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Abstract

Based on the macroeconomic VAR model for total employment
and sectoral employment shares developed by Campbell and Kuttner
(1996) we extend the model to a multivariate ARCH in mean (ARCH-
M) model. We investigate the question of whether volatile growth in
sectoral employment shares has an impact on total employment. The
estimation method we use is the Gibbs-Metropolis algorithm for a
Bayesian vector ARCH (B-VAR) model. This model is a standard
tool in financial econometrics and was developed by Engle (1986).
The Bayesian estimation gives an exact small sample solution. It is
found that a model incorporating a GARCH-M structure performs
better than a simple VAR. Moreover sectoral shocks can account for
more than 60% of the variance of total employment growth within a

VAR-GARCH-M framework.
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1 Introduction

Since the appearance of Lilien’s seminal paper (1982a) the study of the
macroeconomic effects of reallocation shocks has flourished at an increas-
ing pace. While theoretical contributions had a difficult take-off, empirical
analysis has generated a massive amount of work. Much energy has been de-
voted to overcome the “observational equivalence” problem embedded in the
use of Lilien’s dispersion measure. Recently, Campbell and Kuttner (1996)
have modelled the relationship between aggregate and sectoral employment
explicitly using dynamic time series models. Our approach follows their lead
but differs both in outlook and main purpose.

It is our aim to test for the presence of aggregate and sectoral shocks
volatilities and to evaluate their relevance for sectoral shifts analysis. While
carrying out this experiment we wish to start to develop a methodology
which would bring to bear the potential nonlinearities inherent in sectoral
shocks when they are modelled directly within a VAR structure. Methods
for analysing these nonlinearities have been widely developed for financial
markets econometrics (c.f. Bollerslev, Chou and Kroner, 1992; Campbell, Lo
and MacKinlay, 1997) and it is then from this literature that we are borrow-
ing the analytical tools necessary for implementing our experiment.

We extend previous research in two main directions: first, we structure
the analysis in terms of a multivariate GARCH in mean (GARCH-M) model
and our primary goal is to test for the presence of the implied volatilities and
to evaluate the macroeconomic relevance of sectoral shocks; second, we frame
our analysis in a Bayesian perspective using the Gibbs-Metropolis algorithm
for a Bayesian vector ARCH (B-VAR) model (') as estimation method and
using Bayes factors for hypothesis testing; third, we use the same data set for
aggregate and sectoral employment as Mills, Pelloni and Zervoyianni, MPZ
henceforth, (1995) to see if our results can corroborate their findings.

We wish to point out that to the best of our knowledge, this is the first
time that sectoral shifts analysis is developed with a multivariate ARCH
framework. Moreover, this is also the first time, within or outside the bound-
aries of VAR-ARCH modelling, that empirical sectoral shifts analysis is ap-



proached from a Bayesian point of view. The combination of these two inno-
vative steps has led to the extension of existing analytical techniques, such
as the impulse response function and innovation analysis, to accomodate a

B-VAR-GARCH-M structure.

In summary the value added of this paper to the existing literature is two-
fold @, On one side the non-linear impact of sectoral shifts on aggregate
employment is explicitly introduced for the first time within a VAR frame-
work by modelling shocks as ARCH processes. In doing so, we assimilate
and extend Lilien’s potentially heteroscedastic framework and model it so as
to evaluate its macroeconomic effects. Though we do not provide a formal
theoretical model to support our empirical investigation, we think there is a
compelling intuition behind it (i.e. the size of sectoral shocks and its per-
sistence can affect economic behaviour) and we hope that this paper may
operate as a catalyst for future research. From a methodological point of
view the use of a comprehensive and consistent Bayesian approach for esti-
mation, model selection and innovation analysis, though convergent towards
recent developments of macroeconometrics (Gordon and Boccanfuso, 1998),
is new to this field and provides a frame for analytical advances.

The paper is organised as follows. In the next section we describe the frame-
work that is used to model sectoral shocks non linearities, introduce notation
and describe the data set. In section 3 we discuss the Bayesian methodology
employed both for estimation and hypothesis testing. In section 4 we present
the results obtained from modelling sectoral shocks volatility and its persis-
tence using the VAR specification described in section 2. It also contains
a discussion of these results and in particular of the explanatory power of
allocative shocks for aggregate employment variations. Section 5 offers a few
concluding remarks.

2 Sectoral shocks and volatility

2.1 The basic model

Lilien’s dispersion hypothesis (1982a) claims that, in an economy with limited
mobility of resources across markets (labour in particular), changes in the



composition of employment demand will trigger a process of job reallocation
which will affect aggregate employment. Lilien’s (1982a) original turnover
framework explicitly appeals to labour search as the underlying economic
mechanism and Lucas and Prescott (1974) is invoked as the theoretical refer-
ence model. However, Lilien makes no attempt to frame his hypothesis within
a fully developed theoretical model, but proceeds directly to work out the
essential skeleton of a turnover structure where intersectoral shifts in demand
composition operate as the basic driving force of unemployment fluctuations.
Under reasonably mild assumptions he derives a reduced form unemployment
equation characterized by a positive relationship between the unemployment
rate and a measure of dispersion of employment demand conditions. For
the empirical implementation Lilien proxies intersectoral dispersion with a
weighted standard deviation of cross-sectoral employment growth rates.(3)
He finds a strong positive correlation between U.S. unemployment rate and
his dipersion measure, and interprets this result as evidence in favour of the
sectoral shifts hypothesis. However this approach based on Lilien measure
is open to severe criticism. In particular it has been pointed out that the
sectoral shifts hypothesis embodies a problem of ”"observational equivalence”
(Lilien, 1982b; Abraham and Katz, 1986). This problem arises because the
positive correlation between unemployment and Lilien’s dispersion proxy, in-
stead of reflecting sectoral shocks, may be generated by aggregate shocks if
cyclical responsiveness varies across sectors.

Different approaches have been proposed to overcome this difficulty in the
measurement of sectoral shifts. These lines of research fall essentially into
two classes: that using micro/panel data (Murphy and Topel, 1987; Loun-
gani and Rogerson, 1989; Starr-McCluerr, 1993) and that based on aggregate
data. This latter approach can itself be divided into four further subclasses:
that exploring the correlation between observed dispersion and the vacancy
rate (Abraham and Katz, 1986; Davis, 1987); the line of research based on
constructing a dispersion index defined in terms of sectoral stock prices in-
stead of sectoral employment (Loungani, Rush and Tave, 1990; Brainard and
Cutler, 1993); the “purging” methodology (Lilien 1982b; Abraham and Katz,
1984; Neumann and Topel, 1991; MPZ, 1995, 1996), which is aimed at de-
composing growth rates into a component measuring the sectoral response to
aggregate shocks and a component measuring sector-specific factors; finally,
the approach based on VAR systems free of Lilien’s dispersion index which



are aimed at modelling sectoral shocks directly (*). Prominent within this
fourth subclass is the work by Campbell and Kuttner (CK henceforth).

