) = pijpnk + pinpjk + pikpjn(B.3b)

Inserting the preceding equations in (3.3b) and using (B.3a) we get

var(vit) = 2E(h2i;t) var(vij;t) = E(hithjt) + E(h2ij;t)

cov(vit; vjt) = 2E(h2ij;t) cov(vit; vij;t) = 2E(hi;thij;t)

cov(vit; vjn;t) = 2E(hij;t � hin;t)

cov(vij;t; vin;t) = E(hit � hjn;t) + E(hij;t � hin;t)

cov(vij;t; vnk;t) = E(hik;t � hjn;t) + E(hin;t � hjk;t) (B.4)

In what follows, using the preceding equations (B.4) we express the v0j;t's as functions
of the h0it's:

i) p? � j

When p? � j then the v0jt's are given by

v0jt = var(vj;t) =

8><
>:
2E(h2j;t) = 2h0j;t if j � p;

var(vnk;t) = E(hn;t � hk;t) + E(h2nk;t) =

= h0j?;t + h0jt
; if p? � j > p (B.5)

where

j = n � p+ k �
n(n + 1)

2
; n = 1; � � � ; p� 1

k = n+ 1; � � � ; p; j? = np? + k �
n(n+ 1)

2
19For the properties of the multivariate normal distribution see Kendall and Stuart (1977, pp. 372-392),

Muirhead (1982, pp. 2-20) or Anderson (1984, pp. 6-50).
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ii) j > p?

If j > p?, where

j = n?p? + k? �
n?(n? + 1)

2
; n? = 1; � � � ; p? � 2; k? = n? + 1; � � � ; p?;

we can distinguish three cases:

a) n? � p k? � p

If n? � p, k? � p, then the v0j;t's are given by

v0jt = cov(vn?;t; vk?;t) = 2E(h2n?k?;t) = 2h0j?;t (B.5a)

where j? = n?p+ k? � n?(n?+1)
2

,

b) n? � p, k? > p

If n? � p, k? > p, where

k? = lkp+mk �
lk(lk + 1)

2
; lk = 1; � � � ; p� 1; mk = lk + 1; � � � ; p

then the v0j;t's are given by

v0jt = cov(vn?;t; vlkmk ;t) = 2E(hn?;t � hn?mk;t) = 2h0j?;t

j? = n?(p? + p) +mk � n?(n? + 1) (B.5b)

(when lk = n?)

v0jt = cov(vn?;t; vlkmk;t) = 2E(hn?lk;t � hn?mk;t) = 2h0j?;t j? = n0p? + k0 �
n0(n0 + 1)

2

n0 = n?p+ lk �
n?(n? + 1)

2
k0 = n?p+mk �

n?(n? + 1)

2
(B.5c)

(when lk; mk 6= n?)

c) n? > p, k? > p

If n? > p, k? > p, where

n? = lnp+mn �
ln(ln + 1)

2
ln; lk = 1; � � � ; p� 2

k? = lkp+mk �
lk(lk + 1)

2
mn = ln + 1; � � � ; p

mk = lk + 1; � � � ; p
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then the v0jt's are given by

v0jt = cov(vlnmn;t; vlkmk;t) = E(hlnlk;t � hmnmk;t) + E(hlnmk;t � hmnlk;t) = h0j?;t + h0j�;t
(B.5d)

(when ln; mn 6= lk; mk)
where

j? = n�p? + k� �
n�(n� + 1)

2
n� = min(n0; k0); k� = max(n0; k0)

n0 = l0np +m0
n �

l0n(l
0
n + 1)

2
k0 = l0kp+m0

k �
l0k(l

0
k + 1)

2

v0jt = cov(vlnmn;t; vlnmk;t) = E(hln;t � hmnmk;t) + E(hlnmn;t � hlnmk;t) = h0j?;t + h0j�;t
(B.5e)

(when lk = ln)
where

j? = lnp
? + k0 �

ln(ln + 1)

2
j� = n�p? + k� �

n�(n� + 1)

2

k0 = l0kp+m0
k �

l0k(l
0
k + 1)

2
n� = l0np+m0

n �
l0n(l

0
n + 1)

2

k� = l�kp+m�
k �

l�k(l
�
k + 1)

