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Abstract

In this paper we consider an economy consisting of identical homo-

geneous good Cournot duopolies. Firms decide whether to experiment

or not on the basis of their aspiration level. If they decide to experi-

ment, then there is a switching rule which determines the output they

will produce next period. The switching rules that we consider are:

(i) random switching, (ii) imitation, (iii) best-response dynamic. The

aspiration level is given by the average level of pro�t in the economy,

as in Dixon (1996), possibly subject to some noise. We �nd that the

random switching and imitation leads to all duopolies becoming joint

pro�t maximizing, even with a small level of noise. Best-response dy-

namic leads to all duopolies becoming Cournot even with very small

levels of noise. With high levels of noise the di�erent learning rules

lead to di�erent and diverse limiting populations. We are able to

compare the di�erent limiting populations and the dynamic path.
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1 Introduction

In this paper, we explore the framework of Dixon (1996) in the context of
Cournot Oligopoly. Consider an economy with many markets, each with
the same cost and demand conditions. In each market there are two �rms
playing a Cournot duopoly. There is a capital market in the economy, or
some institution which measures the average level of pro�t in the economy
as a whole. This average can be thought of as the \normal" level of pro�ts
in the economy. The �rms are modeled as being boundedly rational, and we
adopt an aspiration-based model of decision making by the �rm. The �rms
have an aspiration level: if they are attaining their aspiration level, then they
are unlikely to change their action; if they are below the aspiration level, they
are very likely to change their action. The aspiration level is endogenous, and
for each �rm it is equal to the level of average pro�ts. A dynamic system
is thus set up: the current actions of �rms determine their own and average
pro�ts.

Dixon (1996) analyzed this model from a theoretical and analytical per-
spective. Under two key assumptions, he was able to show that there is a
unique and nearly global attractor to the above system: the collusive or joint
pro�t maximizing (JPM) outcome. This analytical result is in some ways
very general, but also has limitations. The dynamic process is represented as
a non-stationary Markov chain, and these are notoriously di�cult to analyze.
The purpose of the current paper is to adopt more general assumptions than
those made in the previous paper, and to evaluate the model using simulation
techniques.

There are two stages to the �rms decision process at each period in time.
First, there is the decision whether or not to experiment. In this paper, \to
experiment"means to (attempt) to change action1. In Dixon (1996), this was
deterministic: if you are above the aspiration level, you do not experiment; if
you are below you do. We introduce \noise" into this process. In particular,
we have �-noise, where � is the probability that you experiment if you are
above average, and also �-noise, where � is the probability that you do
not experiment when you are below the aspiration level. Aspiration based
models of learning are not new (see, inter alia2 Lewin (1936), Simon (1947,
1981), Siegel (1957), Borgers and Sarin (1994), Palomino and Vega-Redondo
(1996)).

Second, given that you have decided to experiment, there are the con-
ditional switching probabilities. These give the probability of switching to

1
We say attempt, because you may by chance end up choosing the same action.

2
See Kornai (1971) for a discussion.
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the set of available actions, conditional on deciding to experiment. In Dixon
(1996) these were analyzed under fairly general assumptions, but without �
or � noise. In this paper we analyze some speci�c switching rules: random
switching, imitation, best response and their mixture. Random switching
(RS) means that if a �rm decides to experiment, it chooses each strategy
with the same probability (including its current strategy). Imitation (IM)
means that the �rm randomly looks at another �rm, and copies it (all �rms
are equally likely to be observed as in chapters 4, 5 of Weibull (1995) and
in Schlag (1996b)). Both imitation and random switching are strategically
\blind": the �rm does not look at what its competitor is doing and work out
a sensible strategy to follow. Best response dynamics (BR), however, means
that the �rm chooses its best response to the action played by its opponent
in the previous period as in the classic Cournot model of adjustment.

The closest theoretical models to the one explored in this paper are Ben-
dor and Mookherjee (1994), Kandarikar et al. (1995) and Palomino and Vega-
Redondo (1996). The �rst two papers require that the aspiration level is
constant and equal to the long-run population average payo�. Palomino and
Vega-Redondo has the aspiration level equal to the current average payo�.
However, their model has a random matching technology and looks specif-
ically at the two strategy prisoners dilemma (PD). All of these papers �nd
that the cooperative outcome is possible as an equilibrium: in Dixon (1996),
however, we �nd that under certain assumptions the cooperative outcome is
the only possible outcome.

The advantages of the simulation methodology in understanding this
model are several. Firstly, the analytical results in Dixon (1996) which un-
derlie the paper are concerned with the asymptotic properties of the dynamic
process. Simulation enables us to understand the dynamics of adjustment,
both in terms of the speed and the pro�le. Secondly, � and � noise are crucial
in determining the asymptotic and general behaviour of the system. Since
we currently have no analytical results for this, the simulations are able to
tell us if the no-noise analytical results are robust to having small noise lev-
els, and also how the system behaves when the noise increases. Thirdly, the
e�ects of the \initial position" can be explored in some detail.

We will give a full summary of the results in section 3 of the paper.
However, the general conclusions can be summarised as follows:

1. The analytical results are robust to small amounts of noise for the three
switching rules we consider. Both imitation and random switching
give rise to the JPM (joint pro�t maximizing) outcome: best response
dynamics gives rise to the Cournot outcome.

2. With high levels of noise, the three di�erent switching rules give rise to

3



di�erent dynamic properties. (a) With RS, the end point distribution
contains many surviving �rm types, and is not very sensitive to initial
position. (b) With IM, the end distribution tends to involve �rms in
most markets choosing the same output level, and the economy is often
more competitive than the JPM outcome. However, with IM the initial
position matters to a great extent when there is a high noise level. (c)
With BR, we �nd that for low levels of noise the Cournot outcome is
the most common outcome. Unlike the other two cases, however, we
�nd that asymmetric market structures are possible with BR: surviving
market structures can involve �rms producing di�erent levels of output.

Whilst these results have been derived for a speci�c model | Cournot
Duopoly | we believe that they are not atypical. In a companion paper
Lupi (1997) we conduct a similar analysis for simpler games with only a few
strategies (prisoner's dilemma, coordination games), and obtain analogous
results.

These results are, we believe, important to economists. Certain markets,
most notably the �nancial markets, convey information (implicitly or explic-
itly) about the whole economy. In particular, they convey information about
the average or normal rate of return on capital. This information will e�ect
the way that individual �rms behave. Whilst the model we have developed
is very simple, it does show how this mechanism can give rise to a social
learning process. The learning process is social in that its driving force is the
population mean payo�: �rms who perform below average are forced to do
something (by shareholders, or other of the various mechanisms constraining
managers).

