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Abstract

In this paper we analyse a common value English auction. We ar-
gue that rational bidders attempt to estimate each other’s private sig-
nals, to take advantage of the additional information disclosed through
the bids. If this happens, herd behaviour might arise, because a par-
ticular bidder may have an incentive to follow his estimate of some
other bidder’s signal, thus dropping his own, and staying in the auc-
tion longer than previously optimal. Acting upon beliefs might take
the auction to an ine¢cient outcome, where the bidder who most val-
ues the good ends up not getting the object for sale.
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1 Introduction

English or ascending auctions are probably the most common type of auc-
tion, as suggested for example by McAfee and McMillan [4], and are surely
the easiest to organise and conduct. In the auction literature, especially in
Milgrom and Weber [5], it is suggested that it maximizes revenue for the
seller when compared with other auction formats. The main di¤erence be-
tween an English auction and the sealed bid (…rst-price or second-price) and
Dutch auctions is the bidding process. In the former, several increasing bids
are submitted by each bidder whereas in the latter only one is submitted.
In a common value setting, where the good for sale has an unknown but
common value for every bidder, knowing the drop out prices of other bidders
reveals information. Knowing the bidding function and the drop out price,
one can infer the initial signal received by that particular bidder, and this
lessens the winner’s curse. Hence, the remaining bidders will be less afraid of
bidding more aggressively, which increases the …nal price and consequently
the expected revenue for the seller, when compared to the expected revenue
of the other auction formats.

However, this and other models of English auctions seem to have dis-
regarded the behavioural aspects involved with the bidding process. An
example of this is the strategic equivalence assumed to exist between English
and second-price sealed bid auctions when only two bidders are involved. We
argue that in the two bidder case, the strategies and outcomes of an English
auction could be quite di¤erent from the ones in a second-price sealed bid
auction. In a common value framework, the increasing bids are sequentially
revealed, and this may cause the two bidders to revise their strategies in a
manner similar to the drop out prices in Milgrom and Weber. When a bid-
der submits a bid, this must surely come from his bidding strategy, which
naturally depends on his information set. But if this is the case, then his
opponent may use the current bid to try and infer his information set. Re-
member that in a common value model, the value of good for sale is common
but unknown, so each bidder’s estimate of the unknown value is valuable
information. In our model, each bid is considered to be a temporary drop
out price, which becomes the e¤ective price if one of the bidders quits.

This inference of the opponent’s information set is done through a Bayesian
updating process, which takes into account the current bid as carrying im-
portant information and which may then cause that bidder to change his
bidding rule. The updating process will give this bidder a more or less accu-
rate estimate of the other bidder’s initial signal, which he may than use to
try and take advantage of that additional information. If he does make use
of this information, we will say the he is a “rational bidder”. In this case,
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and in a manner similar to Milgrom and Weber [5], the …nal price will be
higher relative to the outcome of a second-price sealed bid auction, even in
the case of two bidders. And the expected revenue for the seller will also be
higher.

This behavioural aspect, a consequence of the English auction design,
may have other e¤ects. Once the Bayesian updating process is triggered,
herd behaviour could occur. Banerjee [2] or Scharfstein and Stein[6] provide
examples where it totally rational to drop one’s private information and
follow someone else who we believe has better information than we do. In
a common value framework, this could well be the case. Bidders will have
estimates of the unknown value of the good, but some could contain more
information than others. Because the Bayesian updating process provides
estimates on our opponent’s initial signal, we will then be able to compare it
to our initial signal and decide whether dropping our initial signal is pro…table
or not. If herd behaviour does occur, it will only deviate the outcome of an
English auction even further from the second-price sealed bid auction.

A side result of our model suggests that when the Bayesian updating
process is triggered, not only will the …nal price be relatively higher but
it is also possible that the bidder who received the highest initial signal
ends up not winning the auction. If this is the case, the outcome will be
ine¢cient. The argument for this result is that the low signal bidder may
overestimate his opponent’s signal (through the Bayesian updating process),
and stay active longer than he should. If he stays too long, he will drive the
high signal bidder out, win the auction and almost surely realize a negative
payo¤. This result is comparable to real world auctions, where it is often the
case that the winner ends up with a negative pro…t.

In an experimental study, Avery and Kagel [1] also found evidence that
a signi…cant proportion of auctions (30% for experienced bidders and 39%
for inexperienced bidders) cause the winner to receive negative pro…ts. This
naturally contradicts the Nash symmetric equilibrium prediction that not
only the winner will make positive pro…ts but also that the winner is the high
signal bidder. Our model, through the Bayesian updating process, addresses
this evidence. Bidders, by inverting the bids in an attempt to estimate their
opponent’s signal, revise their bidding rules, and will almost surely be willing
to stay active longer than predicted by the Nash equilibrium strategies. In an
English auction, staying active longer means that the …nal price is necessarily
higher, and this could explain why the winner receives negative pro…ts. If
the low signal bidder stays active too long (i.e. when they overestimate their
opponent’s signal), he may even win the auction, and realize substantial
negative pro…ts.

The paper is structured in the following way: the next Section presents the
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model in the presence of rationality; Section three introduces the possibility
of herd behaviour; and Section four concludes.

2 The Basic Model with Rationality
Our model will be based on the English auctions’ section in Milgrom and
Weber [5]. Like them, we are dealing with a second-price auction, in which
when there is only one bidder left (who would have just placed his winning
bid), this bidder is the winner and will pay the penultimate’s bidder …nal bid.
For notational purposes, capital letters denote random variables, lower case
letters denote their realizations, capital letters in bold denote matrixes and a
capital letter with a hat denotes an estimate, for example, an expected value.
We are assuming one seller, one good for sale and 2 bidders, or potential
buyers. Every bidder is given an initial private signal about the value of
the good. Let us denote this signal by Xi, with i = 1; 2, and let us denote
X = (Xi; X¡i) for i = 1; 2 as the informational vector. We will hence forth
denote as bidder ¡i the other bidder, when we are speaking about bidder i;
in a clear abuse of notation. The value of the good is ex post the same for
both bidders, but it is ex ante unknown, and given by the random variable
S. This is a common assumption for a common value auction. We should
also note two other things: S may never be known and the realization of Xi,
xi; is known only to bidder i:

Let us then assume that bidders bid alternately, and that each bidder’s
valuation function depends on the vector of initial signals and on S. Milgrom
and Weber denote the valuation function as Vi = vi (Xi;X¡i; S) = vi (X; S),
which would make bidder i’s expected valuation dependent ex ante only on
his own private signal, since this is the only argument in Vi (:) known to
him. We then assume that bidder i’s valuation function depends not only
on bidder i’s private signal, Xi; but also on bidder ¡i’s signal, X¡i; which is
a random variable to him. This is plausible because if a bidder could know
someone else’s signal, he would surely revise his valuation, for this would
contain valuable information.