CK construct a VAR system including the growth rates of aggregate
employment and of manufacturing employment shares which they subse-
quently expand to include five more sectors. The underlying structure of
their model is developed by imposing short-run and long-run identifying re-
strictions which explore their analysis of driving forces. The results of their
analysis vary quite widely depending on the underlying restrictions. Sectoral
shocks account for 6% of total employment variance under the short-run tri-
angular bivariate system. While they can explain 82% of the latter under
the long-run restriction when the bivariate system is extended to a seven
dimensional system.

Since CK’s model is linear and is characterized by a symmetric response
of aggregate employment to sectoral shocks: a positive shock to the manu-
facturing sector will increase aggregate employment growth and vice versa
for a negative shock. Thus CK assume that sectoral shocks operating like
aggregate shocks in the sense that it is the shock’s direction which counts
in determining the aggregate response. This treatment of allocative dis-
turbances somehow distorts the nature of sectoral shifts analysis (°). In
fact, as stressed by Davis (1986), sectoral shocks cannot be seen as having a
“positive-negative structure” but instead they should be understood as either
“favourable” or “unfavourable” to the existing allocation of labour resources.
In order to analyse the aggregate impact of labour market turbulence it is
more pertinent to look at the magnitude than at the direction of allocative
shocks. This stylized fact that the size of shocks matters independently of
direction seems to suggest that sectoral shifts analysis should accommodate
a non-linear framework. Thus it would be interesting to explore this specific
feature of allocative shocks when modelling them directly.

In what follows, though we do not analyse the size of the shocks directly,
we try to expand CK’s approach to a non-linear model. Non-linearities may
be introduced either through the mean or through the variance structure. A
potential source of non-linearities can be identified in shocks volatility. In
particular the analysis can be extended to allow for changes in the variance
both of aggregate and sectoral shocks and explore how much their presence



affects results.

The possible significance of aggregate shocks variability has long been recog-
nized. For instance the so-called Lucas proposition (Lucas, 1973) claims that
the effects of unanticipated nominal disturbances vary inversely with these
shocks’ volatility. Engle (1982, 1983), in developing ARCH models, also ex-
plored as well the inverse relationship between inflation variability and real
output. Thus the inclusion of aggregate shocks volatility into this sort of
analytical framework should, at least in principle, be uncontroversial.

In regard to the insight of including the volatility of a sector-specific shock,
it seems to be an inherently cogent assumption to make when analyzing the
aggregate effects of labour market turbulence. It is the essence of the sec-
toral shifts hypothesis that an uneven and idiosyncratic arrival process of
information about the desired employment allocation across sectors would
explain a large fraction of employment and unemployment variation. Be-
cause of this arrival pattern of news it is reasonable to expect that during a
period of turbulence, large shocks may tend to be followed by large shocks.
Basically we can expect that idiosyncratic information, reflecting changes in
sector-specific fundamentals, reaches a sector in clusters, so that allocative
shocks may present a profile of changing volatility which would persist also
because of market dynamics in response to incoming news.

Our maintained hypothesis can be couched as follows. The sectoral shifts
hypothesis claims that sector-specific shocks are reflected in changes of sec-
toral returns to human and physical capital and that because labour and
capital are, at least in part, sector specific, movements between sectors will
be time consuming. However in our view the pace of labour reallocation will
be affected not only by large reallocation shocks but also by their persistence.
Since we assume that large shocks of either sign will be followed by a large
shock of either sign, the fact that the direction of labour reallocation may or
may not change frequently is not a matter of concern for our model. What re-
ally matters is the presumption that the macroeconomic effects would emerge
as a response to sizeable reallocation shocks and to a pattern of persistent
volatility. Although we do not provide formal theoretical underpinnings to
our insight, one can reasonably imagine that shocks’ heteroscedasticity may
have an influence on the decision rules of economic agents with a definite



attitude towards risk and/or facing specific cost structures.

We reformulate Lilien’s sectoral shifts hypothesis in terms of sectoral time
series models containing volatility effects as follows:

a) The sectoral growth model with ARCH structure

Lilien’s model (1982) is developed around a firm net hiring function char-
acterised by a firm-specific component modelled as a random process with
time-varying variance:

vl = ye + 25 t=1,....,75 j=1L....M (1)

where ¢;, ~(0,07). Ignoring quits and letting the behaviour of a specific
sector be reflected by the behaviour of its typical firm, equation (1) can be
interpreted as the employment rate of change at sectoral level, which can be
decomposed into an aggregate component common to all sectors, y;, and a
component, ¢;; specific to sector j. We can call (1) the sectoral growth model
with heteroscedasticity. Given the state of the art at the time Lilien wrote its
paper, he did not try to model his assumption of heteroscedasticity explicitly
but used it to derive his intersectoral measure of labour mobility. Given the
current state of econometric estimation, it is possible to add a proper dynamic
dimension to Lilien’s hypothesis of heteroscedasticity by explicitly modelling
the variance driving process by using an ARCH structure. The hypothesis
contained in equation (1) can then be enriched by introducing the following
assumptions about sectoral heteroscedasticity:

P (2)

) q
hi = O“"Z(gzj'g?,t—i? 1= L....q, (3)
=1

for o > 0,0, > 0,

In this new specification of the model the sector-specific component is gen-
erated by equation (2), where w;; ~ NizD(0,1),t =1,...,T, and

hi = Var (e;+|li—1) is given by the process specified in (3). Thus the model
suggests that the conditional variance, h;, is a positive function of the past



squared sectoral innovations, regardless of their signs, so that large errors
tend to be followed by a large error and small errors by a small error. Mod-
elling sectoral shocks as in (2) adds a new dimension to the model because
it makes it possible to capture not only a time-varying variance but also a
potential phenomenon of volatility clustering.

b) The sectoral growth model with ARCH-M effects

A further extension can be introduced by taking into account the possible
impact of the conditional variance on the conditional mean. This can be
accomplished by respecifying equation (1) as

U=yt + Y v (4)
i=1

This assumption would entail the insight that the behaviour of economic
agents, in the presence of reallocation shocks, would be affected not only by
the size of these shocks but also by their volatile structure. For instance, risk
averse agents could be inclined to move from high volatility sectors to low
volatility ones. Equations (2), (3) and (4) provide then an ARCH in mean
model for the employment growth rate of sector j.