2 The Model

We have built a general framework in which to analyse the e�ect on the evo-
lution of the population of three di�erent learning rules: random switching,
imitation and best response. We have also addressed the question of how the
evolutionary process is a�ected by the introduction of \noise".

Players, Strategies and Payo�s. We consider a symmetric two-player
game with a �nite set S = f1; 2; : : : ;Kg of pure strategies or �rm-types. If
�rm-type i plays �rm-type j, then the payo� of �rm i is �i;j. � is the K �K

matrix of payo�s �i;j.
L is the set of all possible pairs of strategies, one for i and one for j. Since

in our model it makes no di�erence which �rm is type i and which is type j,
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we denote a pair of strategies by (i; j) with the convention that i � j. Hence
the number of elements in the set L is:

L =
KX
i=1

i = K(1 +K)=2:

The one to one mapping `(i; j) gives each pair (i; j) a unique number
between 1 and L. We assume the form:

q = `(i; j)) = j + (k �
i

2
)(i� 1)

Hence we can write the set of pairs as L = f1; 2; � � � ; Lg with generic element
q, r or `(i; j).

We can think at every pair of strategies as at a location or market where
a duopoly game is played between two competitors which use, respectively,
strategy i and strategy j.

We consider discrete time t = 0 : : : T . In Dixon (1996) we consider T =1

in an analytical framework. In the current paper, T is the endpoint of the
simulation which is in some cases endogenous (there is a stopping rule), and
in others �xed ex ante.

There is a \population" of duopolies represented by the unit interval.
The set L can be used to partition the population of duopolies since each
duopoly d 2 [0; 1] belongs to one and only one of the L pairs according to the
strategies used by the two �rms. We de�ne the index function I(d; (i; j); t)
which takes the value 1 i� the �rms at d play strategies (i; j) at time t. The
proportion of duopolies which adopt a certain pair of strategies at time t is
de�ned as Pt(i; j), where:

Pt(i; j) =

Z 1

0

I(w; (i; j); t) dw:

The proportion of �rms of type i at time t, P̂t(i) is:

P̂t(i) =
X
j�i

Pt(i; j) +
X
j<i

Pt(j; i):

The average pro�ts in the \economy" are:

��t =
KX
i=1

KX
j�i

Pt(i; j) [�i;j + �j;i] =2:

We assume that each individual �rm knows this economy wide average:
this can be via capital markets, or a general notion of \normal" pro�tability.
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Clearly, as the proportions Pt(i; j) change over time, the average pro�ts will
vary.

Aspirations and Learning. In our model each �rm adheres to a very
simple behavioural rule that tells the �rm what action to take at every time
t. Each �rm has an aspiration level �t: if it is earning at least �t, then it
continues with its existing strategy with probability 1� � (where � 2 [0; 1]);
if it is earning less than �t, then it experiments with probability 1 � �, by
choosing a (possibly di�erent) strategy. The parameters � and � are noise
parameters.

In the case of no noise (� = � = 0) the model is particularly simple. Each
�rm compares its own performance with its aspiration level �t and uses this
information to review its own behaviour. If a �rm is performing below its
aspiration level, it switches to another �rm-type (that could be itself again)
by means of a particular \switching technology": if it is earning at least �t,
then it does not experiment.

The aspiration level in our framework is endogenous, and depends on
average pro�ts: �t = ��t3. Since average pro�ts vary over time with the evo-
lution of the proportions, there will be an induced non-stationary dynamics
of the aspiration levels of �rms. This non-stationarity is the e�ect of the
complex interaction between �rms: �rms are in fact observing each other ei-
ther directly (like in the imitation case) or indirectly (via the average pro�ts)
and change their behaviour as they learn. This captures the idea, present in
psychological literature that agents revise their aspiration levels also on the
basis of the performance of the agents with which they interact. Since they
interact with all �rms via average pro�ts, this is a model of social learning.

Aspiration States. Let's �rst de�ne for each pair of strategies the
maximum and the minimum pro�ts:

� �min(i; j) = min [�i;j; �j;i]

� �max(i; j) = max [�i;j; �j;i]

These two values, together with the average pro�ts, tell us in which of
four possible \aspiration states" a certain pair of strategies `(i; j) is. We can,
in fact, classify every pair of strategies on the basis of the �rm-types that are
going to experiment.

A pair of strategies is in aspiration state 1 if the pro�ts attached to the
two strategies of the pair are both greater than or equal to the average pro�ts.

3
As in Dixon (1996) and Palomino and Vega-Redondo (1996).
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A pair of strategies is in aspiration state 2 (3) if the pro�ts attached to
strategy i (j) are lower than ��t and the pro�ts attached to the other strategy
j (i) are greater than or equal to ��t.

Finally, a pair of strategies is in aspiration state 4 if the pro�ts attached
to both strategies are lower than ��t.

We can now divide the set of all pairs of strategies L in four partitions
Lz;t, z 2 f1; : : : ; 4g, according to the aspiration state of each pair at time t.
More formally the elements of the four sets L1;t; : : : ;L4;t are de�ned in the
following way:

L1;t = f`(i; j) 2 L : ��t � �min(i; j)g

L2;t = f`(i; j) 2 L : �min(i; j) = �(i; j) � ��t < �(j; i) = �max(i; j)g

L3;t = f`(i; j) 2 L : �min(i; j) = �(j; i) � ��t < �(i; j) = �max(i; j)g

L4;t = f`(i; j) 2 L : �max(i; j) < ��tg

Clearly
S

z
Lz;t = L; and Ls;t

T
Lz;t = ; for every s; z 2 f1; : : : ; 4g with

s 6= z. Note that the partition is time dependent, since the set of pairs of
strategies in a particular aspiration state at time t will depend on the average
pro�ts at t. Note that although the partition is de�ned in terms of pairs, it
also implicitly partitions the set of duopolies, since each duopoly belongs to
one and only one pair (i; j). Hence we can de�ne the four subsets Ld

z;t:

L
d
z;t = fd 2 [0; 1] : I(d; (i; j); t) = 1 and `(i; j) 2 Lz;tg

Since there are L strategy pairs and four aspiration states, we de�ne the
the 4L�L aspiration state matrix �t, which summarises the aspiration state
z for each pair q at time t, being the following block diagonal matrix:

�t =

2
666664

�1;t 0 � � � 0

�2;t
. . .

...
0 0
...

. . . . . .

