
 
 
 
 
 
 
 

 
 
 
 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 
 
 

No. 2000/62 
 

Dynamics of Output Growth, Consumption and Physical Capital 
in Two-Sector Models of Endogenous Growth 

 
by 

 
Farhad Nili 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Department of Economics and Related Studies 
University of York 

Heslington 
York, YO10 5DD 

 
No. 1999/11 

 
Prediction in ARMA models with GARCH in Mean Effects 

 
by 

 
Menelaos Karanasos 

 



Prediction in ARMA models with GARCH in mean

e�ects

Menelaos Karanasos
?

University of York, Heslington, York, YO10 5DD,UK

Abstract

This paper considers forecasting the conditional mean and variance from an ARMA model with

GARCH in mean e�ects. Expressions for the optimal predictors and their conditional and unconditional

MSE's are presented. We also derive the formula for the covariance structure of the process and its

conditional variance.

Key Words: ARMA Model, GARCH in Mean E�ects, Optimal Predictor, Autocovariances.

JEL Classi�cation: C22

? For correspodence: Email: mk16@york.ac.uk, Tel: 01904 433799, Fax: 01904 433759

1



1 Introduction

The autoregressive conditional heteroscedasticity (ARCH) model introduced by Engle (1982)

and its generalisation, the GARCH model introduced by Bollerslev (1986) have become increas-

ingly popular in modelling �nancial and economic variables (see for example, the surveys of

Berra and Higgins (1992), Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson

(1994), and for a more detailed description the book by Gourieroux (1997)). Following Engle's

pathbreaking idea, several formulations of conditionally heteroscedastic models (e.g. Expo-

nential GARCH, Fractional Integrated GARCH, Switching ARCH, Asymmetric Power ARCH,

Component GARCH) have been introduced in the literature, forming an immense ARCH family.

Although the literature on GARCH type models is quite extensive relative fewer papers have

examined the issue of forecasting in models where the conditional volatility is time-dependent.

Engle and Kraft (1983) consider predictions from an ARMA process ARCH errors whereas Engle

and Bollerslev (1986), hereafter EB, and Baillie and Bollerslev (1992), hereafter BB, consider

predictions from an ARMA model with GARCH errors.

One important exclusion from this framework concerns the ARCH in mean model, introduced

by Engle, Lilien and Robins (1987). This model was used to investigate the existence of time

varying term premia in the term structure of interest rates. Such time varying risk premia have

been strongly supported by a huge body of empirical research, in interest rates (Hurn, McDonald

and Moody (1995)), in forward and future prices of commodities (Hall (1991), Moosa and

Loughani (1994)), in GDP (Price (1994)), in industrial production (Caporale and McKierman

(1996)) and especially in stock returns (see Campbell and Hentscel (1992), Glosten, Jagannathan

and Runkle (1993), Black and Fraser (1995), Fraser (1996), Hansson and Hordahl (1997) ,

Elyasiani and Mansur (1998)).

In this paper we focus our attention on predictions from a general ARMA model with

GARCH-in-mean e�ects. Many alternative expressions are available for the minimum mean

square error (MMSE) predictor of the conditional mean from the univariate ARMA model (see

Section 2 for a detailed discussion). In order to provide an analogy with subsequent material in

Section 2 we present a new method for obtaining multiperiod predictions from the ARMA(r,s)
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model. In particular, we derive the optimal multistep predictor in terms of r past observations

and s past errors. The coe�cients in our formula are expressed in terms of the roots of the

autoregressive polynomial (AR) and the parameters of the moving average (MA) one. We should

mention that we only examine the case where the roots of the AR polynomial are distinct (the

case of equal roots is left for future research). In Section 3 we use our method to derive the

optimal predictor of future values for the conditional variance from the univariate GARCH

model. Furthermore, in Section 4 of this paper we use our method to derive formulae for the

multiperiod predictions of the ARMA model with GARCH in-mean e�ects. To point out the

importance of our results we quote BB (1992): \Processes with feedback from the conditional

variance to the conditional mean will considerably complicate the form of the predictor and its

associated MSE. Analysis of such models is consequently left for future research".

The goal of our method is theoretical purity rather than the production of expressions in-

tended for practical use. However, our method can be employed in the derivation of multistep

predictions from a more complicated model with simultaneous feedback between the conditional

mean and variance, namely the GARCH-M-X model 1 (see Christodoulakis, Hatgioannides and

Karanasos,1999). Another value of our method is that it can easily be generalized to multivariate

GARCH and GARCH in-mean models.

In addition to our method for obtaining a closed form expression for the optimal predictor

(and its associated MSE) of the conditional mean from the ARMA(r,s) -GARCH(p,q) in-mean

model, the following 3 substantive problems for which solutions do not exist in the GARCH

literature are solved in this paper: (a) We give the in�nite moving average (ima) representa-

tions of the conditional mean and variance (these formulae can be used to obtain alternative

expressions for the MMSE predictors of the conditional mean and variance in terms of in�nite

past observations and errors); (b) We give the canonical factorization (cf) of the autocovariance

generating function (agf) of the process and its conditional variance, the covariances between

the squared errors2 and the conditional variance, and �nally the autocovariances and cross

1The GARCH-M-X model was introduced by Longsta� and Schwartz (1992). and includes the GARCH-X
model of Brenner, Harjes and Kroner (1996) as a special case.

2The autocovariance function of the squared errors for the GARCH(p,q) models is given in the Karanasos
(1999a) and He and Terasvirta (1997).
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covariances for the process and its conditional variance; (iii) The MMSE predictor of future

values of the squared conditional variance (which we subsequently use to obtain the conditional

MSE associated with the MMSE predictor of the futures values of the conditional mean for the

ARMA-GARCH in-mean model).