If bids are placed alternately between the bidders, let us then denote by
a superscript letter the numbering of the bids, keeping in mind that bidder
1’s bid will be represented by an odd number, whereas bidder 2’s bid will be
represented by an even number. If we represent this numbering by k, and if
K is the …nal bid, then the auction will have a series of k = 1; 2; :::; K bids,
where K can be an odd or even number, depending on who wins the auction.
For example, E

£
V ki

¤
will denote bidder i’s expected valuation of the good at

stage k:
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Let us make some relevant assumptions.

1. The function v is de…ned 8i and 8k in such a way that vi (Xi; X¡i; S) =
v (Xi; X¡i; S). This is equivalent to Assumption 1 in Milgrom and
Weber, i.e. all the valuations depend on S in the same manner, and each
valuation is symmetric in relation to other bidder’s signals, at every
possible stage in the auction. Moreover, this function is nonnegative,
continuous and nondecreasing in its arguments. Neutrality towards risk
is implicitly assumed.

2. The valuation function for any bidder i; at any stage k of the auction,
has the following property: Ei

£
V ki

¯̄
Xi = xi; X¡i = Xi

¤
= xi, and this

is common knowledge for both bidders. This amounts to assume that
when bidder i’s estimate of ¡i’s signal, X¡i; is equal to his own signal,
Xi; his valuation is exactly equal to his private signal, Xi; whose real-
ization is xi: Obviously, for bidder ¡i this still holds, but in his case
E¡i

£
V ki

¯̄
X¡i = Xi

¤
= Xi, which is a random variable, whose realiza-

tion is unknown to him. Moreover, when bidder i is uncertain about
whether bidder ¡i is being rational or irrational with respect to the
information made available to him (we use the term “irrational” when
bidder i assumes X¡i = Xi), he will always believe bidder ¡i is being
irrational, hence only taking into account his own private signal, X¡i,
when taking the expected valuation of the good at any stage. We shall
denote this as the Limited Rationality Condition. This assumption will
be better understood as soon as we start explaining the model.1

3. The reservation price of the seller is zero; every potential buyer or
bidder’s valuation must fall within the following interval: 0 < E

£
V ki

¤
<

1, for every stage k.

4. There exists a joint density function of the random variables of the
model, which is given by f (xi; x¡i; s); the associated distribution func-
tion is F (xi; x¡i; s). The variables Xi and Xj, with i 6= j, are consid-
ered to be conditionally independent, so that their conditional marginal
densities g (:) satisfy gXi;X¡ijS (xi; x¡ij s) = gXijS (xij s) :gX¡ijS (x¡ij s).
The joint distribution of all the random variables will then be f (xi; x¡i; s) =
fS (s) :gXijS (xij s) :gX¡ijS (x¡ij s) where fS (s) is the marginal density
of S. There are no uninformative signals, which means that every Xi

contains information about the uncertain value of the good, S.

1This condition is understandable if we imagine a bidder who always thinks he is
outsmarting everyone else, without ever being outsmarted.
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After clarifying the basic framework, we can now introduce the auction
mechanism and the way through which it works. But …rst of all it is worth
remembering Milgrom and Weber’s mechanism for an English auction.

Remark 1 If we denote the valuation function of bidder i by Vi (Xi; X¡i; S),
then this bidder will bid until the going bid is equal to his maximum expected
valuation, which he knows since the beginning. In fact, Milgrom and Weber
make use of myopic behaviour to derive this result. They show that this rule
of action (or individual strategy) is a best response if every bidder behaves
accordingly. In other words, bidder i will follow the optimal strategy b¤ (xi),
which tells him to bid (or stay in the auction) until all other bidders quit
or the bid reaches E [VijXi = xi; Xk = xk; Xh = Xi], where k is the number
of bidders who have given up (and whose private signals have already been
revealed, by inverting the valuation function), and h the number of bidders
still active. This notation has been borrowed from Branco [3]. If this bidder
has reached his maximum valuation, then he will give up. If there are bid-
ders continuing, according to this framework, this bidder does not attempt to
estimate or guess what these remaining bidder’s signals are. For him, these
signals will still be random variables, which we have denoted by Xi. In this
bidder’s case, xi will be the value assumed by this random variable. In other
words, bidder i’s best estimate of the other bidder’s signals corresponds to his
own signal. Milgrom and Weber show that if b¤ (xi) is the optimal strategy
for bidder i, then the vector (b¤ (xi) ; :::; b¤ (xn)) is an equilibrium point for
the English auction with n bidders (see Theorem 10 and its Proof in Milgrom
and Weber [5]).

In our setting, we allow bidders to attempt to extract information from
the going bids. When bidder ¡i bids, it is common knowledge that he has
a signal, X¡i, which is unknown to i. Bidder i will be interested in know-
ing what value X¡i takes. The process through which he tries to guess it
is very intuitive: a bid is placed by bidder ¡i at stage k; given by bk¡i;
bidder i observes this bid and thinks bidder ¡i is acting on his true sig-
nal, X¡i (which means he thinks bidder ¡i is “irrational”, and he intends
to outsmart him - see Assumption 2). For a certain stage k; knowing the
previous bid, bk¡i; bidder i also knows that X¡i ¸ bk¡i; because if Assump-
tion 2 is veri…ed (remember that in this case an “irrational” bidder has as
his maximum valuation his true signal, Xi) a bid bk¡i > X¡i is not opti-
mal. Hence, he thinks that the true signal of bidder ¡i; X¡i; has not yet
been reached, which means that X¡i ¸ bk¡i must necessarily be veri…ed (for
it is not allowed to place a bid lower than the current bid). Hence, his
relevant density function at this stage must take this into account. Thus,
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every time a bid is submitted, bidder i is allowed to revise his valuation,
through the revision of his estimate of bidder ¡i’s signal. For example, if
bidder i starts the auction, then his estimate of bidder ¡i’s signal will be
given by iX̂k

¡i = E [X¡ijXi = xi] =
R +1
¡1 x¡i:fX¡i (x¡ijXi = xi) dx¡i, where

fX¡i (x¡ijXi = xi) is the marginal density function of f (xi; x¡i; s) with re-
spect to X¡i (with xi known to this bidder), and with k = 1 (for it is the
…rst bid).