0 � � � 0 �L;t

3
777775 (1)

The diagonal elements of �t are the unitary vectors �1;t;�2;t; : : : ;�L;t,
one for each strategy pair, whose only non-zero element is in the row cor-
responding to the aspiration state of the pair which the vector �l;t refers
to. For instance, if at t the pair of strategies 1 is in the set L2;t, then,
�1;t = [ 0 1 0 0 ]0. Hence, if the pair of strategies q is in learning state z,
and v is the row index of the vector � (q = 1 : : : L, v = 1 : : : 4), then:
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�v;q;t =

�
1 if q 2 Lz;t

0 otherwise

Experimental states. Each duopoly can be classi�ed in terms of the
�rms which are experimenting in it at time t. A �rm is experimenting if it
chooses to continue its existing strategy with a probability strictly less than
1. We can partition the population of duopolies [0; 1] into four subsets Ef ,
f 2 1; : : : ; 4, which are mutually exclusive and exhaustive. These are:

E1;t = fd 2 [0; 1] : neither i nor j experiments at time tg

E2;t = fd 2 [0; 1] : only i experiments at time tg

E3;t = fd 2 [0; 1] : only j experiments at time tg

E4;t = fd 2 [0; 1] : both i and j experiment at time tg

In absence of noise (� = � = 0) the partition of �rms according to aspiration
states and experimental states coincide: for duopoly d playing (i; j), d 2 Ld

f

i� `(i; j) 2 Ef . However, if � > 0, any pair q = `(i; j) can be in each of
the four experimental states with a strictly positive probability whatever its
aspiration state.

For any given pair `(i; j) 2 L, in experimental state z, there is a subset
of pairs to which it can possibly move, the destination set D(z; (i; j)) � L:

D(1; (i; j)) = f(i; j)g

D(2; (i; j)) = f(g; h) 2 L : either g = j or h = jg

D(3; (i; j)) = f(g; h) 2 L : either g = i or h = ig

D(4; (i; j)) = fLg

The destination set re
ects the fact that the destination pair must contain
the current strategy of any �rm not experimenting.

Corresponding to each aspiration state z, there is a 4�1 noise vectorNz,
giving the probability that a duopoly d 2 Ld

z;t is in each of the 4 experimental
states as a function of the noise parameters (�, �):

Nz =

2
664
Pr(d 2 E1jd 2 Ld

z;t)
Pr(q 2 E2jq 2 Ld

z;t)
Pr(q 2 E3jq 2 Ld

z;t)
Pr(q 2 E4jq 2 Ld

z;t)

3
775

We have for strategy pairs q 2 L1;t:

N1 =
�
(1� �)2 �(1� �) �(1� �) �2

�
0

:
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For strategy pairs q 2 L2;t:

N2 =
�
�(1� �) (1 � �)(1� �) �� (1 � �)�

�
0

:

For strategy pairs q 2 L3;t:

N3 =
�
�(1� �) �� (1� �)(1� �) (1 � �)�

�
0

:

And �nally, for strategy pairs q 2 L4;t:

N4 =
�
�2 �(1� �) �(1� �) (1 � �)2

�
0

:

These noise vectors represent the relationship in probabilistic terms be-
tween learning and experimental states. Together, the 4 noise vectors form
the 4� 4 matrix N = [N1; N2; N3; N4]:

N =

2
664

(1� �)2

�(1� �)
�(1� �)

�2

�(1� �)
(1 � �)(1� �)

��

(1� �)�

�(1� �)
��

(1 � �)(1� �)
(1� �)�

�2

�(1� �)
�(1� �)
(1� �)2

3
775 (2)

The matrixN is time invariant, because we have assumed that the values of
� and � are time invariant. In the case of no noise, then N is the identity
matrix (N = I).

We then have the 4L�L experimentation matrix Et, which picks out the
appropriate vector of experimentation probabilities for each pair q according
to its aspiration state. Et is block diagonal with diagonal elementsN�q;t:

Et =

2
666664

N 0 � � � 0

N
. . .

...
0 0
...

. . . . . .

0 � � � 0 N

3
777775 ��t

=

2
666664

N�1;t 0 � � � 0

N�2;t
. . .

...
0 0
...

. . . . . .

0 � � � 0 N�L;t

3
777775 (3)

The Experimentation matrix Et is 4L � L since each of the L pairs q can
be in 4 experimental states f . In the no-noise case, since N is the identity
matrix, Et = �t.
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Switching and Transition probabilities. We are now in a position to
de�ne the transition probabilities for strategy pairs. These are determined by
the aspiration state of the pair; the corresponding experimental probabilities
and the switching probabilities. We have already de�ned the �rst two, and
will now introduce the switching probabilities.

Although it is individual �rms that are changing their behaviour, it is
easier to look at the probabilities of a pair of strategies switching to another
pair as the e�ect of the change of one or both (or none) of the strategies that
characterize that pair of strategies. Hence the switching probabilities of a
given strategy pair will depend on the experimental state in which that pair
is4.

We de�ne the probability that a pair of strategies `(i; j) switches to pair
`(g; h) at time t when it is in experimental state z as �z;t[(i; j); (g; h)], where
of course j � i and h � g. We write (i; j) = (g; h) if and only if i = g and
j = h.

Formally, we de�ne the 4�1 vector of switching probabilities at time t, Sq;r
t

which contains the probabilities of switching from q = `(i; j) to r = `(g; h)
in each of the four possible experimental states:

S
q;r
t =

2
664

�1;t(q; r)
�2;t(q; r)
�3;t(q; r)
�4;t(q; r)

3
775 (4)

where of course �z;t(q; r) > 0 only if q 2 D(z; r) and 0 otherwise, and for
each z: X

r2L

�z;t(q; r) = 1

The switching matrix St is the following L � 4L block matrix constructed
out of the 4� 1 vectors Sq;r

t :

St =

2
6664
S
1;1
t S

2;1
t � � � S

L;1
t

S
1;2
t S

2;2
t � � � S

L;2
t

...
. . .

...

S
1;L
t S

2;L
t � � � S

L;L
t

3
7775 (5)

The superscripts indicate the starting and the destination pair of strategies
respectively.

4
A more precise terminology is conditional switching probability, since the switching

decision is brought about only if the �rm has decided to experiment.
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The L�L matrix of transition probabilities Tt gives the transition prob-
abilities T q;r

t of pair q to pair r at time t. This can be computed according
to the following formula:

Tt = St �Et (6)

If we break down equation (6), we can see that Et picks out the appropri-
ate vector of experimentation probabilities for each strategy pair at t, and is
the 4L � L block diagonal matrix with diagonal elements N�q;t. The block
of resultant experimentation probabilities is then multiplied by each of the
1 � 4 vector Sq;r

t of switching probabilities for pair q to each pair r. Each
element of Tt is thus:

T
q;r
t = S

q;r
t �N � �q;t (7)

where T q;r
t is a scalar, the resultant transition probability between two strat-

egy pairs at time t.