c¢) A VAR-GARCH-M sectoral growth model

We base our analysis on the previous intuition. Assuming normal distri-
butions, we have the model:

ytNN[ILLt,Ht], t= 1,.. T, (5)

where y; is a vector whose elements are the growth rates of aggregate em-
ployment and of sectoral employment shares. Thus the modelling strategy
for our experiment is to implement a VAR model supplementing it with an

ARCH structure:

9
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P g
vech H; = ag + Z A;vech Hy; + Zei vech (57:—2' 5;—2') (7)

In equations (6) and (7) we have an M-dimensional VAR(k)-GARCH (p,q)-
M(r) process where y; is a (M x 1) vector of observations of variables; H,
is a (M x M) diagonal conditional variance-covariance matrix; vech H; is
a [(M (M +1)/2) x 1] vector; hy is a M-dimensional vector of conditional
variances; €; is M-dimensional process of mutually and serially uncorrelated
random errors and so vech (575 5;) isa (M (M +1)/2) dimensional vector;
ag and [y are respectively [(M (M + 1) /2) x 1] and (M x 1) vectors of time
invariant intercept coefficients; B,W,A and © are coefficient matrices, the
first two are of dimension (M x M) while the other two have dimension
(M (M +1)/2) x (M (M + 1) /2)]; vech (.) denotes the column stacking op-
erator for the elements of a symmetric matrix lying on and below the main
diagonal.

We are using a variation of the multivariate GARCH-M model originally
used in financial econometrics (Bollerslev, Engle and Wooldridge, 1988). Ac-
cording to our specification the conditional means are functions of the con-
temporaneous and lagged values of the conditional variances so as to verify
whether the information content of the conditional variances is relevant in
determining the estimates of the conditional mean values. In turn each con-
ditional variance depends upon the past values of the squared shocks, its own
lagged values and the lagged values of the conditional variances relative to
the other equations.

We are suggesting that aggregate and sectoral shocks could display a chang-
ing (conditional) variance over time so that the larger the shocks experienced
in the past, the larger the current volatility and its impact on behaviour. We
could observe that a large change in variance this period will increase next
period variance, thereby increasing the chance of a large shock in the next
period.

Furthermore we wish to explore if volatility spillovers exist or if the condi-
tional variance changes are sector-specific. Changes in conditional volatility
could be brought about by shocks to sector-specific fundamentals without
affecting other sectors volatility and mean values. Alternatively volatility

10



changes in one sector could affect volatility changes in other sectors and
influence their employment growth rates. Thus we wish to model sectoral
shocks characterized by a changing, clustering volatility whose effects may
spillover to other sectors.

We wish to stress that while Lilien’s proxy was introduced to measure inter-
sectoral employment dispersion and its macroeconomic effects, our attention
is focused on adding an extra dynamic dimension when modelling realloca-
tive shocks directly and on verifying if and how much this new class of models
matters. No experiment has been implemented yet in order to quantify the
volatility of sector-specific shocks and its relevance in explaining changes in
sectoral employment shares and aggregate employment (unemployment) fluc-
tuations. Thus in this respect our analysis somehow extends sectoral shifts
analysis and goes beyond it.

2.2 The Prior

Our specification of the prior is aimed at introducing standard restrictions
on the parameters of the mean and ARCH equations which should be fairly
uncontroversial among researchers. Though we do not expect that everybody
would agree with our initial beliefs, we think that a reasonable standard of
consensus may exist about our assumptions.

First we introduce a ridge-type framework of the Litterman type so as to
shrink the coefficients estimates toward zero and thus avoid problems of
overfit when dealing with an unstructural VAR system. Second we impose
standard stationarity conditions on the ARCH processes. More precisely, let-
ting 8 denote the coefficients of the mean equations, we assume a shrinkage
normal prior of the form 5™ ~ N (0, H*), where 3™is the coefficient matrix
and H" = diag (1, zi ey %) is the covariance matrix. The assumption is
that the further we move back in time the tighter is the distribution around
zero so that our confidence of the expected value of the coefficients being
zero increases as the lags become longer.

For the ARCH part of the model we use as a prior a truncated normal distri-
bution so that o™ ~ N§°(al*, In/2), where o' = 0.011y. This specification

11



of the prior for the ARCH coefficients reflect the pure time series restriction
of covariance-stationarity. We will not impose any further structure to the
prior reflecting our prior belief of the relative importance of aggregate and
sectoral components.

2.3 The data base

The crucial variables for our empirical analysis are total employment and the
employment shares of the durable, nondurable, transport and manufacturing
sectors so that we have a five-dimensional VAR. We shall let n! denote the
natural logarithm of aggregate employment when j = 1 and instead indicate
the logarithms of employment shares in the durable, nondurable, transport
and service sectors respectively when j = 2.3,4,5. We take transformation
yl = Anl =ni — n{_4 = log (Nt]) —log (th_4) so as to consider employment
growth rates.

The results of our experiment are based on the United States quarterly em-
ployment data (1975Q1 - 1990Q4) from the OECD Data Base. This is the
same data set used by MPZ (1995) for their experiment using dispersion
measures. We resort to the same sample for aggregate and sectoral employ-
ment so as to check to see if our empirical analysis will confirm the support
for the sectoral shift hypothesis that emerged from that work. By applying
the same data set to a different model to investigate the same phenomenon,
we subscribe to the methodological argument in Hendry, Leamer and Poirier
(1990), according to which econometric modelling should be viewed as an
incremental progressive accumulation of knowledge. The series Employment
Civilian is the total employment in our model (n;), and we also take the
Durable Goods Manufacturing employment (the sum of 524, 525, S32, S33,
S34, S35, 536, S37, S38 and S39), the Nondurable Goods Manufacturing em-
ployment (the sum of 520, S21, S22, 523, 526, 527, 528, 529, S30 and S31),
the Transportation employment (the sum of S40, S41, S42, 544, S45, 546,
S47), and the Services employment (the sum of SIC 70, 72, 73, 75, 76, 78-84,
86, 87 and 89) as the sector shares of employment.
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3 The Econometric Methodology: Bayesian
Analysis of a VAR-(G)ARCH-M Model

In this section we outline the econometric methodology we have followed in
order to implement our experiment. A more extensive and detailed presen-
tation of this methodology can be found in Polasek and Ren (1998).

3.1 Bayes-tests for VARCH-M models

In order to select the appropriate order of the VAR process and to choose
between the linear and non-linear versions of our model we will use Bayes
factors (°).