Then, for bidder i, the expected value of the good at a certain stage (or
bid) k can be represented by:

E
h
V ki

¯̄
Xi = xi; X¡i = h

³
Xi;i X̂

k
¡i

´i
=

= E
h
v (Xi;X¡i; S)jXi = xi; X¡i = h

³
Xi;i X̂

k
¡i

´i
(1)

where iX̂k
¡i is the expectation by bidder i of bidder ¡i’s signal, at stage k.

Some comments are now useful. The main di¤erences between our set-up and
Milgrom and Weber’s are the estimate by bidder i of bidder ¡i’s signal, X¡i:
They argue in favour of a sort of myopic behaviour, where the best estimate of
bidder ¡i’s signal is given by bidder i’s own signal, Xi. This happens because
bidder i derives his best reply conditional on his winning the auction. In our
model, we argue that this might be possible, but not always the case, because
the ascending bid auction provides bidders additional information through
the bidding process. We believe that this additional information might be
used, and the valuation function of the bidders must take this into account,
being this the reason why X¡i = h

³
Xi;i X̂

k
¡i

´
. In fact we will argue that

h (:) = max (:), because of the informational content of the signals. If both
Xi and X¡i are perceived to be of equal quality, then the knowledge of X¡i
by bidder i should be taken into account in its full extent in i’s valuation
function. We will come back to this later on, showing that is in fact the
optimal form for both bidders: A second point to keep in mind is the fact
that this expected valuation corresponds, at stage k, and for bidder i, to
his maximum valuation of the good, because it is making use of all the
information available. He should have no incentives whatsoever to place a
bid higher than this value, for it would leave him with a negative payo¤ if
he won the auction.

Hence, the bidding behaviour in the auction should be described by a
bidding function which converts the optimal strategy (or maximum valua-
tion) into a bid, at every stage. This bidding function, for bidder i; must
be a function of his maximum valuation at that moment. Let us denote this
bidding function by bki = b

³
E

h
V ki

¯̄
Xi = xi; X¡i = h

³
Xi;i X̂k

¡i

´i´
. This
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function must have some properties, so that it does not violate the rules of
the auction. Hence, its values (or bids) must lie within the interval given by:

bk¡1¡i

³
E

h
V k¡i

¯̄
X¡i = x¡i; Xi = h

³
X¡i;¡i X̂

k¡1
i

´i´
<

< bki

³
E

h
V ki

¯̄
Xi = xi;X¡i = h

³
Xi;i X̂

k
¡i

´i´
5

5 E
h
V ki

¯̄
Xi = xi; X¡i = h

³
Xi;i X̂

k
¡i

´i
; for i = 1; 2 (2)

This bidding function transmits two ideas: …rstly, the ascendingness of
the bids. The current bid to be placed by bidder i must be strictly higher
than the previous bid, at stage k ¡ 1, by bidder ¡i; given by bk¡1¡i (notice
that only this bid is revealed to bidder i; he then has to infer or guess what
the maximum valuation behind it is). Secondly, it is bounded above by the
expected valuation of bidder i at stage k. Again, he should not bid more
than his maximum valuation, because this would leave him with a negative
payo¤. It is worth noting the di¤erence between this upper limit (or reser-
vation valuation) and Milgrom and Weber’s. Our upper limit is allowed to
vary as the auction is taking place, because bidder i is constantly processing
the information being disclosed through the bids, and hence updating his
estimate of bidder ¡i’s signal. Let us now show the way in which this might
happen.

At a certain stage k, such that 1 < k < K; bidder i will have to decide
whether to continue in the auction or not. At this point he knows what
were the previous bids in the auction, i.e. he knows

¡
b1i ; b

2
¡i; :::; b

k¡1
¡i

¢
(notice

that i = 1 in this case). If this bidder is rational, he will attempt to extract
information from all the previous bids, especially the last bid by bidder ¡i.
His initial private signal is unchangeable, but he can attempt to estimate
bidder ¡i’s initial signal, which is unknown to him. In order to do this, he
will have to consider the updated density function which, at this stage, takes
the following form:

f
¡
x¡i; sjXi = xi; X¡i ¸ bk¡1¡i

¢
=8

<
:

f(xi;x¡i;s)R +1
bk¡1¡i

fXi;X¡i(xi;x¡i)dx¡i
; X¡i ¸ bk¡1¡i

0; otherwise
(3)

This should be the relevant density function because bidder i thinks bid-
der ¡i’s expected valuation is higher than his last bid, bk¡1¡i : So he knows
that X¡i ¸ bk¡1¡i : Further, he knows that according to the rules the bids must
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be increasing, so he is ruling out the points corresponding to all the previous
bids, i.e. points which are lower than bk¡1¡i . Notice the importance of Assump-
tion 2 in this context: bidder i knows that E

£
V k¡1¡i

¯̄
Xi = X¡i

¤
= X¡i, which

means that instead of having f
¡
x¡i; sjXi = xi; E

£
V k¡1¡i

¤
¸ bk¡1¡i

¢
in (3), we

can rearrange the second term in the conditioning to yield X¡i ¸ bk¡1¡i . This
is also true because if bidder i is not sure about whether bidder ¡i is rational,
he will assume he is irrational. If this is the case, then an irrational bidder
will only consider his own private signal when taking the expected valuation
of the good, and the substitution just mentioned is allowed. Even though
this is not a necessary assumption, it is a very simplifying one, for it makes
changes in variables unnecessary, especially when considering probabilities.