3 Speci�c Switching rules

We can now introduce the three switching technologies adopted by the �rms
when they experiment which we explore in this paper: random-switching,
best-response and imitation.

Random switching. According to this technology the �rms that are
experimenting simply randomly switch to another strategy. Since all the
strategies are equally likely to be selected, the probability for a �rm that is
experimenting of selecting any other strategy (included the one that it was
adopting) is 1

K
.

Consider duopoly d with �rms choosing strategies (i; j). If d 2 E1 we
have (dropping the time subscripts for convenience):

�1[(i; j); (g; h)] =

�
1 if (g; h) = (i; j)
0 if (g; h) 6= (i; j):

For d 2 E2:

�2[(i; j); (g; h)] =

�
1/K if either g = j or h = j

0 otherwise.

For d 2 E3:

�3[(i; j); (g; h)] =

�
1/K if either g = i or h = i

0 otherwise.

11



And �nally, for d 2 E4:

�4[(i; j); (g; h)] =

�
1=K2 if g = h

2=K2 if g 6= h.

Note that there is an important di�erence between states 2, 3 and state 4:
if a particular pair of strategies is in the set E4, there is a positive probability
that it will switch to any and all pairs of strategies in L (since D(4; q) = L

for all q). There is no pair of strategies q 2 L that has a zero probability of
being reached. In states 2 or 3, where only one �rm experiments, there is a
restriction on the pairs of strategies it can reach (this restriction comes from
the fact that the non-experimenting �rm does not change).

Under RS, the switching matrix does not vary over time, St = S for all t.
Hence the only element to vary in the transition matrix is �t, which re
ects
the changing aspiration states of the pairs as average pro�ts vary.

Imitation. We now consider a di�erent learning rule based on imitation.
In societies the behaviour of an individual is in
uenced and in
uences the
behaviour of other members of the society. Therefore within societies an
individual may learn mainly through observation and imitation. Imitation,
intended as the act of mimicking the behaviour of another individual has as
one of its main advantages the fact that it does not require any particular
ability or skill and any prior knowledge of others' payo� function (see Schlag
(1996b,a); Weibull (1995)).

The probability at time t of imitating the strategy of another �rm depends
on the proportion of �rms adopting that strategy at time t. The higher the
proportion of a certain strategy, the greater the probability of that strategy
of being imitated. Hence switching behaviour will evolve with the population
proportions P̂t(i) where i = 1 : : :K. In this case the switching probabilities
are the following:
for duopolies d 2 E1:

�1;t[(i; j); (g; h)] =

�
1 if (g; h) = (i; j)
0 if (g; h) 6= (i; j):

For duopolies d 2 E2:

�2;t[(i; j); (g; h)] =

8<
:

P̂t(g) if h = j

P̂t(h) if g = j

0 otherwise.

For duopolies d 2 E3:

12



�3;t[(i; j); (g; h)] =

8<
:

P̂t(g) if h = i

P̂t(h) if g = i

0 otherwise.

For duopolies d 2 E4:

�4;t[(i; j); (g; h)] =

�
P̂t(g) P̂t(h) if g = h

2P̂t(g) P̂t(h) if g 6= h.

Best-response. With the best response (BR) dynamic the �rm that
decides to experiment chooses the strategy that maximizes its payo� against
its competitor's current strategy. Since we are dealing with a �nite strategy
set, it is simple to list the best response(s) to each strategy. Let us de�ne for
each strategy i the set of best responses B(i):

B(i) = arg max
j=1;:::;K

�ji

In e�ect we are choosing the largest element(s) along the ith column of the
payo� matrix �. Let us denote the cardinality of B(i) as #B(i). Clearly,
best responses are time independent. The switching probabilities are the
following (where we drop the time subscripts):
for duopolies d 2 E1:

�1[(i; j); (g; h)] =

�
1 if (g; h) = (i; j)
0 if (g; h) 6= (i; j):

For duopolies d 2 E2:

�2[(i; j); (g; h)] =

�
1

#B(j)
if either g = j or h = j

0 otherwise.

For duopolies d 2 E3:

�3[(i; j); (g; h)] =

�
1

#B(i)
if either g = i or h = i

0 otherwise.

And �nally, for duopolies d 2 E4:

�4[(i; j); (g; h)] =

(
2

#B(i)#B(j)
if g; h 2 B(i) \B(j)

1
#B(i)#B(j)

if (g; h) 2 B(i)(M B(j):

The BR switching rule is rather di�erent from the RS and IM rules. As
in the case of RS, the switching probabilities for each pair in each aspiration
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state are constant over time (St = S for all t). However, the switching
probabilities will be zero for all strategy pairs which are not best responses
for the experimenting �rms. Unlike RS and IM, the BR rule depends on
the strategic nature of the duopoly in which the experimenting �rm �nds
itself. However, it leads to some strange learning behaviour. For example,
consider the case of no noise. If the current strategy chosen by the �rm earns
below average pro�ts, then if it is a best response the �rm will \experiment"
by choosing the same strategy again and again (so long as the other �rm
does not switch). The BR rule restricts experimentation, and can lead to
a �rm becoming \locked in" to the current strategy even when it is below
aspiration.

3.1 Population dynamics

The state of the economy at time t is summarised by the L � 1 vector
Pt = [Pt(1); : : : ; Pt(L)]

0, where Pt(q) gives the proportion of duopolies with
strategy pair q 2 L at time t. We can write the population dynamics as:

Pt+1 = TtPt (8)

This equation is a non-stationary Markov process, since in general the
transition matrix T varies with t. The transition matrix will vary over time
as pairs change aspiration state (�t varies), and in addition the switching
matrix St may vary. The causal mechanism is that the current Pt determines
the average pro�t rate ��t, which determines the aspiration state matrix �t,
which then determines the proportions of each location q experimenting, and
the switching matrix the proportions of experimenting pairs to r 2 L. In
general, such processes are hard to analyse. However, in the absence of
noise (� = � = 0) the dynamics can be solved analytically under certain
assumptions. In order to clarify this, let us make the following de�nitions:

Sym � L where (i; j) 2 Sym i� �i;j = �j;i

S = arg max
Sym

�i;j

�S = argmax
Sym

[(�i;j + �j;i)=2]

maxav = arg max
L

[(�i;j + �j;i)=2]

Sym is the set of payo� symmetric pairs; S is the set of elements of Sym
which maximize joint payo�; �S is the set of pairs that maximizes the joint
payo� over pairs in Sym; maxav maximizes the joint payo� over all pairs L.
We can make two assumptions, as in Dixon (1996):
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A1 : �S = maxav

A2 : There exists ' > 0 such that for all t = 0 : : :1, and all q 2 L, Sq;r
t in

(4) satis�es:

�z;t(q; r) > ' for z = 2 : : : 4 and r 2 D(z; q) if z = 1, �1t(q; r) = 1 i�
q = r and �1t(q; r) = 0 otherwise.

