A Systematic Review
Of Water Fluoridation
A Systematic Review of Public Water Fluoridation

Marian McDonagh¹
Penny Whiting¹
Matthew Bradley¹
Janet Cooper²
Alex Sutton³
Ivor Chestnutt²
Kate Misso¹
Paul Wilson¹
Elizabeth Treasure²
Jos Kleijnen¹

¹NHS Centre for Reviews and Dissemination, University of York
²Dental Public Health Unit, The Dental School, University of Wales, Cardiff
³University of Leicester, Department of Epidemiology and Public Health

September 2000
The NHS Centre for Reviews and Dissemination (CRD) is a facility commissioned by the NHS Research and Development Division. Its aim is to identify and review the results of good quality health research and to disseminate actively the findings to key decision makers in the NHS and to consumers of health care services. In this way health care professionals and managers can ensure their practice reflects the best available research evidence. The reviews will cover: the effectiveness of care for particular conditions; the effectiveness of health technologies; and evidence on efficient methods of organising and delivering particular types of health care.

Further Information

General Enquiries: 01904 433634
Information Service 01904 433707
Publications: 01904 433648
Fax: 01904 433661
Email: revdis@york.ac.uk

CRD Reports

4. Undertaking Systematic Reviews of Research on Effectiveness. £7.50
 CRD Guidelines for those Carrying Out or Commissioning Reviews (1996)
5. Ethnicity and Health: Reviews of literature and guidance for purchasers in the Areas of cardiovascular disease, mental health and haemoglobinopathies (1996) £12.50
 Part I - Hospital Volume and Quality of Health Outcomes £6.00
 Part II - Volume and the scope of activity and hospital costs £12.50
 Part III - Concentration, patient accessibility and utilisation of services £9.50
 Systematic Review of Interventions in the Treatment and Prevention of Obesity (1997) £12.50
10. A Systematic Review of the Effectiveness of Interventions for Managing Childhood Nocturnal Enuresis (1997) £12.50
17. Therapeutic Community Effectiveness. Community Treatment for People with Personality Disorders and Mentally Disordered Offenders (1999) £12.50
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Purpose</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.</td>
<td>Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Literature search strategy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Inclusion criteria</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Assessment of papers for inclusion</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>Data extraction</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>Assessment of study validity</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>Data analysis</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3.</td>
<td>General results</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>General results</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Validity assessment</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>Extracted data</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Protocol changes</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4.</td>
<td>Objective 1: What are the effects of fluoridation of drinking water</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>supplies on the incidence of caries?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Studies in which fluoridation was initiated</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Studies in which fluoridation was discontinued</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Studies which met inclusion criteria but were not included in the</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>main analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>Studies with more than two study areas</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>Possible confounding factors</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>Meta-regression</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>Numbers needed to treat</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>Publication bias</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>Discussion</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>5.</td>
<td>Objective 2: If water fluoridation is shown to have beneficial effects,</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>what is the effect over and above that offered by the use of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>alternative interventions and strategies?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>Discussion</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>6.</td>