We can then de…ne the estimate of bidder ¡i’s signal by bidder i at stage
k; iX̂k

¡i; to be:

iX̂
k
¡i

¡
bk¡1¡i

¢
= E

£
X¡ijX¡i ¸ bk¡1¡i ; Xi = xi

¤

=

Z +1

bk¡1¡i

x¡i:fX¡i
¡
x¡ijX¡i ¸ bk¡1¡i ; Xi = xi

¢
dx¡i

=

R +1
bk¡1¡i

x¡i:fXi;X¡i (x¡i) dx¡i
R +1
bk¡1¡i

fXi;X¡i (x¡i) dx¡i
(4)

The term fX¡i
¡
x¡ijX¡i ¸ bk¡1¡i ; Xi = xi

¢
is obtained from (3) by inte-

grating out with respect to s. With this new information at this stage k;
bidder i may revise his maximum valuation and hence his strategy:

b¤ki
¡
xij bk¡1¡i

¢
= E

h
V ki

¯̄
Xi = xi; X¡i = max

³
Xi;i X̂

k
¡i

´i
(5)

This strategy is a rule telling bidder i to bid at stage k if and only if his
bid (given by the bidding function, which converts this maximum valuation
into a bid) is not higher than his expected valuation at that stage. The
main di¤erence between our bidding behaviour and Milgrom and Weber’s is
related to bidder ¡i’s signal. They consider bidders to behave myopically,
which means that at every stage in the auction they don’t attempt to estimate
what bidder ¡i’s true signal is. They consider it to be the same as theirs
until their maximum valuation is reached, moment after which they quit the
auction. Our bidding behaviour argues in favour of rational agents, who
try to take advantage of the information being revealed through the bids at
every stage in the auction. In this case, they have an estimate for the other
bidder’s signal (which may obviously be wrong), and they include it in their
valuation function, if and only if this estimate is higher their own private
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signal, Xi. Remember that the signals are considered to be of equal quality.

The reasons behind the use of X¡i = max
³
Xi;i X̂

k
¡i

´
are related to the

quality of the signals. Because they have the same quality, the best estimate
of X¡i should contain all the information available at that moment (at stage
k, in this case). If all the information available leads to a value of iX̂k

¡i < Xi;
then bidder i may think that his own signal, Xi; is still the best estimate of
X¡i: However, if at stage k; and in possession of all the information disclosed
through bids until this stage, iX̂k

¡i > Xi; then bidder i has reasons to believe
that bidder ¡i’s signal, X¡i, is in fact higher than Xi, and the consequence is
to substitute Xi for iX̂k

¡i as the best estimator of X¡i: There could be several
functional forms of h (:) to perform this substitution. We have chosen the

maximum rule, i.e. X¡i = h
³
Xi;i X̂k

¡i

´
= max

³
Xi;i X̂k

¡i

´
; because the

signals are considered to be of equal quality, which makes it indi¤erent for
bidder i to choose between Xi and iX̂k

¡i when they are the same. There are
no reasons whatsoever for bidder i to believe that X¡i = Xi when a stage of
the auction has been reached (and information has been disclosed) such that
iX̂

k
¡i > Xi: The veri…cation of this inequality is a signal for bidder i that

there is information available at that stage that is useful for him to improve
his information about the uncertain value of the good, and hence his own
valuation. If this is so, it does not make sense to consider Xi as a good
estimator of X¡i; because it is henceforth informationally inferior.

Notice that (5) does not include information about bidder ¡i at the
following stage k+1, which means that bidder i prefers not to consider bidder
¡i’s reaction to his bid. Hence, any bidder does not in…nitely (or …nitely until
stage K) anticipate the other bidder’s reaction to his bid, because there is no
advantage in doing it. It is obvious that if he did, then bidder ¡i’s reply at
stage k+ 1 would try to anticipate bidder i’s move at stage k +2, and so on
until the end of the auction. In other words, moving backwards from the last
stage K, bidder i, at stage k, will choose to ignore information which is only
revealed in stages k+1; :::; K. Let us then understand why such situation is
ruled out. If, at stage k, bidder i considered bidder ¡i’s response at k + 1,
his optimal strategy (or maximum valuation) would be:

b¤ki
¡
xij bk¡1¡i

¢
= E

2
6666664
V ki

¯̄
¯̄
¯̄
¯̄

Xi = xi; X¡i = max
³
Xi;i X̂k

¡i

´
;

b¤k+1¡i
¡
x¡ij bki

¢
=

E

2
64
V k+1¡i

¯̄
¯̄

X¡i = x¡i;

Xi = max
³
X¡i;¡i X̂k

i

´
;

b¤k+2i

¡
xij bk+1¡i

¢
= :::

3
75

3
7777775

(6)
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Keeping Assumption 2 in mind (any bidder believes that the other is
irrational if he has no more information), we can see that the anticipation
of bidder ¡i’s valuation at stage k + 1 by bidder i does not reveal any new
information:

Ei

"
E¡i

"
V k+1¡i

¯̄ X¡i = x¡i; Xi = max
³
X¡i;¡i X̂k

i

´
;

bk+2i

¡
xij bk+1¡i

¢
= :::

##
=

= Ei
£
V k+1¡i

¯̄
X¡i = x¡i; Xi = X¡i

¤
= E [X¡i] (7)

Thus, trying to anticipate bidder ¡i’s reply will bring him back to the
same initial problem: the fact that he does not know bidder ¡i’s true signal,
x¡i. If this is the case, then there is no informational gain in attempting to
anticipate the next moves by the other bidder, and (5) should in fact be the
correct bidding strategy. We can then generalize this behaviour for a general
stage k; for both bidders, into the following proposition:

Proposition 1 For a stage k that satis…es E
h
V ki

¯̄
Xi = xi; X¡i = max

³
Xi;i X̂k

¡i

´i
¸

bki (:), with iX̂k
¡i > Xi, where i = 1; 2; the bidding strategy (or maximum valu-

ation) at this stage k is given by b¤ki
¡
xij bk¡1¡i

¢
= E

h
V ki

¯̄
Xi = xi;X¡i =i X̂k

¡i

i
;

taking into account the additional information disclosed by the previous bid.
This additional information is perceived and compiled by bidder i into the
term iX̂

k
¡i

¡
bk¡1¡i

¢
= E

£
X¡ijX¡i ¸ bk¡1¡i ; Xi = xi

¤
; given by (4), which gives

bidder i’s estimate of bidder ¡i’s signal at stage k. Thus, bidder i will bid
if the resulting bid is not higher than his maximum valuation at this stage k.
For a stage where iX̂k

¡i > Xi is not veri…ed, the bidding behaviour is given
by Milgrom and Weber’s strategy, b¤ (xi) = E

£
V ki

¯̄
Xi = xi; X¡i = Xi

¤
.