Theorem 1 A1 and A2, � = � = 0. If P0(S) > 0, then as t ! 1,

Pt(S)! 1.

The Cournot model we use for the simulations satis�es A1. The switching
rules we have employed may or may not satisfy A2, which states that all of
the feasible destination elements of the switching matrix St must be greater
than ' in learning states 2{4. This is generally violated by BR dynamics
since non-best responses have zero probabilities. With IM, since Pt(q) may
go to zero, A2 can also be violated. Hence we need to simulate the system
in equation (8).

4 Results: Simulating the The Cournot Du-

opoly Model

In this section we present our simulation results with the three di�erent
switching rules RS, IM and BR. Since RS can be interpreted as pure noise, we
are also considering mixtures of random switching with the other two rules
to represent \noisy" versions of those rules. These di�erent rules express
di�erent ways of computing the matrix St of switching probabilities. We will
also consider for each process di�erent levels of noise in the experimentation
decision, � and �. These imply particular speci�cations of the noise matrix
N used to calculate the of experimentation probabilities. In section 4.1 we
consider the noiseless (� = � = 0) version of all three switching rules. Then
is sections 4.2-4 we consider the di�erent switching regimes.

We have adopted the simplest possible Cournot model as an example of
the general model presented in the previous section. The market price p is a
linear function of the output produced by the two �rms at the location:

p = max [0; 1� xi � xj]

where xi; xj � 0 are the outputs of the two �rms. We assume that there
are no production costs. The price can be interpreted as the price net of
constant average production costs so that the model can allow for constant
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Table 1: Cournot Duopoly: Reference Points

outcome output pro�t per �rm
Cournot-Nash Equilibrium x = y = 1

3
0.1111

Joint-Pro�t Maximum x = y = 1
4

0.1250
Stackelberg x = 1

2
,y = 1

4
0.1250, 0.0625

Walrasian 1� x� y = 0 0

unit production costs. In this case, the pro�ts of the xi-�rm are: �i = xi � p.
We identify some of the key reference points of the model in table 1.

We have reported the pro�t levels to 4 s.f. In this sort of Cournot-
Nash model, the outputs of the two �rms are strategic substitutes (the best-
response functions are downward sloping), and the payo� of each �rm is
decreasing (when positive) in the output of the other �rm. In order to gen-
erate a �nite strategy set from this model, we simply construct a grid of
outputs, so that each strategy is an output level. The payo� matrix � gives
the payo�s �i;j to �rm producing output levels i = 1 : : :K when the other
�rm is producing output levels j = 1 : : : K.

The simulations we have made are based on two speci�cations of the set of
permissible outputs. In both cases the set of outputs (�rm types or strategies)
is generated by a grid search over the interval [0:1; 0:6]. In speci�cation 1
there are 11 �rm types and hence 66 pairs, and the granularity of the grid
is 0:05; in speci�cation 2, the granularity is 0:025, resulting in 21 �rm types,
and 231 pairs. In both cases we perturb the grid slightly to ensure that the
Cournot �rm (output 0:3333) is included. In section 4.1 we use the large
set (speci�cation 2), and for the rest of the results we use speci�cation 1
unless otherwise speci�ed. We report all outputs and pro�ts to 4 s.f. unless
otherwise stated.

4.1 The case of no noise in the decision to experiment

(� = � = 0)

From Dixon (1996), we know that under the assumption that the switching
probabilities are bounded away from zero, the learning process outlined in
this paper will lead asymptotically to all duopolies being JPM, with a level
of pro�ts 0:125. However, the Theorem tells us little or nothing about the
path to this position. It is useful, therefore to consider how the population
evolves when there is no experimental noise. In fact, of the three switching
regimes that we consider, only the random switching rule strictly satis�es
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the assumptions of the theorem, since imitation and best response can or do
involve some switching probabilities being zero (or arbitrarily close to it).
However, as we shall see this appears not to matter in the case of imitation.
In all three cases, the initial position was the uniform distribution, so that
all pairs of outputs are represented equally.

Figure 1: Evolution under RS.

Firstly, let us compare random switching and imitation. In the lower
half of �g. 1 we have the evolution of average pro�ts under RS, and in the
lower half of �g. 2 the average pro�ts under IM. Above them we have the
population shares of four of the 231 pairs. These are all symmetric pairs with
outputs as in table 2.

Note that the scale in Figures 1 and 2 is logarithmic. We make the
following observations.

1 Both switching processes converge on the collusive outcome5, with the
proportion of locations with JPM �rms tending to unity. Furthermore,
since the JPM location is an absorbing state, the share of JPM locations

5
Note, however, that for IM to converge to JPM, it is necessary that the initial pro-

portion of �rms choosing 0:125 needs to be strictly positive, otherwise the probability of

switching to 0:125 will always be 0.
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Figure 2: Evolution under IM.

is monotonic. However, under IM the convergence is much quicker:
within 200 periods, the share of JPM locations is 95:26%, whereas
with RS, at the same stage, the proportion is only 11:10%. This is a
very stark di�erence which arises because the probability of �rms that
experiment arriving at the JPM pair evolves very di�erently. Under
IM, the probability that a �rm which is experimenting chooses 0:25
is equal to the share of this output in the population. As the JPM
location becomes more common, this probability increase, thus if 90%
of �rms are 0:25, then a pair in aspiration state 4 has a 0:81 transition
probability of switching to the JPM location. However, under RS, the
probability of a pair in aspiration state 4 switching to JPM is always
the same: 1=K2 (0:002267 when K = 21 as in our �rst speci�cation of
the set of permissible outputs).

2 If we compare the path of average pro�ts, we can see that they are
very di�erent. Under RS, average pro�ts are subject to discrete jumps
and the time path is highly non-monotonic. The reason for this is that
there are discrete and discontinuous changes in the transition matrix as
the level of pro�ts changes. Starting from an initial value, all locations
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Table 2: four reference pairs

type output
0.20

JPM 0.25
0.30

Cournot 0.3333

with both �rms earning above average will be temporary \absorbers",
in the sense that there will be net in
ows from the locations where one
or both �rms are earning below average. However, at certain times the
level of average pro�ts equals the pro�ts of the least pro�table �rm
at locations with a particular pair of outputs. As soon as the average
pro�t rises, all of these locations switch from aspiration state 1 to state
2, 3 or 4. This will cause a discrete fall in pro�ts, since under RS all
outputs are equally likely, and even unpro�table pairs of outputs will
result.