When comparing any two models the Bayes factor (BF) can be calculated
using the marginal likelihood concept. In general terms letting y denote the
relevant data set and 6; be the appropriate set of parameters under model
M;, the marginal likelihood can be written:

FIM;) = [ 1 (o105 ;) 1 (051015 o (8)

If we denote by f (y|M;), the marginal likelihood for model 1, and by f (y|Maz),
the marginal likelihood for model 2, and if the two models are equally likely
a priori, i.e. P(M;) = P (Mz) = 0.5 we obtain the BF for My versus M; by

the ratio

BF21 _ f(y|M2) (9)

fyMy)’

Using the usual rules for computing odds, we find the posterior probabili-
ties for models M; and M, by suitable normalisations. In particular, one may
want to use the so-called 9:19:99 rule for evaluating Bayes factors: BF > 9
are remarkable, BF > 19 are significant, and BF > 99 are highly significant
hypotheses.

Using logs we can transform this scheme to log-Bayes factors

InBF2; = In f (y|Ms) — In f (y|My). (10)
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If M, is the best model and M is the model under consideration one
can use the differences of the log marginal likelihoods to judge the impor-
tance of models. Now In f (y|Ms) is the log-marginal likelihood of model 2
and In f (y|M;) is the log-marginal likelihood of model 1. The above cut-off
points for the log-BF are now: 1n9=2.2, In19=2.9, and 1n99=4.6. Roughly
speaking this means, we can use the numbers 2,3, and 4 to judge the im-
provements in model comparison by looking at the log marginal likelihoods.

Thus, in this paper we compare any two VARCH-M time series models
of different orders by computing Bayes factors as the ratio of marginal like-
lihoods evaluated along the lines of Chib’s decomposition (Chib, 1995).

It should be noted that equations (9) and (10) are meaningful if the
marginal likelihoods can be interpreted as probabilities and the BF as the
ratio of probabilities. In general that would be the case if the prior distribu-
tion is proper. However if the prior is improper then the marginal likelihood
will also be improper and the BF will be meaningless. A wide literature
aimed at handling this problem has recently emerged developing different
types of BF (7. When necessary in this paper we make use of posterior
Bayes factors (Aitkin, 1992), computed as the ratio of the posterior means of
the likelihood functions ®, or of fractional Bayes factors (O’Hagan, 1995),
obtained by using the fractional marginal likelihood concept (.

3.2 Unit root test with marginal likelihoods

Though not all Bayesian econometricians agree about pretesting for unit
roots ('), we proceed to test the univariate properties of the relevant time
series using marginal likelihoods. In this section we outline how the classical
augmented Dickey-Fuller (DF) regression for unit roots can be used to cal-
culate the marginal likelihoods for a Bayes test.

Let y; be the time series we want to test for unit roots and let z; be the
first differences so that z; = y;—y;—;. Following Dickey and Fuller’s approach
we consider four different autoregressive processes
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A-AR (AR(p) for first differences):
Zt =0z F oot apziop + U, (11)
DF-AR (Dickey-Fuller regression):
Zt = 0oYi—1 + 1zi—1 + oo+ Qpzioy + Uy (12)
DF-AR with mean:
zr=p+ aoyio1 a1z oot apzip g (12a),
DF-AR with trend:
z=p+ B+ ooyior + oz oot apzio, + uy (120),

t=1 T, p=1..., Pmas

PRI

Equation (11) defines the AR(p) non-stationary model in first differences
in the sense that if the time series is I(1) the first differences should be
a stationary AR(p) process. We denote this model as the A — AR model.
Equations (12), (12a) and (12b) provide three alternative stationary models:
the so-called Dickey-Fuller regression model (DF-AR model), Dickey-Fuller
regression model with mean (DF-AR 2 model) and Dickey-Fuller regression
model with mean and trend (DF-AR 3 model) respectively. We select the
specification with highest probability according to the marginal likelihood
criterion discussed in section 3.1. If the estimated marginal likelihood for
the A-AR model is higher than the marginal likelihoods of the alternative
stationary models then the unit root hypothesis is supported. Of course if
any of the alternative models is selected by the marginal likelihood, then the
stationarity hypothesis is instead supported.

Thus in general using a fractional or an informative prior distribution, the
marginal likelihoods for models (11) to (12b) can be calculated and the model
(and the lag length) with the highest marginal likelihood will be chosen.

3.3 Estimation of the VARCH-M model

In this section we restrict our discussion to a diagonal system for the co-
variance matrix Dy, = diag(hq, ..., hy) since previous estimates with a full
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covariance matrix have shown almost no significant contributions of the off-
diagonal elements. In a compact way, the VARCH-M system can be written
as

v~ N[X"8" D" = diag(him, ... hpw)], m=1,....M (13)

with A, = Z;mozm, where the NV x 1 vector z;,, contains the lagged variances
and squared observation of the whole system and «,, is the ARCH parameter
of the m-th equation.

The full conditional distributions (f.c.d.) are derived from the joint dis-
tribution of Y and the parameters for each equation m =1,..., M: a) The
f.c.d. for ™ is obtained by a normal distribution

(B . Y) = N[B, HL, (14)

with
(HZ)™ = (HI')™" + X™(Dy) 7' X", (15)
=W ((H) 8+ X (DY) ) (16)

where ™ ~ N[F7 H?| is the prior distribution for 5™, with 8, = 0, and
the whole data set is given by Y = (y*,...,y™).

b) The f.c.d. for the ARCH parameter «,, is obtained by a Metropolis
step. The candidate distribution is a multivariate normal distribution where
the mean is the old draw &%? and the covariance matrix IA)ZL is obtained it-
eratively from smaller Metropolis runs (e.g. 3 times thousand runs) starting

from the prior distribution
Oy N [Oz; == 0011]\7,1]\7/2] . (17)

The first runs from arbitrary prior distribution will have a bad accept/reject
ratio, but after a few runs we calculate mean and variance matrix again
and repeat the iterative proposal until a satisfactory accept/reject ratio is
obtained.

If we define the current residual by ¢” = y™ — X" 3™, then the f.c.d. is
proportional to

>l (18)

t=1

[N

T
a3, ¥) = [ TL 17 e -
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Denoting the proposal distribution by f(a,) = N[olm,i:m], where ¢&,, and
> m are the usual OLS estimators, then we accept a new value with proba-

bility man(1, f(a™)/ f(a®')).

This procedure is iterated over all equations until convergence.

3.4 Forecasting the VARCH-M model for impulse re-
sponses

1) Forecasting the future covariance matrices #,

Using conditional expectations E; for the error terms &; and the conditional
matrices H; we can calculate the future conditional covariance matrices (at
time ¢ for s step ahead and each sample point m =1,..., M)

q
vechHETs) = aém) + ZAgm)UGChEt(5t+s—i5;+s—i)

=1

p
-I-ZG)‘ vechHH_S) i (19)
7=1
with
] Es for s <0,
Eigrps = { 0 for s > 0. (20)

2) Forecasting future means

Using the previous results we can calculate the s-step ahead forecasts
from the MCMC simulation of size M as:

M k r
TR Y NS VRIS AN o R

Vits for s <0

FEiyiys = { N

Vits for s > 0. (22)
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3.5 The impulse response of the VARCH-M model
We consider the VAR(k) model with an ARCH in mean component

k r
Y :50‘|‘2Bi}’t—i‘|‘Z\I}jU€Cth—j‘|‘5t7 t= 1,...,T. (23)

=1 7=1
The impulse response function at time ¢ is obtained by simulation in the
following way (see e.g. Hamilton (1994, p.318)).