2 ARMA Model

2.1 Forecasting with ARMA Models

In this Section we consider multistep predictions from the ARMA(r,s) model:

�(L)yt = �+�(L)�t; where �(L) = �

rX
j=0

�jL
j =

rY
j=1

(1� �jL); (2. 1)

and �(L) = �

sX
j=0

�jL
j; �0 = �0 = �1 (2. 1a)

Assumption 1: All the roots of the autoregressive polynomial [�(L)] and all the roots of

the moving average polynomial [�(L)] lie outside the unit circle (Stationarity and Invertibility

conditions).

Assumption 2: The polynomials �(L) and �(L) have no common left factors other than

unimodular ones, i.e, if �(L) = U(L)�1(L) and �(L) = U(L)�1(L), then the common factor

U(L) must be unimodular (Irreducibility condition).

Many alternative expressions are available for the optimal predictor from the above ARMA

model3. By expressing the ARMA(r,s) model in a companion representation form, BB (1992)

derived the optimal multistep predictor in terms of r past observations and s past errors. In the

following Proposition we obtain an expression for the optimal predictor, which is equivalent to the

3Yamamoto (1981) used the in�nite order autoregressive representation of the multivariate ARMA model
(which includes the univariate as a special case) to express the MMSE predictor as a function of an in�nite
number of past observations and he presented parametric expressions for the prediction weights. His prediction
formula is particular convenient in obtaining the asymptotic prediction mean square error, when the prediction is
formulated with estimated coe�cients. Baillie (1980) obtained a formula for the MMSE predictor of an ARMAX
model (which include the simple ARMA as a special case) in terms of an in�nite number of past observations
and he also gave parametric expressions for the prediction weights. Alternative prediction formulae, such as
those based upon the Markovian representations of the ARMA model (Akaike, 1974) contain error terms in their
formulae. The relative literature includes, among others, Yamamoto (1980, 1978, 1976), Baillie (1979), Schmidt
(1974), Banshali (1974), Bloom�eld (1972), and Davisson (1965).
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BB one, by using a new method4 for solving a linear homogeneous di�erence equation together

with a technique for the manipulation of lag polynomials used in Sargent (1979). We believe

that our method gives a useful insight into the treatment of stochastic di�erence equations. In

what follows we only examine the case where the roots of the AR polynomial are distinct.

Proposition 2.1. Under assumptions 1-2, the minimum MSE predictor of yt is

Et(yt+i) = �? +
s�1X
n=0

zin�t�n +
r�1X
n=0

xinyt�n; where (2. 2)

zin = �

rX
l=1

min(i+n;s)X
j=n+1

�l0�
i+n�j
l �j; xin =

rX
j=1

�jijn; j0 = 1; and
(2. 2a)

jn = (�1)n
nY
l=1

[

r�(n�l)X
kl=kl�1+1

kl 6=j

]

nY
l=1

(�kl); k0 = 0; �? = �[
1

�(1)
�

rX
l=1

��li]
(2. 2b)

�ji =
�i+r�1
j

rQ
l=1
l 6=j

(�j � �l)

; ��ji =
�ji

(1� �j)
(2. 2c)

The proof is given in the Appendix A.

Lemma 2.1. The i-period forecast error of the optimal predictor5

4We express the rth order di�erence equation as an AR(1) process with an error term which follows a r-1
di�erence equation. We obtain yt as a function of r past values and the roots of the associated auxiliary equation.
For an excellent discussion on solutions of linear di�erence equations see Wei (1989, pp. 27-30) or Brockwell and
Davis (1983, Sect. 3.6).

5Pandit and Wu (1983, pp. 179-198) uses the ima representation of the ARMA(r,s) model in order to obtain
the optimal predictor and its associated prediction error as a function of an in�nite number pf past errors. The
coe�cients in their formula (which they called Green's function) are expressed in terms of the roots of the AR
polynomial and the parameters of the MA. In the case of distinct roots these coe�cients are given in Pandit and
Wu (1983, pp. 105-106, when s < r) and in Pandit (1973, p. 100, when s ? r). See also Pandit (1973, pp. 37-41)
and Pandit and Wu (1983, pp. 177-179) for an excellent brief historical review of the prediction theory.
Wei (1989, pp. 23-27, 86-88) uses the ima representation to obtain MMSE forecasts, without giving a speci�c

form for the prediction weights, and he also gives a recursive form for computing the optimal forecasts (pp. 91, 98).
Brockwell and Davis (1987, Sect. 5.3, 5.5) present recursive methods for computing the best linear predictor and
discuss ways to obtain the MMSE predictor based on the the in�nite order ar and ma representations. Nerlove,
Grether and Carvalho (1979, p. 93-94) provide a general scheme for computing least-squares forecasts which has
been called unscrambling (see also Nerlove and Wage, 1964). Other conventional recursive expressions to obtain
the predictor can also be found in Box and Jenkins (1971, pp. 126-132). Additional references on multistep
predictions include the textbooks by Hamilton (1994, Ch 4), Granger and Newbold (1986, Ch 4), and Anderson
(1976, Ch. 10).
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FEt(yt+i) =

i�1X
n=0

sn�t+i�n; where sn = �

rX
l=1

min(n;s)X
j=0

�l0�
n�j
l �j (2. 3)

With conditionally homoskedastic errors the conditional MSE for the optimal predictor is

identical to the unconditional MSE of the same optimal predictor:

Vt[FEt(yt+i)] = Vt(yt+i) = V [FEt(yt+i)] = E(�2t )

i�1X
n=0

s2n (2. 4)

The proof is given in the Appendix A.