<td>Objective 3: Does water fluoridation result in a reduction of caries</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>across social groups and between geographical locations, bringing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>equity?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Proportion (%) of caries-free children stratified by the Registrar</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General’s classification of social class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>dmft/DMFT stratified by the Registrar General’s classification of</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>social class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>Other studies looking at dental decay, water fluoridation and social</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>Discussion</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Objective 4: Does water fluoridation have negative effects?</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>7.</td>
<td>Dental fluorosis</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Proportion of the population with dental fluorosis</td>
<td>35</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td>Proportion of the population with fluorosis of aesthetic concern</td>
<td>38</td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td>Sensitivity analysis</td>
<td>39</td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td>Studies that met inclusion criteria but were not included in the main analysis</td>
<td>42</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>Prevalence of fluorosis over time</td>
<td>43</td>
</tr>
<tr>
<td>7.6</td>
<td></td>
<td>Possible confounding factors</td>
<td>45</td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td>Potential publication bias</td>
<td>45</td>
</tr>
<tr>
<td>7.8</td>
<td></td>
<td>Discussion</td>
<td>45</td>
</tr>
<tr>
<td>7.2</td>
<td>8.</td>
<td>Bone fractures and bone development disorders</td>
<td>46</td>
</tr>
<tr>
<td>8.1</td>
<td></td>
<td>Studies that met inclusion criteria but were not included in the main analysis</td>
<td>50</td>
</tr>
<tr>
<td>8.2</td>
<td></td>
<td>Potential confounding factors</td>
<td>50</td>
</tr>
<tr>
<td>8.3</td>
<td></td>
<td>Meta-regression</td>
<td>51</td>
</tr>
<tr>
<td>8.4</td>
<td></td>
<td>Publication bias</td>
<td>53</td>
</tr>
<tr>
<td>8.5</td>
<td></td>
<td>Discussion</td>
<td>53</td>
</tr>
<tr>
<td>7.2</td>
<td>9.</td>
<td>Cancer studies</td>
<td>54</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>Cancer mortality from all causes</td>
<td>54</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>Osteosarcoma and bone cancer</td>
<td>56</td>
</tr>
<tr>
<td>9.3</td>
<td></td>
<td>Cancer of the thyroid gland</td>
<td>57</td>
</tr>
<tr>
<td>9.4</td>
<td></td>
<td>Studies that met inclusion criteria but were not included in the main analysis</td>
<td>57</td>
</tr>
<tr>
<td>9.5</td>
<td></td>
<td>Possible confounding factors</td>
<td>57</td>
</tr>
<tr>
<td>9.6</td>
<td></td>
<td>Discussion</td>
<td>58</td>
</tr>
<tr>
<td>7.2</td>
<td>10.</td>
<td>Other possible negative effects</td>
<td>59</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>Possible confounding factors</td>
<td>61</td>
</tr>
<tr>
<td>10.2</td>
<td></td>
<td>Studies that met inclusion criteria but were not included in the main analysis</td>
<td>63</td>
</tr>
<tr>
<td>10.3</td>
<td></td>
<td>Discussion</td>
<td>63</td>
</tr>
<tr>
<td>7.2</td>
<td>11.</td>
<td>Objective 5: Are there differences in the effects of natural and artificial water fluoridation?</td>
<td>64</td>
</tr>
<tr>
<td>11.1</td>
<td></td>
<td>Caries studies</td>
<td>64</td>
</tr>
<tr>
<td>11.2</td>
<td></td>
<td>Possible negative effect studies</td>
<td>64</td>
</tr>
<tr>
<td>11.3</td>
<td></td>
<td>Discussion</td>
<td>66</td>
</tr>
<tr>
<td>7.2</td>
<td>12.</td>
<td>Conclusions</td>
<td>67</td>
</tr>
<tr>
<td>12.1</td>
<td></td>
<td>Objective 1: What are the effects of fluoridation of drinking water supplies on the incidence of caries?</td>
<td>67</td>
</tr>
<tr>
<td>12.2</td>
<td></td>
<td>Objective 2: If water fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?</td>
<td>67</td>
</tr>
<tr>
<td>12.3</td>
<td></td>
<td>Objective 3: Does water fluoridation result in a reduction of caries across social groups and between geographical locations, bringing equity?</td>
<td>67</td>
</tr>
<tr>
<td>12.4</td>
<td></td>
<td>Objective 4: Does water fluoridation have negative effects?</td>
<td>67</td>
</tr>
<tr>
<td>12.5</td>
<td></td>
<td>Objective 5: Are there differences in the effects of natural and artificial water fluoridation?</td>
<td>68</td>
</tr>
<tr>
<td>12.6</td>
<td></td>
<td>Limitations of this systematic review</td>
<td>68</td>
</tr>
<tr>
<td>12.7</td>
<td></td>
<td>Other factors to be considered</td>
<td>68</td>
</tr>
<tr>
<td>12.8</td>
<td></td>
<td>Information to guide practice</td>
<td>69</td>
</tr>
<tr>
<td>12.9</td>
<td></td>
<td>Implications for research</td>
<td>69</td>
</tr>
<tr>
<td>7.2</td>
<td>13.</td>
<td>Bibliography</td>
<td>71</td>
</tr>
</tbody>
</table>
Appendices