1) Set yi1 =yi2=... =Yy =0.
2) For the impulse in the j-th component set the j-th component to 1, i.e.
Eyy = 1 (OI’ 5; = (0,...,1,...,0)), [30:0, and Et41 = E42 — -+ =0.

This procedure is a numerical approximation of the impulse response function
of the non-linear vector time series model (24) which can be defined as the
derivative of y;1, with respect to the error term e

g s

Oe}
Having estimated the VAR-VARCH-M parameters via MCMC we can use
the output of a MCMC run of length M to make a s-step ahead prediction

at time . We take the mean of the predictive distribution over the simulated
sample:

=M, s=1,2,... (24)

: LS~ | 50 4 S pimg :
Yirs = M Z ﬁ(g )—I_ZBZ( )yt—l—s—i—l_qug‘ UGChHE‘—l—s) J (25)

m=1 =1 i=1
with

2
vechHEm) = aém) + ZAE )vech (€4 2575 )+ Z (94 vechH )
; =

and ﬁi(m) and H,Em) is the m-th sample of the MCMC output.

The value of the vector y,,s at time ¢ 4+ s of this simulation corresponds to
the 7' column of the matrix M. By doing a separate simulation for impulses
to each of the innovations (5 = 1,...,n), all of the columns of M; can be
calculated. In this case we use (19) and (21) but we replace (20) with

Eirs for s < 0
Et€t+s = 1 fOf S = 0 (26)
0 for s > 0.
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3.6 Approximate variance decomposition for the VAR-
GARCH-M model

Given the Gibbs output of size 5, {0(5)} ,s=1,...,5, the mean, variances
and covariances of the forecasts for the VAR-ARCH-M model are given by

Ave(yH_l g ;:1 yt+1 = yt+1, (27)

S
Var(yly,) = Z vl = vl (28)

and S _
Covlylia yits) = Z (i) = o) iy = i) (29)

forall ym=1,..., M.

Using (Var (y,{+1)) we can calculate the contribution of the innovations to

the j'"-variance of the one-step ahead forecast. This procedure can be gen-
eralised so as to compute the proportion of the j* — variance due to each
innovation for a one-step ahead forecast.

For a VAR model the impulse response function (IRF) is obtained from the
MA-representation

ye=p e+ Mgy + Masi_o+ ...

and the M; matrices can be obtained as in (24).

These impulse responses {M,;,i,7 = 1,..., M} are interpreted in the fol-
lowing way. If the residual ¢; is mcreased by one unit in the j-th component,
then the value of the i-th variable at time ¢ 4+ s (y;.45) is increased by M;;
(holding all other influences constant). Hamilton (1994, p.319) shows how
these matrices can be obtained numerically. Set y,_; = y;_o = ... =y, =0
and choose ; = ¢; (the j-th unity vector), i.e. &4 = ;41 = ... = 0 is set to
zero. The value of the vector y;1 5 at time ¢ + s of this simulation corresponds
to the j-th column of the matrix M,. The whole matrix M is obtained by
running ¢; from e; to eps over all unit vectors.
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Since the impulse response function for the VAR-GARCH-M model cannot
be given in closed form we obtain the IRF numerically in analogy to the VAR
model. The variance decomposition is obtained in the following way:

1) We calculate the M, matrices by choosing ¢; = ¢; in the VAR-GARCH-M
model and calculate the forecasts y;y;.

2) We calculate the covariance matrix 3° = Var (yi4s) from the s-step ahead
predictions in (25) and we obtain from the Choleski decomposition the lower
triangular matrix P, i.e. 5. = PP’.

3) For h = 1,..., hyar we calculate the orthogonalized impulse responses
Ay = MyP.

4) For the first equation we calculate, for h = 1, the relative variance de-
compositions. Denote the first row of A,y by ay = (a11,...,a1p) and the

variance is given by s3, = @/ @,. The relative variance decomposition is now

(a%h ttty a%M) /S%I'
For h = 2 we need the matrices Ay and Ay and for the first equa-
(1) (2)

tion we need the first rows a;’ and a;”. The variance is given by si, =

a(ll)/a(ll) + a(12)/a(12).
The relative variance decomposition now is given by

(a%m) +afy) - Qi) T an(z)) /515

In this way we can proceed to the h-th equation obtaining

h
Z a%liv--'va%Mi /S%h
, ( (@) (@)

o
Il
—

with

For the other equations we proceed in the same way as for the first equation.
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4 Implementation and Results

4.1 Bayesian stationarity tests

Given the data set of section 2.2 we test for the univariate properties of the
series. The output of the “Bayesian unit root test” in Table 1 should be
interpreted along the lines of the methodology outlined in sections 3.1 and

3.2.

The tested time series, whose results are repeated in Table 1, are the growth
rate of aggregate employment (" Total%”) and the growth rates of the employ-
ment shares of the durable, nondurable, transportation and services sectors
("share%”). Previously, always applying the methodology of sections 3.1 and
3.2, we had tested the levels (i.e. n; = log N}) of these variables and found
all of them to be I(1).

Using Jeffrey’s prior density we calculate the fractional maginal likelihoods
for models (11) - (12b). Since our prior is improper the values reported in Ta-
ble 1 are based on the fractional Bayes factors as defined by O’Hagan (1995)
(1) We see from the table that the marginal likelihoods are the largest for
the stationary models with and without constants. The trend model and the
first differences are never chosen. The shortest lag length is attained for the
growth of total employment (lag 2), while the longest lag length is given for
lag p = 5 and the shares of durable goods. The other 3 series exhibit the
lag length 4 (note that these are quarterly data). Therefore we can conclude
that the transformation to 4*" differences produces stationary time series.

Since unit root tests can be affected by structural breaks and outliers we
run a Bayes test for a possible break point in the time series. Table 2 tests
the unit root (differencing) model with unknown break point against the
stationary DF regression with an unknown break point. Let us denote the
break point with 7, then the break point model is

alyi1+ ...+ oz]l)yt_p + uy for t <,

Yt = (30)
alyi g+ ..+ a?)yt_p + u? for t > 7,
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and in a similar way for the augmented DF regression. We marginalise over
all possible break points in the range of p < 7 < T — p, 1.e.

flylp) = (31)

r=p+1

Comparing these marginal likelihoods for unit root tests with break points,

we see that the stationary models for the DF-AR2 models (with trend) always

turns out best. Also, by comparing the best DF-regression models in Tables

2 and 3, we see that the break point models with outliers are marginally

favoured in a Bayesian test. This result is not “significant”, but still surpris-
ing since the data exhibit a step change around 1983.