Proof. An alternative to using (5) as the bidding behaviour could be the
use of Milgrom and Weber’s. Under their framework, the optimal bidding
strategy, b¤ (xi), does not take into account the information which arrives
through the bids (see Remark 1). We will denote this course of action as
“irrational”. We will then contrast this rule to ours, given in (5), which
we shall denote by “rational”, and which takes into account the term iX̂k

¡i.
Keeping in mind that an increase in a bidder’s valuation must be caused
by additional (positive) information about the quality of the good (con…rm
this in (1)), we shall show that the optimal strategy for each bidder is taken
from a game repeated K times (the number of stages in the auction), where
each bidder alternatively chooses the best rule to follow (either “rational”
or “irrational”). There are many possible combinations of rules to follow

11



during the K stages of the auction, but by iterated strict dominance (or
rationalizability of strategies), we can reduce this set to a smaller number of
rational actions, because many are strictly dominated. Milgrom and Weber
show that the “irrational” strategy is optimal, where this strategy is given by
playing the “irrational” rule during stages 1; 2; :::; K. In other words, b¤i (xi) is
an optimal strategy, and, because of symmetry, the vector (b¤ (xi) ; :::; b¤ (xn))
is an equilibrium point of the English auction (see Proof in Milgrom and
Weber [5]). We believe that our “rational” strategy is also optimal, where
we de…ne “rational” to be a strategy that uses the rule “irrational” (Milgrom
and Weber’s) until iX̂k

¡i > Xi is veri…ed, and which changes to “rational”
afterwards 2

Let us then show why this is so. We can then see what the outcomes of
this game are, and also see which strategies are likely to form an equilibrium.
The game to be played from stage k = 1; :::; K, and its payo¤s (notice that
we did not display the current bid, which should be subtracted from the
maximum valuation), is given by:

¡i plays “rational” ¡i plays “irrational”

i plays “rational” E
h
V ki

³
Xi;i X̂

k
¡i; S

´i
; E

h
V ki

³
Xi;i X̂

k
¡i; S

´i
;

E
h
V k¡i

³
X¡i;¡i X̂k

i ; S
´i

E [V¡i (X¡i; X¡i; S)]

i plays “irrational” E [Vi (Xi; Xi; S)] ; E [Vi (Xi;Xi; S)] ;

E
h
V k¡i

³
X¡i;¡i X̂k

i ; S
´i

E [V¡i (X¡i; X¡i; S)]
Table 1: The game to be played by each bidder every time it is his time to bid

It can clearly be seen that at each stage the optimal strategy will be for
bidder i (and because of symmetry also to bidder ¡i) to play the “rational”
rule, as long as iX̂

k
¡i > Xi, and play “irrational” otherwise. Not only does

the latter dominate Milgrom and Weber’s rule after iX̂k
¡i > Xi is veri…ed but

it also corresponds to a dominant equilibrium. This has quite an intuitive ex-
planation. If bidder i thinks his signal has more information than bidder ¡i’s
signal estimate, he will only consider his own signal when valuing the good.
This is described by the “irrational” rule, which is the most likely at earlier
stages in the auction. But as the bids come closer to Xi, the probability of
bidder ¡i’s signal, X¡i being higher than bidder i’s is increasing, the same
happening with the expected value of ¡i’s signal, iX̂k

¡i. When iX̂k
¡i becomes

bigger than Xi, this bidder will operate a change in his rule of behaviour,
and start playing “rational”. Again, this is explained because bidder i thinks
that bidder ¡i’s signal might contain more information about the uncertain

2Notice that it does not change back to ”irrational” under any circunstances.This hap-
pens because iX̂

k
¡i is increasing in the bids, as long as bidder ¡i is active.
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quality than his own signal, so he decides to start paying attention to iX̂
k
¡i

when valuing the good. Needless to say, from this point onwards the quitting
point of bidder i will no longer be his signal, but a point higher than xi3.

To determine the equilibrium strategy of this game, let us think of the
optimal action for bidder i at stage K, the last stage of the auction. Remem-
ber that he always believes bidder ¡i to be playing ”irrational” (Assumption
2). At the …nal stage, there are several possibilities:

1. Bidder i was playing “rational” and he has reached his maximum val-
uation, E

h
V K¡1i

³
Xi;i X̂

K¡1
¡i ; S

´i
. His expected payo¤ is 0 (because

he places a …nal bid equal to his valuation), bidder ¡i wins the auc-

tion and pays a price p¤ = bK¡1i

³
E

h
V K¡1i

¯̄
Xi = xi; X¡i =i X̂

K¡1
¡i

i´
=

E
h
V K¡1i

¯̄
Xi = xi; X¡i =i X̂

K¡1
¡i

i
.

2. Bidder i was playing “rational” and bidder ¡i quits before his max-
imum valuation is reached. In this case, bidder i gets the good for
a price p¤ = bK¡1¡i (notice that if bidder ¡i was playing “irrational”
all the time, adverse selection occurs, for the bidder with the high-
est initial signal ends up not getting the good!). This is understand-
able if bidder i has an optimistic estimate of bidder ¡i’s signal, in
which case he trusts in that signal so much that he is willing to fol-
low it until the end (“forcing” bidder ¡i to quit). His expected payo¤

will be E
h
V Ki

¯̄
Xi = xi; X¡i =i X̂K

¡i

i
¡ bK¡i, which is larger than 0 if

v
³
Xi;i X̂K

¡i

´
> v (X¡i;X¡i)4:

3. Bidder i was playing “irrational”, and he reached the point of his max-
imum valuation, so that E

£
V K¡1i

¯̄
Xi = xi;X¡i = Xi

¤
¡ bK¡1i (:) = 0.

If iX̂k
¡i > Xi is not veri…ed, bidder i has no incentive to switch to “ra-

tional”, and he quits at this point. His …nal payo¤ is 0. The …nal price
to be paid by bidder ¡i is p¤ = b¤ (xi).

4. Bidder i was playing “irrational” and bidder ¡i quits. Bidder i wins
the auction paying a price p¤ = b¤ (x¡i) and his expected payo¤ will be

3Remember that E
£
V k

i

¯̄
Xi = xi;X¡i = Xi

¤
= xi, for bidder i. Because the

valuation function is nondecreasing in its arguments, it follows naturally that
E

h
V k

i

¯̄
Xi = xi;X¡i =i X̂k

¡i

i
> xi, if iX̂

k
¡i > Xi.