3 Under IM, the path of pro�ts is smooth and only slightly non-monotonic.
This behaviour results from the fact that in learning states 2, 3 or 4,
the pair is more likely to transit to an above average pair.

4 In both cases, in the early stages, JPM is not the most common pair.
In fact, both the symmetric locations 0:3 and 0:3333 (Cournot) initially
emerge as more common than JPM. This occurs because in the Cournot
model, the �rm with the larger market share tends to earn more pro�ts.
Thus both 0:3 and 0:3333 have in
ows from asymmetric pairs. For
example, if we have the pair (0:25, 0:3333), the pro�ts of the two �rms
are (0:1042, 0:1388). Clearly, the 0:25 �rm will experiment at low
levels of pro�t, and some of these �rms will choose either 0:3 or 0:3333.
Thus the symmetric locations 0:3 and Cournot will absorb �rms from
these asymmetric locations. The argument does not hold for symmetric
locations with larger outputs, since at these the levels of pro�ts are
too low (for example at the symmetric location 0:4 the payo� is 0:08,
as compared to 0:1111 at Cournot and 0:12 at 0:3) and they are not
\absorbing" for long enough.
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4.2 Noise in the experimentation decision with ran-

dom switching.

The introduction of noise into the decision to experiment substantially
alters the dynamics of the system. Most importantly, if � > 0 the JPM
location is no longer absorbing: the share of locations at JPM can
decline. We ran simulations which started from a uniform distribution
of locations over pairs. We considered di�erent magnitudes of noise,
and ran simulations where � = � > 0, and simulations with just � > 0
(� = 0). The reference magnitudes for noise were 0:1, 0:01, 0:001 and
0:0001 (we found that noise higher than 0:1 made little di�erence).
With noise, the simulations take longer to run, and we used the small
grid with 11 �rm types (66 pairs). In Figures 3 and 4 we depict the
shares and average payo� series for low noise and high noise with � and
� noise.

Figure 3: Evolution under RS (� = � = 0:0001).

With a small level of noise, the time series are very similar to the
no noise case. In particular, the proportion of JPM locations remains
monotonic, and the average pro�t is highly non-monotonic. This means
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Figure 4: Evolution under RS (� = � = 0:1).

that the no-noise case is robust. However, with high levels of noise, the
picture is rather di�erent. The main di�erences are:

5 The series for proportions and pro�ts converged after a few periods
(34), and they are much smoother.

6 The limiting level of pro�ts is low: 0:0944, re
ecting that the
average market is more competitive than the Cournot outcome.

7 A lot of pairs survive. The 4 reference pairs together have a share
of only 10:13%. However, the Cournot pair has the largest popu-
lation share (3:1%): this is followed closely by the JPM location
and the other reference locations.

How does the magnitude of the noise level in
uence the outcome of the
population dynamics? In Fig. 5, we show the end distribution at the
di�erent magnitudes of noise. We note that:

8 The share of JPM (0.25) declines with noise, as do all of the
reference locations.
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other loc.

0.3333

0.3

0.25

0.2

0

0.25

0.5

0.75

1

0.0001 0.001 0.01 0.1

Figure 5: End distributions of RS noisy evolutionary processes.

9 JPM is not the largest proportion: Cournot (0:3333) and 0:3 both
have larger shares for magnitudes above 0:0001.

10 With noise equal to 0:01 we discovered a limit cycle of 4 periods.
This is depicted in Fig. 6. We can see that the Cournot and JPM
pairs cycle slightly.

4.3 Imitation with noise

The presence of noise with IM introduces a very di�erent population
dynamic to the model. This is because the switching probabilities
now depend on the population proportions. Most importantly, this
means that the initial position can be important in determining the
�nal outcome.

Let us �st consider the simulations for di�erent levels of noise with the
same initial position of a uniform distribution. We show the case of
� = � = 0:0001 in Fig. 7, and � = � = 0:01 in Fig. 8. In these (and the
intermediate case), the pattern is the same.

11 The proportion of JPM locations is non-decreasing. However,
in the initial stages, two other pairs have the largest population
share: the Cournot and the 0:3 pairs. The limiting share of JPM
is close to 1
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Figure 6: Random switching with noise (� = � = 0:01).

12 Average pro�ts are not monotonic when � = � = 0:01, but almost
so. They are monotonic when � = � = 0:0001. In both cases, the
average pro�ts tend to a �gure close to 0:125.

Both of these observations are consistent with the no-noise case in
section 4.1: the Cournot and 0:3 pairs decline rapidly after the level
of the average payo� exceeds their own. However, with high noise 0:1,
the system looks rather di�erent. In Fig. 9 we give the time series of
payo� and proportions.

13 With high noise, the 0:3 location ends up with a share close to
unity: this is at a level of competitiveness in between the JPM
and Cournot pairs, with an average pro�t of 0:12.

In order to better understand the behaviour of the system under IM
with high levels of noise, we restricted our attention to a limited range
of outputs: 0:25, 0:3, and 0:3333, with 6 possible pairs. These are
the only output levels that seem to survive with imitation. Using this
restricted set of outputs, we were able to explore the issue of the initial
position systematically. We depict the state of the economy in terms
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Figure 7: Imitation with noise (� = � = 0:0001).

Table 3: Proportion of pairs
pair 1,1 1,2 1,3 2,2 2,3 3,3

proportion P̂ 2
1 2P̂1P̂2 2P̂1P̂3 P̂ 2

2 2P̂2P̂3 P̂ 2
3

of the shares of the 3 output levels: the simulations are run with the
6 pairs, and what we see on the unit triangle is the result. With our
imitation rule, the switching probabilities are related to the proportions
of each type, which is summarised by the position in the unit simplex.
We ran 1275 simulations for each level of noise. This was generated by
a grid on the unit triangle: the granularity of the grid was 0:02 ( 1

50
).

The initial position in terms of �rm proportions is then mapped onto
pairs by the formula depicted in Table 3.

This distribution of �rm types over pairs is thus proportional to the
proportions of �rm types. The results are depicted in Fig. 10a-d6. In
Fig. 10a-d there are four di�erent levels of � noise (� = 0).

6
The convergence criterion used was Pt �Pt�1 � 0:0000316.
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Figure 8: Imitation with noise (� = � = 0:01).

14 Without noise, we know that there are two attractors7. Thus, if
we start from distributions along the bottom of the simplex, the
attractor will be the the 0:3 vertex (the right one). However, if
the initial proportion of 0:25 �rms is strictly positive, then the
attractor is all �rms being 0:25 (the top 0:25 vertex).