Additional to the break point model we can test for an outlier at an un-
known location ¢t = 1,...,T. This means we introduce a dummy variable
p: = 1 if t is the location of an outlier and D; = 0 for all other time points.

The model for the A — AR process is

Y = oY1+ .o+ apyi—p + yDe 4+ uy (32)
and for the augmented DF — ARI1 regression

Yr = o1 + a1yi—1 + ...+ oYy + YD+ uy (33)
Similarly, we augment the DF — AR2 and the DF — AR3 regression model.

The marginal likelihood is the average over all unknown outlier points, i.e.

,%

[ (ylp) = Z [ (ylp,7) (34)

We see from Table 3 that the stationary (DF) outlier models always per-
form better than the non-stationary models. Surprisingly, all outlier models
are slightly better than the original models in Table 1 or the break point
model in Table 2. This leads us to the conclusion that the step changes ob-
served in the beginning of the 80’s are rather outlier effects than structural

breaks.
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4.2 Empirical results

In this section we present and discuss the main results emerging from esti-

mating our five-dimensional VAR-GARCH-M model:

Y= Y (z By 43 @/J?”hi_i) T (35)
7=1 =1 =1

5 4 . g Lo
R =ap + Y (Z VDY 0?”53‘{,7:_2») (36)
=1

7=1 \i=1

where m = 1, ..., 5.

The model has been estimated using the Gibbs-Metropolis algorithm for a
Bayesian vector ARCH model. Because M = 5 is quite large a dimension,
the seasonality is not picked up by a VAR(4), other coefficients of the VAR
process have to make up the “case of the lost seasonality”.

4.2.1 Testing the VAR-GARCH model

Model selection has been carried out using the marginal likelihood crite-
rion outlined in section 3.1. Holding the prior distribution fixed we choose
among alternative specifications of the likelihood by using Bayes factors. We
use Chib’s marginal likelihood decomposition for the calculation of poste-
rior ordinates (Chib, 1995). Since the prior mean of the likelihood cannot
be calculated in closed-form for the ARCH equations we always employ for
them posterior marginal liklihoods. We wish to point out that only for the
ARCH parameters we have to approximate the marginal likelihood ordinate
by the ordinate of the posterior marginal likelihood; for the parameters of the
mean equations we make use of the prior distribution in order to calculate
this ordinate. Given that we use a data based prior as much as possible, the
approximation will be quite good since our data based prior will be close to
the posterior distribution.

From Table 4 we can see the marginal likelihood, dependent on k (the or-
der of the VAR(k) model), p and ¢ the order of the GARCH model and r
the number of lags in the ARCH-M component. The best model (which we
shall call model 2, M) is a VAR(2)-ARCH(2,2)-M(2) model with a marginal
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likelihood value of —244.50. We can compare the values in Table 4 with the
marginal likelihoods of other models and perform a Bayes test. Let us first
test if the VAR(1) model (top row of Table 4) is worse than the best reported
VAR-GARCH model. The first row of Table 13 shows a marginal likelihood of
—253.77 and the best remaining model is still the VAR(2)-ARCH(2,2)-M(2)
model. Taking the difference yields log B2y = 9.27 (B2 &~ 10,615). This
means the VAR(1) model is 10,615 times less likely than the best VAR(2)-
GARCH(2,2)-M(2) model.

If we compare the best VAR(2)-GARCH(2,2)-M(0) model, i.e. a model where
there is no feedback from the variances to the mean of the time series, then
the difference in log marginal likelihoods is log Byy = 3.95, which yields a
Bayes factor of B;; = 0.0193. This result implies that model M1 is about
51.94 times less likely than the best VAR-GARCH-M model. Thus the mea-
sure of relative support provided by the data for model 1 (M1) against model
2 (M2) is very strong against M1 in both cases.

Then the model has been run by imposing the following restrictions. We
first consider the model where the first equation (aggregate employment)
does not display an ARCH component while the other equations are char-
acterized by an ARCH structure (restricted model 1). Then we reverse the
experiment by imposing an ARCH component only for the first equation (re-
stricted model 2). The results are summarised in Table (5) and Table (6).

Subject to the first restriction, the best model is again a VAR(2)-ARCH(2,2)-
M(2) (Table 5). Calling this model M2, and comparing with the VAR(1)
model, M1, we have a log By; = 10.64, i.e. Byy &~ 41,773, If we compare
M2 with the VAR(2)-ARCH(2,2)-M(0), M1, model we obtain a logarithm of
the Bayes factor for M2 versus M1 of 8.24 (i.e. By; & 3,789). The evidence
provided by the data set would strongly favour the model incorporating the
ARCH effects even when these are confined only to the sectoral components.

When we consider the model where ARCH effects are only present in
the aggregate employment equation the best model is shown to be VAR(2)-
ARCH(2,1)-M(2) (Table 6). Comparing as before with the VAR(1) we have
a log Bay = 8.18 (B2; = 3,569). When we compare against the best model
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without the "M-component” we observe a log-Bayes factor of 5.23 (Bg; ~
187). Thus the GARCH-M model is again supported when only the aggre-
gate shocks display a volatile structure.

It should be noted that there is a drop in the value of the marginal like-
lihood of the best model when we move from the unrestricted model to the
restricted ones and that the drop is larger for the model where the ARCH
component is limited only to the first equation. This result seems to suggest
that there would be a bigger loss of information if we were to ignore the
volatility effects of sectoral shocks than those of aggregate disturbances.

4.2.2 Variance decomposition analysis

In this section we present the results of the forecast error variance decom-
position obtained as described in section 3.6. The innovations have been
triangularized according to a Choleski decomposition where aggregate em-
ployment has been ordered ahead of sectoral shares. This triangularization
somehow betrays the essence of sectoral shifts analysis but it can be inter-
preted as a benchmark lower bound on the contribution of sectoral shocks to
the explanation of total employment variance ('?).

Sectoral shares are then introduced in the following order: durables, non-
durables, services and transport.

Since we are interested in having aggregate employment ordered ahead of
the sectoral shares, we have chosen one combination without attaching any
particular economic interpretation to it.