4Notice that xi < x¡i, which means that for this condition to hold, iX̂K
¡i must be

signi…cantly higher than x¡i, to compensate. This is what we mean by “overestimation”
of his opponent’s signal.
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E
£
V Ki

¯̄
Xi = xi

¤
¡ b¤ (x¡i), which is positive if xi > x¡i (see Proof of

Theorem 10 in Milgrom and Weber [5]).

From these four possibilities, we can now show that as long as Xi >i X̂k
¡i,

“irrational” is the best rule to choose, i.e. Milgrom and Weber’s equilibrium
strategy is valid. And this is so because including the term iX̂

k
¡i in bidder

i’s valuation function (replacing Xi as the best estimate of bidder ¡i’s sig-
nal) has no e¤ects at all. When a stage k is reached such that iX̂k

¡i > Ui,
this bidder now has a new equilibrium rule, telling him to replace his “ir-
rational” estimate of bidder ¡i’s signal for his rational estimate, given by
iX̂

k
¡i. From this point onwards, he …nds it impossible that bidder ¡i’s true

signal is lower than his (remember that Ei
£
V ki

¯̄
Xi = xi; X¡i = Xi

¤
= xi and

E¡i
£
V ki

¯̄
X¡i = Xi

¤
= Xi - see Assumption 2), and he knows what might

happen at the …nal stage K. Under no circumstances will he be worse o¤
than by giving up at this stage k < K , because the worse that could happen
is him ending up with a 0 payo¤ (which he would end up getting had he given
up at this stage k). In fact, he will face a higher probability of winning if he
plays “rational”, without incurring in negative payo¤s, because of his bidding
above the point where his true signal has been reached. He also knows he
might drive bidder ¡i out of the auction, by extracting all the information
from him. Thus, equation (5) should represent the bidding strategy (or max-
imum valuation) of this bidder for values of iX̂k

¡i > Xi, telling him to bid if
the corresponding bid is not higher than this updated maximum valuation.

If we denote the “irrational” rule at stage k with Ik (corresponding to
Milgrom and Weber’s b¤ (xi)), and the rational with Rk (corresponding to
our strategy, b¤ki

¡
xij bk¡1¡i

¢
), the equilibrium strategy of this game for bidder

i, which we denote by b¤i , is given by b¤i = (I1; I3; :::; Rk; Rk+2; ::::; RK), for
i = 1 (and assuming this is the winning bidder, so that his last bid is at the
…nal stage K) if there exists a stage k such that iX̂k

¡i > Xi , and bidder ¡i’s
optimal strategy will be b¤¡i = (I2; I4; :::; Rj; :::; RK¡1) ; once again if a stage
j exists such that ¡iX̂

j
i > X¡i.

It is worth noting that in this case, the winner of the auction may or may
not incur in negative pro…ts. The reason why he stays in the bidding process
until this point is that in expectation he gets a positive payo¤. However,
when the auction …nishes and all the information is revealed, he may realize
that his payo¤ was negative, and he will have incurred in the winner’s curse.
This may explain why 30 to 40% of the auctions in Avery and Kagel[1] yielded
negative payo¤s for the winners. In their study, however, it is not possible to
see whether the high signal bidder wins the auction with probability 1. Our
framework suggests the this probability may be high but lower than 1.

We can now relax the Limited Rationality Condition, and get the result
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that under this framework bidders will bid at least as high as in a second-
price auction (Milgrom and Weber’s result is the lower bound of our results)
and at most they will bid according to our Proposition 1.

Proposition 2 In this framework, without the Limited Rationality Condi-
tion, bidding up to less than b¤ki

¡
xij bk¡1¡i

¢
= E

£
V ki

¯̄
Xi = xi; X¡i = Xi

¤
or

more than b¤ki
¡
xij bk¡1¡i

¢
= E

h
V ki

¯̄
Xi = xi; X¡i =i X̂k

¡i

i
, for i = 1; 2 is not

optimal. These will be the lower and upper bounds of our results.

Proof. Notice that no bidder has an incentive to bid less than b¤ki
¡
xij bk¡1¡i

¢
=

E
£
V ki

¯̄
Xi = xi; X¡i = Xi

¤
, for i = 1; 2 because this is the symmetric equi-

librium. In other words, this is the best reply for i when ¡i adopts this
strategy. On the other hand, with the Limited Rationality Condition, we get
the highest possible price, because bidders are trying to outsmart each other,
and it is only when the auction …nishes that they realize that.

When bidder i takes into account the possibility that bidder ¡i is trying
to outsmart him by inverting his bid, he will be more cautious, and almost
surely take this into account. In other words, he will realize that he may
incur in the winner’s curse if he wins, and he bids more conservatively. The
exact end point depends on each bidder’s beliefs, but it may lie anywhere in
between the interval de…ned in the Proposition.

This result is quite sensible. If a bidder feels someone is trying to outsmart
him by extracting information from his bid, and if he is doing the same, then
he knows he is providing some misinformation which may damage him. This
damage will be the winner’s curse if he wins. So basically he will be more
careful when trying to outsmart the other bidder, and surely bid less than
under the Limited Rationality Condition. When both bidders behave in this
way, not only will there be an equilibrium point in the auction (Proposition
1) but it will also lie in the interval de…ned in Proposition 2.

3 The Auction with Herd Behaviour

We will now attempt to show that as soon the “rational” rule starts being
played, some sort of herd behaviour might arise. Intuitively, this amounts to
realize that when a player includes his expectations in his valuation function,
then nothing prevents him from taking this even further. Let us imagine a
stage z; with bidder i playing ”rational”, in which case:

E
h
V zi jXi = xi;X¡i =i X̂

z
¡i

i
¡ bzi (:) = 0 (8)
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At this stage, bidder i has reached his maximum valuation of the good,
meaning that the bid he would place is equal to that valuation. In other
words, this bidder is indi¤erent between winning and losing at this stage. Let
us assume he bids. What will happen in stage z+2 (assuming that bidder ¡i
does not stop bidding at stage z + 1)? From the notion of equilibrium, this
bidder should quit, because he has no incentive whatsoever in continuing. If
i continues in the bidding process, he will certainly have a negative payo¤,
which is obviously not optimal and hence, he should stop bidding.