We now make a few remarks on the two prediction formulae. BB's method is not restricted

to the case of distinct roots and is intended for practical computation whereas the goal of our

method is theoretical purity rather than the production of expressions intended for practical

use. The coe�cients in BB's formula are expressed in terms of parameter matrices whereas in

our formula they are expressed in terms of the roots of the AR polynomial and the parameters

of the MA one. In the context of distinct roots the two expressions are equivalent6. While

both methods can be used to derive the optimal predictor of future values for the conditional

variance from the univariate GARCH model (see Section 3 of this paper, and Section 4 of

BB, 1992), the advantage of our method is that it can be used to derive formulae for the

multiperiod predictions from the ARMA model with GARCH-in-mean e�ects (see Section 4)

and the GARCH-M-X model7(see CHK, 1999). In addition our method can be applied to even

more complicated GARCH models like the Component GARCH, the Asymmetric Power ARCH

and the Switching ARCH8. Another value of our method is that it can easily be generalized to

multivariate GARCH and GARCH-in-mean models9.

6Algebraic manipulations of equations 16 and 17 in BB's paper should give the coe�cients in our equation (2.
2a).

7The GARCH-M-X model was introduced by Longsta� and Schwartz (1992) as a discretization of their two-
factor short-term interest rate model.

8The component GARCH model was introduced by Ding and Granger (1996),the Asymmetric Power ARCH
was introduced by Ding, Engle and Granger (1992), and the Switching ARCH was introduced by Hamilton and
Susmel (1996).

9The statistical properties of the multivariate GARCH (MGARCH) model have been recently examined by
researchers. For example, Lin (1997) analyses the impulse response function for conditional volatility in various
MGARCH models. For a theoretical and empirical analysis of the multivariate GARCH-in-mean models see Song
(1996).
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3 GARCH Model

3.1 Forecasting the Volatility

In this Section we consider multistep prediction from the GARCH(p,q) model:

B(L)ht = ! +A(L)�2t ; where (3. 1)

B(L) = �

pX
i=0

�iL
i =

pY
i=1

(1� fiL); A(L) =

qX
i=1

aiL
i; �0 = �1 (3. 1a)

Corollary 3.1. The ARMA representation of the conditional variance is given by

B?(L)ht = ! +A(L)vt; where B?(L) = B(L)�A(L) =

p?Y
i=1

(1� f?i L) (3. 2)

p? = max(p; q) and vt = �2t �ht. The vt's are uncorrelated but they are not independent and

have a very complicated distribution. It is not di�cult to show that under conditional normality

var(vt) = (2=3)E(�4t ) (see K ,1999a). The fourth moment of the errors are given in Ling (1999),

He and Terasvirta (1997) and Karanasos (1999a). A general condition for the existence of the

2mth moments is given by Ling (1999) (see also Ling and Li, 1997).

Proof. In (3. 1) we add and subtract A(L)ht and we get (3. 2).

Assumption 3: All the roots of the autoregressive polynomial [B?(L)] and all the roots of the

MA polynomial [A(L)] lie outside the unit circle (Stationarity and Invertibility condition).

Assumption 4: The polynomials B?(L) and A(L) are left coprime. In other words the rep-

resentation B?(L)
A(L) is irreducible.

BB (1992) show that the squared errors (�2t ) correspond to an ARMA(p? ,p) process and

express it in a �rst-order companion form in order to derive the optimal multistep predictor for

the conditional variance from the GARCH model in terms of p? values of past squared errors and

p values of past conditional variances. In the following Proposition, in analogy to the derivation

of (2. 2), we solve the linear stochastic di�erence equation (3. 2) in order to obtain the MMSE

predictor for the conditional variance in terms of p? values of past observations and q values
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of past squared errors. In what follows we only examine the case where the roots of the AR

polynomial [B?(L)] are distinct.

Proposition 3.1. Under assumptions 3 and 4 the MMSE i-step ahead forecast for the condi-

tional variance from the GARCH(p,q) model is given by

Et(ht+i) = !? +

q�1X
k=1

nikvt�k +

p?�1X
n=0

minht�n; where !? = ![
1

B?(1)
�

p?X
l=1

�k?li]
(3. 3)

nik =

p?X
l=1

min(i+k;q)X
j=k+1

k?l0(f
?
l )

i+k�jaj ; min =

p?X
j=1

k?ji�jn; �j0 = 1 and
(3. 3a)

k?ji =
(f?j )

i+p?�1

p?Q
k=1
k 6=j

(f?j � f?k )

; �jn = (�1)n
nY
l=1

[

p?�(n�l)X
kl=kl�1+1

kl 6=j

]

nY
l=1

(f?kl)

k0 = 0; �k?ji =
k?ji

1� f?j
(3. 3b)

where the third term represents the de�nite solution of the deterministic (and homogeneous)

part of the stochastic di�erence equation (3. 2), and (f?j ); j = 1; � � � ;max(p; q) are the inverse

of the roots of the B?(L) polynomial. The proof is similar to that of Proposition 2.1.

Note that the coe�cients in BB's formula are expressed in terms of parameter matrices

whereas in our formula they are expressed in terms of the roots of the AR polynomial and the

parameters of the MA one.

Corollary 3.2. The ma representation of ht as a function of in�nite values of past vt's is

given by

ht+i =
!