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Glossary</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Detailed literature search strategies</td>
<td>103</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Included study data tables</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Caries studies: baseline data</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Caries studies: results</td>
<td>120</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Social class studies: baseline data</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Social class studies: results</td>
<td>129</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Fluorosis studies: baseline data</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Fluorosis studies: results</td>
<td>153</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Bone studies: baseline data</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Bone studies: results</td>
<td>174</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Cancer studies: baseline data</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Cancer studies: results</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Other possible adverse effects studies: baseline data</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Other possible adverse effects studies: results</td>
<td>208</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Included study validity assessment tables</td>
<td>213</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Measurement of dental caries</td>
<td>222</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Comparison of caries prevalence at baseline and final examinations</td>
<td>224</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Meta-regression for mean difference of decayed, missing and filled</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>teeth – models not presented in main analysis</td>
<td></td>
</tr>
<tr>
<td>Appendix H</td>
<td>Measurement of social class</td>
<td>227</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Fluorosis indices</td>
<td>228</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Algebraic equation for fluorosis regression model</td>
<td>234</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Regression analysis for fluorosis of aesthetic concern – results of</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>the multiple regression analysis</td>
<td></td>
</tr>
<tr>
<td>Appendix L</td>
<td>Meta-regression models with study validity score included</td>
<td>236</td>
</tr>
<tr>
<td>Appendix M</td>
<td>Protocol changes</td>
<td>238</td>
</tr>
</tbody>
</table>
TABLES AND FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Mean difference of the change in the proportion (%) of caries-free children between the fluoride and control areas</td>
<td>14</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean difference of the change in dmft/DMFT between the fluoride and control areas</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean difference of the change in other caries measurements between the fluoride and control areas</td>
<td>16</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean difference in caries outcome measures in studies in which fluoridation was discontinued</td>
<td>17</td>
</tr>
<tr>
<td>4.5</td>
<td>Included studies from which relevant data could not be derived</td>
<td>18</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of the univariate meta-regression analysis for the proportion of caries-free children</td>
<td>20</td>
</tr>
<tr>
<td>4.7</td>
<td>Results of the multivariate meta-regression analysis for the proportion of caries-free children</td>
<td>21</td>
</tr>
<tr>
<td>4.8</td>
<td>Results of the univariate meta-regression analysis for dmft/DMFT</td>
<td>22</td>
</tr>
<tr>
<td>4.9</td>
<td>Results of the multivariate meta-regression analysis for dmft/DMFT</td>
<td>22</td>
</tr>
<tr>
<td>4.10</td>
<td>Meta-analysis of the risk difference in the proportion of caries-free children</td>
<td>23</td>
</tr>
<tr>
<td>5.1</td>
<td>Caries studies completed after 1974 in which fluoridation was initiated</td>
<td>26</td>
</tr>
<tr>
<td>5.2</td>
<td>Caries studies completed after 1974 in which fluoridation was discontinued</td>
<td>27</td>
</tr>
<tr>
<td>6.1</td>
<td>Proportion of caries-free children by social class and water fluoride level</td>
<td>30</td>
</tr>
<tr>
<td>6.2</td>
<td>dmft/DMFT by age, social class and water fluoride level</td>
<td>31</td>
</tr>
<tr>
<td>7.1</td>
<td>Results of the univariate analysis of the regression of water fluoride level against the proportion of the population affected by dental fluorosis</td>
<td>36</td>
</tr>
<tr>
<td>7.2</td>
<td>Estimated proportion (%) of the population with dental fluorosis at different water fluoride concentrations</td>
<td>36</td>
</tr>
<tr>
<td>7.3</td>
<td>Estimated difference in the proportion of the population with dental fluorosis at various levels of water fluoride concentration</td>
<td>37</td>
</tr>
<tr>
<td>7.4</td>
<td>Results of the multivariate analysis of the regression of water fluoride level against the proportion of the population affected by dental fluorosis</td>
<td>37</td>
</tr>
<tr>
<td>7.5</td>
<td>Multivariate model prediction of the proportion of the population that would be expected to have dental fluorosis at various levels of exposure, method of fluorosis measurement and teeth type</td>
<td>38</td>
</tr>
<tr>
<td>7.6</td>
<td>Proportion of the population with dental fluorosis of aesthetic concern</td>
<td>38</td>
</tr>
<tr>
<td>7.7</td>
<td>Proportion (%) of the population with dental fluorosis of aesthetic concern at different water fluoride concentrations</td>
<td>38</td>
</tr>
<tr>
<td>7.8</td>
<td>Difference in proportions of the population with fluorosis of aesthetic concern comparing different fluoride levels</td>
<td>39</td>
</tr>
<tr>
<td>7.9</td>
<td>Results of the univariate regression of water fluoride level against the proportion of the population affected by dental fluorosis (sensitivity analysis)</td>
<td>40</td>
</tr>
<tr>
<td>7.10</td>
<td>Proportion (%) of the population with dental fluorosis at different water fluoride concentrations (sensitivity analysis)</td>
<td>40</td>
</tr>
<tr>
<td>7.11</td>
<td>Results of the univariate regression of water fluoride level against the proportion of the population affected by fluorosis of aesthetic concern</td>
<td>41</td>
</tr>
<tr>
<td>7.12</td>
<td>Proportion (%) of the population with dental fluorosis of aesthetic concern at different water fluoride concentrations</td>
<td>41</td>
</tr>
<tr>
<td>7.13</td>
<td>Studies that met inclusion criteria but were not included in the main analysis</td>
<td>42</td>
</tr>
<tr>
<td>7.14</td>
<td>Studies that controlled for the effects of other fluoride use</td>
<td>44</td>
</tr>
</tbody>
</table>
8.1 Effect of water fluoridation on hip fracture 48
8.2 Effect of water fluoridation on other fractures 49
8.3 Effect of water fluoridation on bone development disorders 49
8.4 Studies which met inclusion criteria but were not included in the main analysis 50
8.5 Results of the univariate meta-regression analysis for bone fractures 52
8.6 Results of the multivariate meta-regression for bone fracture studies 53