To understand why, during the auction, and after switching to the “ra-
tional” rule previously described, a bidder might temporarily and partially
ignore his signal, let us assume that the density function given by f (xi; x¡i; s)
is discrete. We can then make use of the following de…nitions (for bidder i):

De…nition 1 At a certain stage k of the auction, let Pr [S = xijXi = xi] = p
denote the probability of bidder i’s signal being correct (after receiving the

signal), and Pr
h
S =i X̂k

¡i

¯̄
¯X¡i =i X̂k

¡i

i
= q denote the probability of bidder

i’s estimate of bidder ¡i’s signal being the correct estimate of the uncertain
S.

An application of Bayes’s rule tells us that:

Pr [S = xijXi = xi] =
Pr [Xi = xijS = xi] :Pr [S = xi]

Pr [Xi = xi]
= p (9)

in a way similar to Scharfstein and Stein [6] and the same application can
be used for q. This procedure can gives us the a priori probabilities (before
receiving the signal) of the signal being the correct one. Making use of the
joint density, we can rewrite (9) as:

Pr [S = xijXi = xi] =
fXi;S (xi; xi)

fXi (xi)
=
Pr [Xi = xijS = xi] :fS (xi)

fXi (xi)
= p

(10)
which means that p computable. Now note that the following three events

are mutually exclusive: either xi, iX̂k
¡i or some scalar ¸ 6= xi 6=i X̂k

¡i; with
¸;i X̂k

¡i 2 [s; s] (the domain of S) is the correct estimate of S. If this is so,
then the following equation must hold for any stage k in the auction:

1 = Pr
h
(S = xijXi = xi) \

³
S 6=i X̂k

¡i

¯̄
¯X¡i =i X̂k

¡i

´i
+

+Pr
h³
S =i X̂

k
¡i

¯̄
¯X¡i =i X̂

k
¡i

´
\ (S 6= xijXi = xi)

i
+

+Pr
h³
S 6=i X̂k

¡i

¯̄
¯X¡i =i X̂

k
¡i

´
\ (S 6= xijXi = xi)

i
(11)
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Using the notation de…ned above, we can rewrite (11) as:

p (1¡ q) + q (1¡ p) + (1¡ p (1¡ q)¡ q (1¡ p)) = 1 (12)

As the auction is taking place, p does not change, for it is a probability
which has been …xed initially with the arrival of the signal xi to bidder i.
However, q is a probability constantly changing during the auction, because
iX̂

k
¡i is an estimate being revised every time a new bid is submitted. Thus,

during the auction, bidder i has an idea about the accuracy of bidder ¡i’s
signal, and he should use it. It is then quite natural to assume that if:

p (1¡ q) > q (1¡ p) + (1¡ p (1¡ q)¡ q (1¡ p)) (13)

bidder i has reasons to believe that his signal is the most accurate, for
values of q and p that verify equation (12). Likewise, if:

q (1¡ p) > p (1¡ q) + (1¡ p (1¡ q)¡ q (1¡ p)) (14)

at a certain stage k, then bidder i has reasons to believe that the other
bidder’s signal is more accurate than his own, given all the information avail-
able at that stage. But if the latter is true, why should bidder i believe in his
signal? If iX̂k

¡i is more likely to be the true estimate of S, why should bidder
i link his valuation to a less informative signal? We shall refer to equation
(14) as a Strong Condition for herding.

However, a less strict condition must be met so that herding occurs. For
probabilities p and q that satisfy (12), the following condition must also be
satis…ed:

p (1¡ q) :xi + q (1¡ p) :iX̂k
¡i > xi (15)

This condition, which we shall call Weak Condition for herding, tells us
that bidder i will only herd if for the probabilities given above, i.e. the
weighted average (with weights equal to the probability of each signal being
correct) of his signal, xi, and of his estimate of bidder ¡i’s signal, iX̂k

¡i,
is higher than his initial private signal. The interpretation of this fact is
straightforward: bidder i will only abandon partially his signal if there is
some additional information to take advantage of. When (15) is satis…ed,
bidder i realizes that the term iX̂k

¡i weighted by q (1¡ p) ; the probability
of this being the correct uncertain value of the good, together with his own
signal (and the probability p (1¡ q)) are a better estimator of S than xi
alone. Let us then elaborate the following proposition:

Proposition 3 If, at any stage k in the auction, with bidder i playing “ratio-
nal”, q (1¡ p) > p (1¡ q) + (1¡ p (1¡ q)¡ q (1¡ p)) holds (i.e. the Strong
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Condition), with values of p and q that satisfy (12), then bidder i should
partially or totally ignore his own private signal, xi. The way in which he
should do this is to attach a weight both to his signal and to iX̂k

¡i when
valuing the good. Hence, his expected valuation of the good at this point
should be given by E

h
V ki

¯̄
Xi = p (1¡ q) :xi + q (1¡ p) :iX̂k

¡i; X¡i =i X̂k
¡i

i
if

p (1¡ q) :xi + q (1¡ p) :iX̂k
¡i > xi, i.e. when the Weak Condition is sat-

is…ed, and by E
h
V ki

¯̄
Xi =i X̂

k
¡i; X¡i =i X̂

k
¡i

i
if the latter is not satis…ed,

which makes bidder i totally abandon his private signal, xi. In any of the
cases, this will be his new maximum valuation (note that it is higher than

E
h
V ki

¯̄
Xi = xi; X¡i =i X̂k

¡i

i
because bidder i is playing “rational”, which

means that iX̂k
¡i > xi; and the valuation function is non decreasing in its ar-

guments). This is the result when the Strong Condition for herding, equation
(14), holds.

If only the Weak Condition, equation (15), is met, then his expected valua-

tion will be given only by E
h
V ki

¯̄
Xi = p (1¡ q) :xi + q (1¡ p) :iX̂k

¡i; X¡i =i X̂
k
¡i

i
,

and the bidder will not abandon his initial signal completely.

Proof. The proof of this proposition follows closely the proof of Proposition
1, so we should always have in mind the game which is played every turn.
Some steps will not be presented.

If (14) holds for values of p and q that satisfy (12), then bidder i perceives
bidder ¡i’s signal to be more accurate than his own. He basically faces two
options: either he links his valuation to iX̂

k
¡i only, or he weighs each piece of

information with the respective probabilities. The former is a radical solu-
tion, from the point of view of bidder i, which brings about herd behaviour in
its full extent. The latter, however, is a less radical possibility, which should
also be considered.