B?(1)
+

1X
n=1

�nvt+i�n; where �n =

p?X
l=1

min(n;q)X
j=1

k?l0(f
?
l )

n�jaj ; (3. 4)

The proof follows immediately from the univariate ARMA representations (3. 2) and the

ima representation of an ARMA model which is given in Pandit (1973, p.100) and Pandit and

Wu (1983, p. 105) and Pandit (1983).
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The above representation is very useful because it can be used to obtain the forecast error of

the optimal predictor for the conditional variance (see Lema 3.1) and its autocovariance function

(see Proposition 3.2).

Moreover, the cf of the agf of ht is given by

gz(h) =

1X
m=0

fmm(z
m + z�m) =

A(z)A(z�1)

B?(z)B?(z�1)
�2v (3. 5)

The m are given in Proposition 3.2. The proof follows immediately from the univariate

ARMA representation (3. 2) and the cf of the agf of an ARMA model discussed, for example,

in NGC (1979, p. 39) and Sargent (1979, p. 228).

In many applications in �nancial economics the primary interest centres on the forecast for

the future conditional variance. Such instances include option pricing as discussed by Day and

Lewis (1992) and Lamourex and Lastrapes (1990), the e�cient determination of the market rate

of return as examined in Chou (1988), and the relationship between stock market volatility and

the business cycle as analysed by Schwert (1989). In these situations it is therefore of interest to

be able to characterise the uncertainty associated with the forecasts for the future conditional

variances also. Some potentially useful results for this purpose are given by Lemma 3.1 and

Theorem 3.1.

Lemma 3.1. The forecast error associated with the i-step-ahead predictor for the conditional

variance from the GARCH(p,q) model is given by

FEt(ht+i) = ht+i �Et(ht+i) =

i�1X
n=1

�nvt+i�n (3. 6)

In addition, the unconditional and conditional MSE are given by

V [FEt(ht+i)] = var(vt)

i�1X
n=1

�2n = (2=3)E(�4t )

i�1X
n=1

�2n (3. 7)

Vt(ht+i) = Vt[FEt(ht+i)] = 2
i�1X
k=1

�2kEt(h
2
t+i�k) (3. 8)
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The proof follows directly from (3. 4).

Theorem 3.1 The i-period ahead forecast for the squared conditional variance h2t is given by

Et(h
2
t+i�k) = �! +

q�1X
j=0

 �
j;i�k�

2
t�j +

p�1X
j=0

 h
j;i�kht�j +

q�1X
j=0

 �2

j;i�k�
4
t�j

+

q�1X
k1=1

qX
k2=k1+1

�2t�k1�
2
t�k2

 �2

k1k2;i�k
+

p�1X
j=0

 h2

j;i�kh
2
t�j

+

q�1X
l=0

p�1X
j=0

�2t�lht�j 
�h
lj;i�k +

p�1X
k1=1

pX
k2=k1+1

ht�k1ht�k2 
h2

k1k2;i�k
(3. 9)

where all the  's are functions of the GARCH parameters and are given, together with the

proof, in the Appendix B. The above expression is very useful because the optimal forecasts of the

squared conditional variance is needed in order to obtain the conditional variance of the forecast

error associated with the optimal forecast for the conditional mean from the ARMA-GARCH

in-mean model (see Section 4, Lemma 4.1).

In what follows we examine the covariance structure of the GARCH(p,q) model. The auto-

covariance function of the squared errors from the GARCH model is given in K (1999a) and He

and Terasvirta (1997). In many cases it is useful to have the autocovariances of the conditional

variance. These autocovariances can be used, for example, to obtain the autocovariances of the

ARMA process with GARCH in-mean e�ects. (see Section 4, Theorem 4.1b).
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Proposition 3.2. The autocovariance function (af) of the conditional variance ht is given by

covj(ht) = j =

p?X
i=1

eij�i;min(j;q)�
2
v ; where (3. 10)

eij =
(f?i )

j(f?i )
p?�1

p?Q
l=1

(1� f?l f
?
i )

p?Q
k=1
k 6=i

(f?i � fk)

; and (3. 10a)

�i;min(j;q) =

qX
k=1

a2k +

jX
l=1

q�lX
k=1

akak+l[(f
?
i )

l + (f?i )
�l] +

qX
l=j+1

q�lX
k=1

akak+l[(f
?
i )

l + (f?i )
l�2j ]

(3. 10b)

The covariances between the squared errors (�2t�l1) and the conditional variances (ht�l2) can

be derived by using the following equations:

E(�2t �
2
t�m) = E(ht�

2
t�m); E(htht�m) = E(�2tht�m)

together with the af of the squared errors and the conditional variances.

The proof is similar to that of Theorem 1 in Karanasos (1999a). Alternatively, one can use

either the ima representation (3. 4) or the cf of the agf (3. 5) to obtain the acf of the conditional

variance (see K, 1999c).

3.2 Forecasting with ARMA-GARCH Models

In this subsection we consider the ARMA(r,s)-GARCH(p,q) model given by

�(L)yt = �+�(L)�t; (�tj
t�1) � N(0; ht); (3. 11)

B?(L)ht = ! +A(L)vt (3. 11a)

As BB (1992) note, in the absence of GARCH in mean e�ects, the actual form of the predictor

of the future values of the conditional mean is the same as in the homoskedastic case, but the
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presence of GARCH changes the MSE of the predictor. The Proposition that follows gives the

associated unconditional and conditional MSE.