15 With noise, we found that there were two types of attractors. In
the �rst case, most �rms where choosing 0:25; in the second case
most �rms were choosing 0:3. Due to noise, it is not possible to
have all �rms choosing the same strategy. The levels of � noise
are 0:0001, 0:001, 0:01 and 0:1. The dark area at the bottom is
the basin of attraction for the mainly 0:3 attractor. As we can
see, it gets bigger as � increases in size. This explains the results
with the full set of �rms (ix): with � = 0:1 the uniform initial
distribution is within the basin of attraction of the mainly 0:3 end
distribution.

7
With 3 strategies there are 6 pairs as depected in table 3. If the initial proportion of

JPM locations is strictly positive then JPM is the attractor. If the initial proportion of

JPM locations is zero, and the proportion of pair 0:3 is strictly positive, then the attractor

is the pair 0:3
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Figure 9: Evolution under IM with noise (� = 0:1).

The dependence of the limiting distribution on the initial position with
IM is due to the fact that the switching probabilities depend on the
point you are at in the unit simplex. This sensitivity to the initial
position is lacking in the case of BR and RS. Once a level of output
becomes predominant, it is likely that it will increase, since a large
proportion of switching �rms will switch towards it.

4.4 Best Response (BR) dynamics

In table 4, we list the strategies used in the simulation and the best re-
sponse(s) to them for the case where there are 11 �rm types.

Note that in three cases the best response is not unique, there being two.
In this case, we assume that the switching probabilities are equal (0.5).

We have run one simulation without noise with the large set of �rm types
(21). We have also run 8 simulations with the 4 magnitudes of noise, one set
with � noise, and one with both types of noise.

In the case of absence of noise, the results were in contrast to the case of
IM and RS. We found that the simulations converged after only 7 iterations,
and that the distribution of �rm types and locations pairs was quite di�erent
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JPM
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Figure 10: Basins of attraction of the IM rule.

to the other two cases. Perhaps the main reason for this di�erence is that the
noiseless BR dynamic places a zero probability on switching to all locations
except the current best responses. In Fig. 11, we depict the evolution of
proportions and average payo� under noiseless BR.

16 Without noise, the most common pair is the Cournot pair, with a lim-
iting share of 0:2338 and the limiting level of average pro�ts is 0:1088.
Those locations where both �rms earn above 0:1088 never experiment,
and their population shares remain constant.

17 Unlike RS and IM, it is possible for asymmetric pairs to survive in the
limiting distribution. The reason is that one �rm can be earning above
average pro�ts, and the low pro�t �rm is choosing the best response
to the high output/high pro�t �rm. Consider the example of the pair
(0:3, 0:4). This pair survives with a proportion 4:33%. The high output
�rm earns 0:12, and so does not experiment: the low output �rm earns
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Table 4: Best Response correspondence.

Strat. Quantity Best Response Strat. Quantity Best Response
1 0.1 8 7 0.4 5
2 0.15 7,8 8 0.45 4,5
3 0.2 7 9 0.5 4
4 0.25 7 10 0.55 3,4
5 0.3 6 11 0.6 3
6 0.3333 6

Figure 11: Evolution under BR.

only 0:09 which is below average, but since the low output is the best
response to the high output, it does not change its output. In the
limiting distribution, the share of asymmetric output pairs is 65:37%.
BR is a very limited form of experimentation. Its restrictive nature
leads to this odd form of \locking" to low pro�t, but best response
strategies.

With experimental noise, however, the system behaves very di�erently to

28



Figure 12: Evolution under BR with noise (� = 0:1).

the no noise case. So long as � > 0, there is a strictly positive probability
that the �rms with above average pro�ts will switch to their best responses
to the other �rm. We depict the simulations for � = 0:1 and � = 0:001 in
Figures 12 and 13. In all cases we have looked at, we found:

18 So long as � > 0, the Cournot pair is the one which has the lion's
share of the population in the limiting distribution (the value of � is
unimportant). This is certainly very close to unity with large values of
�, and possibly also with smaller values8.

The reason behind [18] is fairly intuitive. If all �rms (irrespective of
current pro�ts) are changing their strategy in accord with the BR dynamic,
then the attractor is the Cournot pair. When � > 0 all �rms are switching
with a strictly positive probability, and the result is much the same (although
the speed of convergence is of course slower when � is smaller). If � = � = 1all
�rms always choose their best response, which leads rapidly to the Cournot
outcome, as in the standard Cournot stability analysis.

8
With � = 0:0001 the simulation had not converged after 6000 iterations.
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Figure 13: Evolution under BR with noise (� = 0:001).

4.5 Mixed switching rules.

In this section we consider mixtures of switching rules. In particular, we
consider the two types that result from mixing IM and BR with RS. More
speci�cally, we take a convex combination of the IM switching probability
with the RS switching probability, with 
 being the weight of the RS. This
is an interesting exercise, since we can think of RS as representing \noise" in
the switching process. Hence whereas � and � represent noise in the exper-
imentation decision (the N matrix), 
 represents the noise in the switching
process represented by St. We have run simulations: �rstly, with no experi-
mental noise (� = � = 0), we have 3 values for 
 (0:25, 0:5, 0:75); secondly for

 = 0:5 we introduce di�erent levels of experimental noise � = � = 0:0001,
0:001, 0:01, 0:1 , and also with just the �-noise. As in the cases of RS and
IM, we found that � noise does not a�ect the shape of things.

In Figures 14 - 16 we depict the mixed rule with no noise, and di�erent
values of 
. As we can see:

19 No noise � = � = 0, IM and RS. For all three values of 
, we found that
the pattern of the evolution of proportions was roughly the same. After
an initial period where the Cournot location began to predominate,
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the level of average pro�ts passes 0.111 and from then on the JPM
pair becomes the most common and tends to unity (as predicted by
the Theorem). However, the evolution of pro�ts and proportions is
smoother and quicker when 
 is larger (IM is more predominant).

In �gures 17 - 19 we depict the end distribution of outputs for di�erent
values of � noise (� = 0:1; 0:01; 0:001) with 
 = 0:5.

20 Introducing experimental noise alters the evolution of the population,
with low noise (�g. 19), the pattern is similar to the no-noise case, with
JPM emerging as the predominant pair after an initial phase during
which Cournot, then 0:3 predominate. However with an intermediate
level of noise as in �g. 18, the 0:3 becomes predominant and average
pro�ts tend to 0:12. With high noise (�g. 17) however we observe a
cicle with 0:3 and the Cournot location with a combined share of about
0:4 and the rest being a mixture of other symmetric and non symmetric
locations. Because of the cycle average pro�ts do not converge, but also
cycle a little below the Cournot output.