Table 7 reports the results of the innovation accounting analysis carried out
using the VAR(2)-ARCH(2,2)-M(2) model. The proportions of forecast error
variance of aggregate employment growth accounted for by its own innova-
tions and by innovations in the growth of sectoral shares in the first column
are reported. If we consider a one-quarter horizon, the portion of the to-
tal variance in total employment due to reallocation shocks is approximately
30%. As s becomes larger the fraction of variance of total employment growth
accounted for by sectoral reallocation shocks becomes larger. With a forecast
horizon of four quarters, sectoral innovations contribute 65% to the aggre-
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gate employment variance. If we look at the forecast error variance of the
sectoral components of the model, it should be noted that aggregate innova-
tions cannot account for more than 28% of the sectoral variances whatever
the forecast horizon. The one-step forecast error variance of sectoral compo-
nents is largely (58-60%) accounted for by innovations within the own sec-
tor. However, as time is evolving the contributions of other sectors become
larger. Thus, with a four-quarters horizon, other sectors innovations account
for 53%, 34%, 41% and 47% of the variances of the durable, nondurable,

transportation and services sectors respectively.

5 Summary and Conclusions

In this paper we have implemented a VAR-GARCH-M model to exlpore the
macroeconomic effects of intersectoral labour reallocation. Our estimation
method used the Gibbs-Metropolis algorithm for a Bayesian vector ARCH
model which leads to an exact small sample distribution of the coefficients.
The model selection has been carried out using the marginal likelihood cri-
terion using Bayes factors for model comparisons. The ARCH structure
has been introduced in order to capture the potential non-linearities due to
shocks’ volatilities which have been overlooked by previous studies also aimed
at modelling sectoral shocks directly. Two major results have emerged. First,
when comparing hypotheses, the computed Bayes factors suggest that the
data support the VAR(2)-GARCH(2,2)-M(2) relative to the other models.
This outcome indicates not only the presence of volatility clustering of the
shocks, but also that the volatilities, feedback onto growth rates has to be
taken into account.

Second, the innovation accounting analysis, carried out using a Cholesky
decomposition where aggegate shocks are ordered ahead of sectoral innova-
tions, shows that sectoral shocks account for approximately 65% of the total
employment growth rate when we consider a one year forecast horizon. Thus,
reallocative shocks, though we have embedded them in an unfavourable sce-
nario, have a large and significant role in explaining aggregate employment
behaviour.

The evidence in favour of sectoral shifts emerging from MPZ (1995), car-
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ried over the same sample period but with a different approach, is corrobo-
rated by our analysis. If we compare our findings with those of CK, taking
into account the fact that they used a different sample, different sectoral
decompositions and a different VAR modelling strategy, we find that our
analysis provides stronger support to the role played by reallocative shocks
in explaining aggregate employment behaviour. It seems that the ARCH
structure can capture important characteristics of the system which seem to
strengthen the role of sectoral disturbances. Thus from our analysis of the
macroeconomic effects of reallocation shocks a new dimension emerges as a
new characterizing feature of research in this field: Once the heteroskedastic-
ity of sector-specific shocks is explicitly modelled, the potential relevance of
sectoral shocks volatility surfaces as a source of non-linearity characterizing
labour market turbulence.
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Notes

(1) All the models can be estimated as part of the BASEL software package.
(2) A third potential contribution of this paper would emerge if it were in-
terpreted as a test of “certainty equivalence” as well. In models displaying
certainty equivalence, heteroscedasticity in the driving processes should not
affect agents’ decision rules. However, it is reasonable to conceive that cer-
tainty equivalence breaks down for firms operating under fixed employment
adjustment costs or linear hiring - firing costs (Caballero, Engel and Halti-
wanger, 1997; Campbell and Fisher, 1996). If our paper is viewed in this
perspective then current and lagged variance terms should not “significantly”
enter the employment growth equations if certainty equivalence holds.

(3) Lilien’s famous dispersion proxy can be written in notation consistent

with that used in this paper as follows: &; = {Zf\il (N;i/Ny) (Alog Njy — Alog Nt)z} 1/2,
where N, is employment in sector 7 and N, is aggregate employment. Lilien
then estimates a reduced

form equation of the general form, u; = a + ZZ'T:1 b,oi_; + Zle G+ ey,
where z is a vector of aggregate shocks and u is the unemployment rate.
(4) Long and Plosser (1987) can be seen as a forerunner of this approach.
(5) CK, on p.95 recognise how their symmetric treatment of sectoral shocks
somehow departs from the standard view of sectoral shifts.
(6) For a discussion of Bayes factors c.f. Kass and Raftery (1995) and Poirier
(1995). For Bayes factors and non-linear models see Koop and Potter (1997).
(7) Partial BF, local BF, pseudo BF, intrinsic BF, posterior BF, fractional
BF, are the most recurrent concepts in the literature, c.f. Gelfand and Dey
(1994), Kass and Raftery (1995), O’Hagan (1995) and the references therein.
(8) Using the same notation as in the main text, if we integrate with re-
spect to the posterior we obtain the posterior mean of the likelihood function
FylM;) = [ f (yl0;, M;) f (0;ly, M;) dO;, where f(0;]y, M;) is the posterior
distribution.
(9) Let us have a sample y of size n and a training sample of size ny, where
both n and n; are large, then for a a given fixed proportion b = n;/n, it
follows that f(x|0;, M;) ~ [f (v|0;, Mj)]b and we can calculate the fractional
marginal likelihood

_ S l8y, M;) [ (9;]M;) db;

b i
T = 0o, 30 7 (0,100, a6,
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(10) See Phillips (1991) with discussion and Uhlig (1994).

(11) The results are qualitatively the same, if we would had used as an
informative prior like the Minnesota prior (Litterman, 1993).

(12) CK adopt a similar device in order to implement their analysis.
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Order Total %
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 190.1606 193.2524 193.2577 192.7290
2 191.4274% | 195.4222%* 197.7968** 194.3029*
3 191.2504 194.6288 197.1488 193.6504
Order Durable goods(share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 148.8612 153.4889 154.1387 151.0513
2 149.2258 153.7205 155.9291 153.2917
3 149.5605 154.4872 160.2191 158.5116
4 161.9327 164.5190 165.4652 162.5935
5 163.2937* | 165.3017* 165.8435%* 162.7422%*
6 162.6695 164.7458 165.7810 162.7358
Order Nondurable goods(share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 178.3648 180.7102 185.5339 181.9984
2 178.5722 180.6508 184.6048 181.1417
3 182.8687 185.4732 190.9893 187.6614
4 185.2309* | 187.2895% 191.2793** 187.8355%*
5 185.2048 187.1330 191.0991 187.6716
Order Transportation(share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 187.0468 191.5356 189.8160 186.3851
2 187.7452 193.3442 191.9324 188.7775
3 189.2631 196.9206 196.3297 195.6773
4 201.4560* | 206.1169** 204.4229%* 201.6194*
5 200.7137 205.2555 203.5438 200.7393
Order Services(share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 194.2419 197.6030 199.4266 195.8750
2 195.0135 197.7052 201.7799 198.2570
3 195.4949 198.5406 204.1732 200.6853
4 208.4259* | 210.4122* 212.5920** 208.9598%*
5 208.1274 210.0818 211.0447 208.2900