Proposition 3.3. The conditional and the unconditional MSE associated with the optimal

forecasts for the mean in the general ARMA(r,s)-GARCH(p,q) class of models are

V [FEt(yt+i)] = E(�2t )
i�1X
n=0

s2n (3. 12)

? Vt[FEt(yt+i)] = Vt(yt+i) =
i�1X
k=0

s2kEt(ht+i�k) =
i�1X
k=0

s2kf

q�1X
l=0

ni�k;lvt�l +

p?�1X
l=0

mi�k;lht�lg

(3. 13)

(? apart from a constant).

The proof follows immediately from equations (2. 3) and (3. 3).

4 GARCH in-mean Model

To our knowledge, the analysis of the covariance structure and of the multistep predictions from

a general ARMA model with GARCH errors and in-mean e�ects has not been considered yet.

This Section attempts to �ll this gap in the literature.

In what follows we will consider the ARMA(r,s)-GARCH(p,q)-M(1) process:

�(L)yt = �+ �ht +�(L)�t; and (4. 1)

B(L)ht = ! +A(L)�2t ; or B?(L)ht = ! +A(L)vt (4. 1a)

where �(L) and �(L) are given by (2. 1), (2. 1a), and B(L) and B?(L) are given by (3. 1a)

and (3. 2).
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Corollary 4.1. The univariate ARMA representation of yt is given by

B?(L)�(L)yt = �� + �A(L)vt +�(L)B?(L)�t; �
� = �B?(1) + �! (4. 2)

Proof. Multiplication of (4. 1) by B?(L) and substitution of (4. 1a) into (4. 1) gives (4. 2).

Assumption 5. The polynomials �(L) and A(L) are left coprime. In other words the repres-

entation A(L)
�(L) is irreducible.

In what follows we only examine the case where the roots of the AR polynomials [�(L); B?(L)]

are distinct.

Corollary 4.2. Under assumptions 1-5, the canonical factorization (cf) of the autocovariance

generating function (agf) for yt is given by

gz(y) =
�A(z)A(z�1)�2v

�(z)B?(z)�(z�1)B?(z�1)
+
�(z)�(z�1)�2�
�(z)�(z�1)

=
1X
j=0

fjj(z
j + z�j); fj =

(
:5 if j = 0

0 otherwise

(4. 3)

where the j 's are given in Theorem 4.1b.

Proof. The proof follows immediately from the univariate ARMA representation (4. 2) and

the cf of the agf of an ARMA model given in NCG (1979, pp. 70-78) and Sargent (1979, p.

228).

Under assumptions 1-5, the in�nite-order ma representation of yt is given by

yt =
��

B?(1)�(1)
+

1X
n=0

[�gnvt+i�n + sn�t+i�n]; where gn =

r+p?X
l=1

min(n;q)X
j=1

ul0y
n�j
l aj ;

(4. 4)

ult =

8>>>>>>>><
>>>>>>>>:

�
t+r+p?�1
l

rQ

j=1
j 6=l

(�l��j)
p?Q

j=1

(�l�f
?
j )

if l = 1; 2 � � � ; r

(f?m)t+r+p?�1

p?Q

j=1
j 6=m

(f?m�f
?
j )

rQ

j=1

(f?m��j)

if l = r +m; 1 � m � p?
(4. 4a)
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and yl = �l, for l = 1; � � � ; r, yl = f?m, for l = r +m; 1 � m � p? and sn is given by (2. 3).

Proof. The proof follows directly from the univariate ARMA representation (4. 2) and the

Wold representation of an ARMA model given in Pandit and Wu (1983, p. 105) and Pandit

(1973). .

In the following Theorem we present closed form algebraic expressions for the optimal pre-

dictor (and its associated MSE) of future values for the conditional mean from the above model.

Theorem 4.1a. Under assumptions 1-5 the i-step-ahead predictor of yt is readily seen to be

Et(yt+i) = �0 + �

q�1X
n=0

z�invt�n +
s�1X
n=0

zin�t�n +

r+p?�1X
n=0

x�inyt�n; where (4. 5)

z�in =

r+p?X
l=1

min(i+n;q)X
j=n+1

ul0(�
�
l )

i+n�jaj ; x
�
in =

r+p?X
j=1

uji
�
j0n; j00 = 1 (4. 5a)

�j0n = (�1)n
nY
l=1

[

r+p?�(n�l)X
kl=kl�1+1

kl 6=j0

]

nY
l=1

(��kl); k0 = 0; ��kl =

(
�kl if kl = 1; � � � ; r

f?m if kl = r +m; 1 � m � p?

(4. 5b)

j0 =

(
j if j = 1; � � � ; r

m if j = r +m; 1 � m � p?
; �0 = ��[

1

B?(1)�(1)
�

r+p?X
l=1

�uli]; �uli =
uli

1� ��i

(4. 5c)

where ult is given in (4. 4a) and the zin and xin are given in equation (2. 2a).

It is important to note that in the presence of GARCH in mean e�ects the optimal predictor

for the conditional mean is a function of past values not only of the observations and the errors

(yt�n; �t�n) but of the conditional variances and the squared errors (ht�n; �
2
t�n) as well.

Proof. The proof follows directly from the univariate ARMA representation (4. 2) and the

methodology used in Proposition 2.1.

Lemma 4.1. The forecast error for the above i-step-ahead predictor is given by
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FEt(yt+i) =
i�1X
n=0

[�gnvt+i�n + sn�t+i�n] (4. 6)

with unconditional and conditional MSE given by

V [FEt(yt+i)] = �2(2=3)E(�4t )

i�1X
n=1

g2n +E(�2t )

i�1X
n=0

s2n (4. 7)

Vt[FEt(yt+i)] = 2�2
i�1X
n=1

g2nEt(h
2
t+i�n) +

i�1X
n=0

s2nEt(ht+i�n) (4. 8)

where sn is given in (2. 3), and gn is given in (4. 4).