5 Conclusions and Extensions

In this paper we have adopted a simulation methodology to explore how
robust the theoretical results of Dixon (1996) are concerning the learning
model with a known average, as well as exploring how the model behaves
dynamically. Each of the three switching models has interesting and distinct
features. The BR dynamic was very di�erent to the other two, in the sense
that the switching probabilities are non-zero only for best responses. This
can give rise to market outcomes that are very di�erent to the collusive
outcome, and in particular with small amounts of noise the Cournot pair
has a large population share. However, the BR is a a very rigid rule that
requires a �rm to \switch" to its best responses even when it is currently
choosing a the same best response. Experimental behaviour is very limited.
The IM and the RS switching regimes give rise to the JPM outcome when
there is little noise, and allow for the real possibility of experimentation
across a wide range (possibly all) of the available strategies. The interesting
di�erence between IM and the other two switching rules is that it is path
dependent, and the switching probabilities depend on the current population
proportions of strategies.

Clearly, our simulations can be generalised in several ways. We will list a
few of the most important generalisations. First, the noise parameters � and
� can be made to depend on time and the aspiration level. Early on, people
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tend to experiment more, and later on less: this can be captured by having
� decreasing over time and possibly tending to zero, and � starting o� small
and increasing to some upper limit strictly below unity. The probability of
experimentation could also be made to depend on the distance of current
pro�ts from the aspiration level. Thus � and � could be combined into
a single variable, the experimentation probability �, which is a decreasing
function of the di�erence between current pro�ts and the aspiration level.
The extreme case in Dixon (1996) is � = 0 when pro�ts are at least at the
aspiration level, and 1 when they are below: the function could also be time
dependent. Secondly, the dynamics of the aspiration level could be more
complicated (for example a partial adjustment model). These and further
extensions await further research.
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A Appendix

All the simulations were run on a Sun Sparcstation 5 using Gauss ver. 3.2.18
for Solaris 2.4. In a few cases the output of Gauss was post-processed by
Mathematica ver 2.21 for Windows.

The following table summarises the results of 42 of the many simulations
we run. The �rst column of the table indicates the simulation. The second
column speci�es the learning rule adopted (the simulations marked by ywere
run on the large speci�cation of the set of permissible outputs). Columns 3
to 5 contain the values of 
, � and � noise (where the values in columns 4
and 5, when di�erent form 0, are the exponents of 1:0e�x); columns 6 to 9
the shares of the population at the four reference pairs, and �nally columns
10 the number of iterations necessary to stop the the evolutionary process.

Table 5: Details of the simulations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
N. Rule 
 � � 0:2 JPM 0:3 Cournot Iter.

1 RS y 0 0 0 0.0001 0.9862 0.0000 0.0000 4633
2 RS 0 4 4 0.0002 0.9750 0.0003 0.0003 1019
3 RS 0 3 3 0.2376 0.3000 0.3890 0.0009 309
4 RS 0 2 2 0.0773 0.1150 0.1168 0.1850 1548
5 RS 0 1 1 0.0197 0.0259 0.0271 0.0316 34
6 RS 0 4 0 0.0001 0.9787 0.0002 0.0002 1569
7 RS 0 3 0 0.2340 0.2991 0.3951 0.0009 968
8 RS 0 2 0 0.0785 0.1167 0.1175 0.1849 637
9 RS 0 1 0 0.0222 0.0279 0.0279 0.0301 60
10 IM y 0 0 0 0.0000 0.9986 0.0000 0.0000 1778
11 IM 0 4 4 0.0000 0.9931 0.0000 0.0000 311
12 IM 0 3 3 0.0000 0.9931 0.0000 0.0000 316
13 IM 0 2 2 0.0000 0.9929 0.0000 0.0000 336
14 IM 0 1 1 0.0000 0.0000 0.9902 0.0000 414
15 IM 0 4 0 0.0000 0.9931 0.0000 0.0000 311
16 IM 0 3 0 0.0000 0.9930 0.0000 0.0000 312
17 IM 0 2 0 0.0000 0.9930 0.0000 0.0000 330
18 IM 0 1 0 0.0000 0.0000 0.9918 0.0000 347
19 BR y 0 0 0 0.0000 0.0173 0.0260 0.2338 8
20 BR 0 4 4 0.0402 0.0704 0.0704 0.2817 4102
21 BR 0 3 3 0.0073 0.0128 0.0129 0.7662 2111
22 BR 0 2 2 0.0000 0.0001 0.0001 0.9973 752
23 BR 0 1 1 0.0000 0.0000 0.0000 1.0000 148
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Table 5: Details of the simulations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
N. Rule 
 � � 0:2 JPM 0:3 Cournot Iter.

24 BR 0 4 0 0.0402 0.0704 0.0704 0.2818 4102
25 BR 0 3 0 0.0005 0.0009 0.0009 0.9700 4730
26 BR 0 2 0 0.0000 0.0001 0.0001 0.9973 751
27 BR 0 1 0 0.0000 0.0000 0.0000 0.9998 100
28 IM/RS y 0.25 0 0 0.0000 1.0000 0.0000 0.0000 326
29 IM/RS y 0.5 0 0 0.0000 1.0000 0.0000 0.0000 209
30 IM/RS y 0.75 0 0 0.0000 1.0000 0.0000 0.0000 231
31 IM/RS 0.5 4 4 0.0000 0.9995 0.0000 0.0000 105
32 IM/RS 0.5 3 3 0.0000 0.9956 0.0000 0.0000 107
33 IM/RS 0.5 2 2 0.0036 0.0048 0.9578 0.0004 340
34 IM/RS 0.5 1 1 0.0041 0.0104 0.1611 0.1550 196
35 IM/RS 0.5 4 0 0.0000 0.9995 0.0000 0.0000 105
36 IM/RS 0.5 3 0 0.0000 0.9956 0.0000 0.0000 107
37 IM/RS 0.5 2 0 0.0036 0.0048 0.9584 0.0003 339
38 IM/RS 0.5 1 0 0.0044 0.0100 0.1399 0.1986 760
39 BR/RS 0.01 0 0 0.0000 0.9948 0.0000 0.0039 9343
40 BR/RS 0.1 0 0 0.0000 0.9955 0.0000 0.0026 1144
41 BR/RS 0.5 0 0 0.0000 0.9981 0.0000 0.0003 516
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Figure 14: Mixed switching rule: IM and RS (
 = 0:25).

Figure 15: Mixed switching rule: IM and RS (
 = 0:5).
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Figure 16: Mixed switching rule: IM and RS (
 = 0:75).

Figure 17: Mixed rule with noise: IM and RS (
 = 0:5, � = 0:1).
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Figure 18: Mixed rule with noise: IM and RS (
 = 0:5, � = 0:01).

Figure 19: Mixed rule with noise: IM and RS (
 = 0:5, � = 0:001).
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