Table 1. Bayesian stationarity test: The fractional log marginal likelihood of US
aggregate employment and employment shares for AR(p) models from 1975 Q1
to 1990 Q4.
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Order Total %

p A—AR | DF-AR1 | DF-AR?2 | DF - ARS3

1 182.382 189.049 191.526 190.312

2 183.417 190.109 192.782 191.423

3 184.243* 190.906* 193.627** 192.002%*

4 175.202 182.374 192.671 191.554
Order Durable goods (share %)

p A—AR | DF-AR1 | DF-AR?2 | DF - ARS3

1 149.406 156.242 158.098 157.712

2 151.179 158.048 159.452 158.993

3 151.357%* 158.071* 160.441** 159.762%*

4 141.956 149.450 159.131 158.651
Order Nondurable goods (share %)

p A—AR | DF-AR1 | DF-AR?2 | DF - ARS3

1 164.186 171.359 177.762 173.812

2 164.798%* 171.976* 180.541** 174.011%*

3 163.916 171.169 176.562 172.882

4 161.056 168.422 172.402 170.699
Order Transportation (share %)

p A—AR | DF-AR1 | DF-AR?2 | DF - ARS3

1 188.646 196.097 194.412 191.891

2 190.237 196.141 195.102 192.512

3 190.970* | 196.632** 195.982%* 193.023*

4 181.075 189.082 193.674 191.086
Order Services (share %)

p A—AR | DF-AR1 | DF-AR?2 | DF - ARS3

1 186.263 193.917 196.812 190.562

2 187.406* 194.632%* 197.561** 191.677*

3 186.119 193.600 195.672 192.078

4 172.090 181.0447 193.007 191.229

Table 2. Bayesian stationarity test with break point: The fractional log marginal
likelihood of US aggregate employment and employment shares for the
heteroskedastic break point AR(p) models from 1975 Q1 to 1990 Q4.

( * maximum marginal likelihood )
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Order Total %
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 192.5412 194.4611 194.7620 193.8298
2 193.6752* | 196.7521* 198.5711** 195.7281*
3 192.6751 195.7819 197.6519 194.7820
Order Durable goods (share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 157.8778 161.7372 162.6374 160.5621
2 158.7281 162.7762 164.7821 163.8289
3 156.2921 162.6721 169.6723 171.0732
4 173.7720 175.8820 178.6271 177.7627
5 174.8965* | 177.8044* 179.5620** 178.6237*
6 173.9071 176.4152 179.6367 177.6121
Order Nondurable goods (share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 186.0921 188.6218 195.6728 195.2031
2 186.7823 189.6327 197.8881 196.7821
3 189.6729 193.8812 198.7873 197.8825
4 193.6725* | 195.7865* 199.7275%* 198.7790*
5 192.7848 194.7761 196.1721 196.8817
Order Transportation (share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 192.8092 195.7288 193.8856 190.7372
2 193.1928 197.7812 195.9921 192.6734
3 195.7063 201.7932 199.8328 200.8832
4 207.4625% | 212.6831** 209.7828%* 206.7221*
5 206.0833 210.7742 208.4542 206.8827
Order Services (share %)
p A—AR |DF -AR1 | DF -AR2 | DF - AR 3
1 197.8281 201.6732 204.7892 201.8837
2 198.9983 203.9588 208.9822 205.7882
3 199.8389 205.8943 211.5625 208.7872
4 217.0893* | 218.8222* 224.6754** 220.5673*
5 216.7822 218.02112 223.8972 219.5642

Table 3. Bayesian stationarity test with break point and outliers: The fractional
log marginal likelihood of US aggregate employment and employment shares for

AR(p) models with outliers from 1975 Q1 to 1990 Q4.
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full model

restricted model 1

restricted model 2

W W W W WWWwWN NN NNN == ==

R R R R R R WWWNNNN R~ =R~ OoT

LW W NN = WWwWwNNDNRFE WD = W OO0

W N DN WWNDN WNNFEONNRFENRFE RO

-253.77
-246.22
-244.72
-245.33
-245.53
-246.75
-247.22
-248.45
-245.76
—244.50*
-247.89
-246.11
-246.10
-245.45
-245.09
-248.81
-249.87
-246.54
-249.78

-261.43
-253.91
-252.17
-253.09
-255.08
-258.44
-256.91
-259.03
-256.90
—250.79*
-254.09
-255.12
-257.87
-258.43
-257.33
-258.08
-259.09
-260.32
-260.55

-263.54
-257.33
-258.76
-257.13
-257.58
-260.08
—255.36*
-260.59
-256.56
-256.48
-257.68
-258.90
-260.08
-261.2
-260.31
-260.91
-260.88
-261.04
-261.68

33

Table 4. The log marginal likelihood for VAR(5)-ARCH (p,q)-M(r) model




Time Variance decomposition in

Quarter | Total | Durable | Nondur- | Transpor- | Services
able tation
1 0.6959 | 0.2206 0.0361 0.1849 0.1685
0.0459 | 0.5876 0.2634 0.0297 0.0556
0.1609 | 0.1237 0.6015 0.1683 0.1391
0.0852 | 0.0532 0.0881 0.6085 0.0572
0.0121 | 0.0149 0.0109 0.0085 0.5795
2 0.5165 | 0.1678 0.0011 0.1824 0.1865
0.1090 | 0.4620 0.1047 0.1066 0.0347
0.2482 | 0.2431 0.4534 0.2599 0.0653
0.1246 | 0.1257 0.1320 0.4480 0.0911
0.0018 | 0.0014 0.3088 0.0031 0.6223
3 0.3835 | 0.1884 0.2573 0.2781 0.1780
0.1183 | 0.2894 0.1297 0.1314 0.1195
0.2027 | 0.2074 0.3099 0.2046 0.1785
0.2151 | 0.2335 0.2273 0.2960 0.2349
0.0804 | 0.0812 0.0759 0.0899 0.2891
4 0.3485 | 0.2166 0.2442 0.2621 0.2401
0.0276 | 0.2578 0.0276 0.0316 0.0197
0.2916 | 0.2389 0.4160 0.2848 0.2102
0.2417 | 0.2285 0.2199 0.3246 0.2371
0.0905 | 0.0583 0.0924 0.0969 0.2929

Table 5. Variance decomposition of US employment for VAR-GARCH-M model
in percentage
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