Note that in the presence of GARCH in mean e�ects the conditional MSE is a function not

only of the forecasts of the future values of the conditional variance (eq. 3. 3) but of the squared

conditional variance (eq. 3. 9) as well. When we don't have GARCH in mean e�ects (� = 0)

equations (4. 5), and (4. 6)-(4. 8) reduces to the equivalent expressions in Section 3. The proof

follows immediately from the in�nite-order ma representation (eq. 4. 4).

In the following Theorem we give a formula for the covariance structure of the ARMA-

GARCH in-mean model which include several simpler models as special cases.

Theorem 4.1b. Under Assumptions 1-5 the autocovariance function of the above process is

given by

j = covj(yt) =

rX
i=1

eijzi;min(j;s)var(�t) +

r+p?X
i=1

�ijdi;min(j;q)var(vt); where
(4. 9)

eij =
�j+r�1
i

rQ
l=1

(1� �l�i)
rQ

k=1
k 6=i

(�i � �k)

(4. 9a)

�ij =

8>>>>>>>><
>>>>>>>>:

�
j+r+p?�1
i

rQ

l=1

(1��i�l)
rQ

k=1
k 6=i

(�i��k)
p?Q

l=1

(1��if?l )
p?Q

k=1

(�i�f?k )

if i = 1; � � � ; r

(f?n)
j+r+p?�1

rQ

l=1

(1�f?n�l)
p?Q

l=1

(1�f?nf
?
l
)

rQ

k=1

(f?n��k)
p?Q

k=1
k 6=i

(f?n�f
?
k
)

if i = r + n; 1 � n � p? (4. 9b)
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zi;min(j;s) =

sX
k=0

�2k +

jX
l=1

s�lX
k=0

�k�k+l(�
l
i + ��li ) +

sX
l=j+1

s�lX
k=0

�k�k+l(�
l
i + �l�2ji ) (4. 9c)

di;min(j;q) =

qX
k=1

a2k +

jX
l=1

q�lX
k=1

akak+l[(�
�
i )

l + (��i )
�l] +

qX
l=j+1

q�lX
k=1

akak+l[(�
�
i )

l + (��i )
l�2j ]

(4. 9d)

and ��i = �i , for i = 1; � � � ; r, ��i = f?n, for i = r + n, 1 � n � p?

Observe that the above general formula incorporates the following results as special cases:

(a) the acf for the white noise process with GARCH(1,1) in mean e�ects given in Hong

(1991), (b) the acf for the ARMA(r,s) model given in Zinde-Walsh (1988), and Karanasos (1998,

1999b), and (c) the acf of the conditional variance for the GARCH(p,q) model given in Section

3 (Proposition 3.2).

Proof. The covariance structure can be derived by using the following three alternative

methods: (i) the one used in Karanasos (1999a), (ii) the one based on the cf of the agf (4. 3)

and (iii) one based on the in�nite-order ma representation10 (4. 4).

Theorem 4.1c. The cf of the agf between yt and ht (gz(yh)) is given by

gz(yh) =

1X
m=�1

mz
m =

A(z)A(z�1)

�(z)B?(z)B?(z�1)
��2v (4. 10)

The proof follows directly from the univariate ARMA representations (4. 1a), (4. 2) and

the cf of the agf of ARMA processes given in Sargent (1979, p. 228).

Moreover, the cross covariances (m) are given by

10See Karanasos (1999c) for the use of methods (ii) and (iii) in the context of univariate and multivariate
GARCH models.
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m = cov(yt; ht�m) =

8>><
>>:

r+p?P
i=1

e�
�?

im z�
�

i;min(m;q) +
p?P
i=1
ef ?
im zfi;m if m > 0

p?P
i=1
ef?imz

f

i;min(m;q) +
r+p?P
i=1

e�
�?

im z�
�

i;m if m < 0

; and
(4. 11)

e�
�?

im =
e�

�

im

p?Q
k=1

(1� ��i f
?
k )

; e�
�

im =
(��i )

r+p?�1+m

r+p?Q
k=1
k 6=i

(��i � ��k)

; (4. 11a)

ef?im =
efim

r+p?Q
k=1

(1� f?i �
�
k)

; efim =
(f?i )

p?�1+m

p?Q
k=1
k 6=i

(f?i � f?k )

; zfi;m =

qX
l=m+1

q�lX
k=1

akak+l(f
?
i )

l�2m

(4. 11b)

zf
i;min(m;q) =

qX
k=1

a2k +

qX
l=1

q�lX
k=1

akak+l(�
�
i )

l +

mX
l=1

q�lX
k=1

akak+l(�
�
i )
�l (4. 11c)

Proof. The cross covariances (m) can be obtained by using either the cf of the agf (4. 10)

or the in�nite-order ma representations of the process and its conditional variance (4. 4), (3. 4)

together with the techniques given in K(1999c ).

Corollary 4.3. The bivariate ARMA representation of the GARCH-in-mean model is given

by

��(L)�yt = �A0 + ��(L)��t; where ��(L) = �

r?X
l=0

��lL
l; ��(L) =

s?X
l=0

��lL
l;

(
r? = max(r; p?)

s? = max(s; q)

(4. 12)

��l =

�
�0l 0
0 �?0l

�
; ��l =

�
��0l 0
0 a0l

�
; ��0 = �

�
1 �
0 1

�
; ��0 =

�
1 0
0 0

�
(4. 12a)

�0l =

(
�l if l � r

0 if l > r
; �?0l =

(
�?0l if l � p?