When bidder i perceives his signal to be less informative than iX̂
k
¡i, he can

adjust his valuation function to this fact, by attaching a weight corresponding
to the respective probabilities to each of those events. Hence, his private
valuation, or signal, should incorporate this new information, and his private
signal Xi will now be given by Xi = p (1¡ q) :xi + q (1¡ p) :iX̂k

¡i: However,
this procedure should only be used if p (1¡ q) :xi+ q (1¡ p) :iX̂k

¡i > xi. It is
quite straightforward to see why: if this last condition (the Weak Condition)
is not satis…ed and equation (14) is (the Strong Condition), bidder i will
be wasting information. This waste is visible, because knowing that iX̂

k
¡i is

the more likely value of S, this bidder will be linking his valuation function
to an even lower value estimate of S, given by p (1¡ q) :xi + q (1¡ p) :iX̂k

¡i:
By using backward induction, if he loses the auction, it will be because his
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maximum expected valuation of the good was too low, as he ignored the fact
that iX̂k

¡i was the most likely estimate. If he is rational, he will not want
this outcome when the Weak Condition is not veri…ed and equation (14), the
Strong Condition, is. For the waste of information to be minimized when
p (1¡ q) :xi + q (1¡ p) :iX̂k

¡i < xi holds (when the Weak Condition fails to
hold), this bidder should link his valuation to iX̂

k
¡i only, to take advantage

of the fact that this is the most likely value to be assumed by S. Hence,

his maximum valuation should be given by E
h
V ki

¯̄
Xi =i X̂k

¡i;X¡i =i X̂k
¡i

i

when this is the case.
If only the Weak Condition holds, then herding will occur but not in its

full extent. The initial signal will not be completely abandoned. If both
Conditions are veri…ed, the same result is valid, which means that the initial
signal is never totally abandoned. Notice this is an attempt to minimize
the possibility of occurrence of herd behaviour. Under di¤erent assumptions,
herding could be more likely, but hardly less likely. Notice that the Weak
Condition is a necessary and su¢cient condition for “partial” herd behaviour
to occur, whereas the Strong Condition is only a necessary condition for
“total” herd behaviour to occur.

4 Conclusion

Milgrom and Weber [5] describe the general English auction setting, and
show what the outcome of such auction should be at the symmetric Nash
equilibrium. We have used their model as the starting point and have shown
that as the ascending auction goes on, bidders could take into account the
information being disclosed through bids. Even though bids are just num-
bers, they re‡ect the information set and the optimal strategy of the bidder
who has placed them and this may have as a behavioural consequence the
existence of the Bayesian updating process which we have described. A ratio-
nal bidder should take the current bid into account, and revise his expected
valuation of the good every time a bid is submitted. The end point of such
a rational bidder may be higher than the end point of Milgrom and Weber’s
strategy, as shown in our Proposition 1. Hence, the …nal prices in our model
could be higher than under their framework.

A very interesting result is derived, which makes the auction ine¢cient.
Under the conditions described by the model, it is possible that the bidder
with the higher initial signal about the uncertain value of the good ends
up not getting it, i.e. he loses the auction. Again this can be described
by the existence of the Bayesian updating. The higher the estimate of his
opponent’s signal, the longer a particular bidder will stay active. In fact,
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when that estimate is clearly overestimated, he may stay active so long as to
drive the high signal bidder out of the auction, and realize negative payo¤s.

An additional complication is introduced with the possible occurrence
of herd behaviour, which will make a bidder ignore, totally or partially, his
own private signal about the uncertain quality of the good for sale. If it
does occur, then the …nal price might be even higher, and this might help to
explain the extremely high prices in some ascending bid auctions, for example
art auctions.

We have used the simple case of two bidders. The extension to the case of
n bidders will probably exacerbate the possibility of herd behaviour and in-
crease the possibility of rational bidders being present in the auction, driving
the prices to even higher values. Another very interesting extension would be
to analyse the case of completely rational bidders, who would always assume
to be facing agents similar to them in the auction. In a way, our Proposi-
tion 2 gives the lower and upper bounds of bidding in this case, but does
not attempt to show under which conditions we would be closer to one or
another. However, our conjecture is that the more rational bidders there are,
the more likely it is that the end point is the initial symmetric equilibrium,
as de…ned by Milgrom and Weber, and hence the lower the revenue for the
seller as compared to the results of our paper. This could be so because the
more rational each bidder is, the more he knows that his opponent is trying
to infer something from his bid, and acting upon it. So he knows that if
he does the same, he runs the risk of winning the auction and incurring in
a negative payo¤ (winner’s curse). So he will be reluctant in bidding much
above the symmetric equilibrium. If his opponent thinks in the same way,
the symmetric equilibrium will be the more likely end point.

Another remark is that under the conditions described by our model, the
Revenue Equivalence Theorem …rst suggested by Vickrey [7] does not hold,
because the expected price of the English auction is higher than the expected
price of the second-price sealed bid auction, the conclusion also reached by
Milgrom and Weber [5].

A …nal point is worth mentioning. Our framework may help to explain
real world and experimental evidence that in a signi…cant proportion of auc-
tions, the winner realizes negative payo¤s. Unfortunately, in Avery and
Kagel’s [1] study it is not possible to know whether the high signal bidder
won the auction almost always in the standard auction.

20



References

[1] Avery, C. and Kagel, J., “Second-Price Auctions with Asymmetric Pay-
o¤s: An Experimental Investigation”, Journal of Economics and Man-
agement Strategy, 6 (3), 573-603 (1997).

[2] Banerjee, A.V., “A Simple Model of Herd Behaviour”, Quarterly Journal
of Economics, 107, 797-817 (1992).

[3] Branco, F.R., “Essays on Optimal Auctions”, PhD Dissertation, MIT
(1992).

[4] McAfee, R. and McMillan, J., “Auctions and Bidding”, Journal of Eco-
nomic Literature, 25, 699-738 (1987).

[5] Milgrom, P. and Weber, R., “A Theory of Auctions and Competitive
Bidding”, Econometrica, 50, 1089-1122 (1982).

[6] Scharfstein, D. S. and Stein, J. C., “Herd Behaviour and Investment”,
American Economic Review, 80, 465-79 (1990).

[7] Vickrey, W., “Counterspeculation, Auctions and Competitive Sealed Ten-
ders”, Journal of Finance, 16, 8-37 (1961).

21