2
l0k = min(mn; mk)

m0
k = max(mn; mk) l0n = min(ln; mn)

m0
n = max(ln; mn) l�k = min(ln; mk)

m�
k = max(ln; mk)

Having the v0jt's as functions of the h
0
it's we substitute (B.5)-(B.5e) into (B.2) and we

express the h0it's as functions of the h
�
it's:

�0 � �h0t = �h�t ) �h0t = �? � �h�t ) h0it =

p0X
j=1


?ijh
�
jt; where (B.6)

�0 is a p0 � p0 matrix. It's mnth element is 
0mn.
�h0t is a p0 � 1 vector matrix. It's m1th element is h0mt.
�h�t is a p0 � 1 vector matrix. It's m1th element is h�mt.
Using Theorem 1 and expression (B.1) we get (3.8) where the �ij;v's are given by (B.4).

�
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PROOF OF THEOREM 2b

The covariance matrix ��v

Using Theorem 1 and expression (3.13) we obtain

h0it � h�it =

p?X
j=1


ij;0v
0
j;t�1; i = 1; � � � ; p? (B.7)

h0it

The h0it's are given by

h0it =

(
E(h2it) if i � p;

E(hnt � hkt) if p? � i > p:
(B.7a)

where

i = n � p+ k �
n(n+ 1)

2
; n = 1; � � � ; p� 1

k = n+ 1; � � � ; p

h�it

The h�it's are given by

h�it =

(
[E(hit)]

2 if i � p

E(hnt)E(hkt) if p? � i > p; and E(hit) =
!?i
B(1)

(B.7b)


ij;0

a) p � i � 1

When p � i � 1 the 
ij;0's are given by


ij =

8>><
>>:

pP
f=1

�f0�
ji;ji
f;0 if j � p;

2
pP

f=1

�f0�
niki
f;0 if p? � j > p:

(B.7c)

where

j = n?p+ k? �
n?(n? + 1)

2
; n? = 1; � � � ; p� 1; k? = 1 + n; � � � ; p

and �
ji;ji
f0 , �ni;kif0 and �f0 are as in (3.8a-3.8b),
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b) p? � i > p

When p? � i > p where

i = n0p+ k0 �
n0(n0 + 1)

2
; n0 = 1; � � � ; p� 1; k0 = n0 + 1; � � � ; p

the 
ij;0 's are given by


ij;0 =

8>><
>>:

�pP
f=1

�f0�
n0k0;j
f0 if p � j � 1

�pP
f=1

�f0[�
n0k0;n?k?

f0 + �
n0k0;k?n?

f0 ] if p? � j > p

(B.7d)

where the �n
0k0;j

f0 and �
n0k0;n?k?

f0 are as in (B.2e0- B.2e00).
Moreover, from the de�nition of the constant conditional correlation Multivariate

GARCH model, proposed by B (1990), we have

�it = h
1=2
it eit; Et�j(eitejt) = pij; i = 1; � � � ; p (B.8)

Using the moment generating function of the multivariate normal distribution we
obtain the moments of the eit's:

Et�1(e
2
ite

2
jt) = 1 + 2p2ij (B.8a)

Using the preceding equation and the de�nition of the vit's we get

cov(vit; vjt) = 2p2ijE(hi;thj;t) (B.9)

Using the preceding equation, we obtain the v0j;t's

v0j;t =

(
var(vj;t) = 2E(h2j;t) = 2h0jt if j � p;

cov(vn;t; vk;t) = 2p2nkE(hnt � hkt) = 2p2nkh
0
jt if p? � j > p: (B.10)

where

j = np + k �
n(n+ 1)

2
; n = 1 � � � ; p� 1; k = n + 1; � � � ; p

Inserting the preceding equation in (B.7) we obtain

�0 � �h0t =
�h�t )

�h0t = �? � �h�t ) h0it =

p?X
j=1


?ijh
�
jt; where (B.11)

�0 is a p? � p? matrix. It's mnth element is 
0mn.
�h0t is a p? � 1 vector matrix. It's m1th element is h0mt.
�h�t is a p? � 1 vector matrix. It's m1th element is h�mt.
Using Theorem 1 and expression (3.13) we get (3.14) where the �ij;v's are given by

(B.10-B.11).
�
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