0 if l > p?
; �0l =

(
�l if l � s

0 if l > s
; a0l =

(
al if l � q

0 if l > q

(4. 12b)

We can use the above bivariate ARMA representation and the techniques in Yamamoto
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(1981) to obtain expressions for the optimal predictors and their MSE in computationally con-

venient algorithmic forms.

5 Concluding Remarks

Despite the extensive literature on GARCH and related models, relatively little attention has

been given to the issue of forecasting in models where time-dependent conditional heterosce-

dasticity is present.

In this paper we focused on the prediction from an ARMA model with GARCH in mean

e�ects. We showed that for processes with feedback from the conditional variance to the con-

ditional mean the forms of the optimal predictor of the process and its MSE are considerably

complicated. In addition, we gave the Wold representations of the conditional mean and vari-

ance of the process. These formulae can be used to obtain alternative expressions for the MMSE

predictors of the process and its conditional variance in terms of an in�nite number of past

observations and errors. Moreover, we gave the cf of the agf for the process and its conditional

variance which we subsequently used to obtain their autocovariances. We also obtained the co-

variances between the squared errors and the conditional variance, and the covariances between

the process and its conditional variance. Furthermore, we gave expressions for the MMSE pre-

dictors of future values of both the conditional variance and the squared conditional variance.

These optimal predictors were subsequently used to obtain the conditional MSE associated with

the optimal predictor of the future values of the conditional mean. Finally, we gave the bivariate

ARMA representation of the process and its conditional variance. This representation can be

used in conjunction with the methodology in Yamamoto (1981) to obtain expressions for the

MMSE predictors and their variances in computationally convenient algorithmic forms.

Note that this study only examined the case where the roots of the autoregressive polynomials

of the processes are distinct. Thus one potentially important issue not addressed in this paper

relates to the e�ect of equal roots. The potential generalisations of the simple ARMA-GARCH

in mean model are numerous. To state a few: (a) The ARMA-Asymmetric Power GARCH

in mean model, (b) The ARMA-GARCH-M-X model, (c) The ARMA-Component GARCH in
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mean model, (d) The Multivariate GARCH in mean model11(MGARCH-M).
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Appendix

A Proofs of Proposition 2.1, Lemma 2.1

Let yt follow an ARMA(r,s) process

yt = �+
rX

j=1

�iyt�i �
sX

j=0

�j�t�j (A. 1)

We will �rst give the de�nite solution of the homogeneous deterministic component (ydt )

of the ARMA(r,s) process (yt) and we will subsequently use a technique provided in Sargent

(1987), together with the de�nite solution (ydt ), in order to derive the optimal predictor and the

associated MSE of yt.

The de�nite solution of the r order deterministic di�erence equation �(L)yt+i = 0 is

yt+i =

r�1X
n=0

xinyt�n (A. 2)

We will prove the above by induction. If we assume that (A. 2) holds for a (r � 1) order

di�erence equation then it will be su�cient to prove that it holds for an r order di�erence

equation.

yt+r can be expressed as an AR(1) process with an error term which follows a (r � 1) order

di�erence equation

yt+r = �1yt+r�1 + xt+r; where

rY
i=2

(1� �iL)xt+r = 0 (A. 3)

Using backward substitution in the above equation, we get

yt+r�1 =

tX
i=1

�i�11 xt+r�i + �t1yr�1 (A. 4)

Since x follows a (r � 1) order di�erence equation we have
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xt+r�1�l =
r�2X
n=0

rX
j=2

xr�1�n�
r�1
jt�l

r�1
jn ; where �r�1jt�l =

�t�l+r�2
jQr

k=2;k 6=j(�j � �k) (A. 5)

r�1jn = (�1)n
nY
l=1

[

(r�1)�(n�l)X
kl=kl�1+1;kl 6=j

]
nY
l=1

(�kl); where k0 = 1; r�1j0 = 1
(A. 5a)

Substituting (A. 5) into (A. 4) and after some algebra, we get

yt+r�1 =
r�2X
i=0

rX
j=2

xr�1�i(�
r
jt

r�1
ji � �t1�

r
j0

r�1
ji ) + �t1yr�1; where �rjt =

�t+r�1
jQr

k=1;k 6=j(�j � �k)

(A. 6)

Finally, substituting sequentially in the above equation

xr�k = yr�k � �1yr�k�1; k = 1; � � � ; r � 1 (A. 7)

and using

1�

rX
j=2

�rj0 = �r10;

rX
j=2

�rj0
r
jk�1 = �r10

r
1k�1; for k � 2 (A. 8)

where rjn is given by (A. 5a) with k0 = 0, we get equation (A. 2).

Using Sargent (1987) technique and (A. 2) we express yt as

yt = �+

rX
i=1

�iyt�i �

sX
j=0

�j�t�j =
�Qr

i=1(1� �i)
�

Ps
j=0 �j�t�jQr

i=1(1� �iL)
(A. 9)

= �

rX
i=1

��ri0 �

sX
j=0

rX
i=1

�j�t�j�i�
r
i0 = �

rX
i=1

�ri0ai;t�1 �

sX
j=0

rX
i=1

�j�t�j�i;t�1�
r
i0 + yrd

where

�i =
1

1� �iL
; �ri0 =

�r�1iQr
j=1;j 6=i(�i � �j)

; ��ri0 =
�ri0

1� �i
; and (A. 9a)

�i;t�1 =
1

1� �iLt�1
=

t�1X
j=0

(�iL)
j ; ai;t�1 =

1

1� �i;t�1
=

t�1X
j=0

�ji (A. 9b)
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and yrd is given by (A. 2).

From (A. 9) after some algebra we get

yt = �[
1

�r(1)
�

rX
l=1

��rlt]�

rX
l=1

t�1X
i=0

min(i;s)X
j=0

�rl0�
i�j
l �j�t�i �

rX
l=1

s�1X
i=0

min(t+i;s)X
j=i+1

�rl0�
t+i�j
l �j��i + yrd

(A. 10)

Taking the conditional expectation of (A. 10), as of time 0, we get the t-period optimal

predictor of y. In addition, using (A. 10), we get the t period forecast error.

B Proof of Theorem 3.1

Let ht follow a GARCH(p,q) process (for simplicity we will assume that p > q.)

B(L)ht = ! +A(L)�2t (B.1)

From the above equation we get

!t+p�i = !̂�t+p�i +

q?X
j=1

aj�j;t+p�i +

p?X
j=1

�jcj;t+p�i; where (B.2)

!̂ = [! +

iX
j=0

�p�i+jht�j +

i�(p�q)X
j=0

aq+j�
2
t�j ] (B.2a)

�j;t+i = !̂�t+p�i�j + (3aj + �j)!t+p�i�j

+

j�1X
k=1

(ak + �k)�j�k;t+p�i�k +

p?�jX
k=1

(ak+j�k;t+p�i�j + �k+jck;t+p�i�j)
(B.2b)

cj;t+i = !̂�t+p�i�j + (aj + �j)!t+p�i�j
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+

j�1X
k=1

(ak + �k)cj�k;t+p�i�k +

p?�jX
k=1

(ak+j�k;t+p�i�j + �k+jck;t+p�i�j); and
(B.2c)

!t+p�i = Et(h
2
t+p�i); �t+p�i = Et(ht+p�i); �j;t+p�i = Et(�

2
t+p�i�

2
t+p�i�j);

(B.2d)

cj;t+p�i = Et(ht+p�i; ht+p�i�j); and ak = 0; for k > q?; �k = 0; for k > p?;
(B.2e)

where, q? = q �max[0; i � (p� q) + 1], p? = p�max(0; i+ 1) and

where i can be any negative number and a positive number less than p� 2.

The expressions of �j;t+p�i and cj;t+p�i (eq B.2b and B.2c) can be written in a VAR

(p? + q?; p? � 1) form

�?t+p�i =

p?�1X
j=1

AjL�
?
t+p�i�j + !?

t+p�i )
�A(L)�?t+p�i = !?

t+p�i; where (B.3)

�A(L) = (I �

p?�1X
j=1

AjL) (B.3a)

�?t+p�i is a ((p? + q?) � 1) vector matrix. It's j1th element is �?j1 = �j;t+p�i for j � q? and

�?j1 = ck;t+p�i for j � q? + k, (1 � k � p?).

!?
t+p�i is a ((p? + q?) � 1) vector matrix. It's j1th element is !?

j1 = !�t+p�i�j + (3aj +

�j)!t+p�i�j for j � q? and !?
j1 = !�t+p�i�k + (ak + �k)!t+p�i�k for j � q? + k, (1 � k � p?).

A� is a ((p
? + q?)� (p? + q?)) matrix. It consists of four submatrices

A� =

�
A�
�� A�

�c

A�
c� A�

cc

�
(B.4)

A�
�� is a (q? � q?) matrix. It's ijth element is given by aij = 0, for i < �, a�j = aj+�, for

i = �, (aj+� = 0 for j + � > q?), aij = a� + ��, for j > �, j = i � �, and aij = 0, for i > �,

j 6= i� �.
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A�
�c is a (q? � p?) matrix. It's ijth element is given by �ij = 0, for i ? �, ��j = �j+�, for

i = �, (�j+� = 0, for j + � > p?).

A�
c� is a (p? � q?) matrix. It's ijth element is given by aij = 0, for i ? �, a�j = aj+�, for

i = �, (aj+� = 0, for j + � > q?).

A�
cc is a (p? � p?) matrix. It's ijth element is given by �ij = 0, for i < �, ��j = �j+�, for

i = �, and (�j+� = 0, for j + � > p?), �ij = �� + a�, for i > �, and j = i � �, and �ij = 0, for

i > �, and j 6= i� �.

After solving the above VAR(p? + q?; p? � 1) model and substituting the solution into (B.2)

we get

�(L)!t+p�i = �(L)�t+p�i; where (B.5)

�(L) =

2p?�1X
j=0

�jL
j =

2p?�1Y
j=1

(1� �?jL) = (L)�

p?X
j=1

f

q?X
k=1

[ajjk(L) + �jq?+j;k(L)]

(3ak + �k) +

p?X
k=1

[ajj;q?+k(L) + �jq?+j;q?+k(L)](ak + �k)gL
k (B.5a)

�(L) =

2p?�1X
j=0

�jL
j = !̂f(L) +

p?X
j=1

f

q?X
k=1

[ajjk(L) + �jq?+j;k(L)]

+

p?X
k=1

[ajj;q?+k(L) + �jq?+j;q?+k(L)]gL
kg; and (B.5b)

ij(L) is the ijth element of �(L) = [ �A(L)]�1 and (L) is the determinant of �A(L).

The solution of the above system of di�erence equations is given by (3. 9).
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