9.1 Effect of fluoridation on cancer incidence and mortality 55
9.2 Studies which present analyses of the same set of data for 20 cities in the United States of America 56
9.3 Association of osteosarcoma, bone and joint cancer incidence and mortality with water fluoride level 56
9.4 Studies that met the inclusion criteria but were not included in the main analysis 57

10.1 Association of various possible adverse effects with water fluoride level 60
10.2 Other possible negative effects considered and the confounding factors controlled for in the analysis 61
10.3 Studies that met inclusion criteria but were not included in the main analysis 62

11.1 Caries experience in naturally, artificially and non-fluoridated areas 64
11.2 Association of cancer incidence and mortality with water fluoride level by method of fluoridation (artificial, natural, not stated) 65
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Review methods</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>Proportion (%) of caries-free children (Mean difference and 95% CI)</td>
<td>12</td>
</tr>
<tr>
<td>4.2</td>
<td>Dmft/DMFT score (Mean difference and 95% CI)</td>
<td>13</td>
</tr>
<tr>
<td>4.3</td>
<td>DMFT/DMFS increment over four years (Mean difference and 95% CI)</td>
<td>14</td>
</tr>
<tr>
<td>4.4</td>
<td>Dmft/DMFT or DMFS score (Mean difference and 95% CI)</td>
<td>16</td>
</tr>
<tr>
<td>6.1</td>
<td>Proportion (%) of caries-free children (95% CI) by social class in high and low fluoride areas</td>
<td>30</td>
</tr>
<tr>
<td>6.2</td>
<td>dmft by social class in high and low fluoride areas</td>
<td>31</td>
</tr>
<tr>
<td>7.1</td>
<td>Proportion of the population with dental fluorosis by water fluoride level together with the 95% upper and lower confidence limits for the proportion</td>
<td>36</td>
</tr>
<tr>
<td>7.2</td>
<td>Proportion of the population with dental fluorosis of aesthetic concern by water fluoride level together with the 95% upper and lower confidence limits for the proportion</td>
<td>39</td>
</tr>
<tr>
<td>7.3</td>
<td>Proportion of the population with dental fluorosis by water fluoride level together with the 95% upper and lower confidence limits for the proportion (sensitivity analysis)</td>
<td>40</td>
</tr>
<tr>
<td>7.4</td>
<td>Proportion of the population with dental fluorosis of aesthetic concern by water fluoride level together with the 95% upper and lower confidence limits for the proportion</td>
<td>41</td>
</tr>
<tr>
<td>7.5</td>
<td>Prevalence of dental fluorosis at different water fluoride levels before 1975 and after 1985</td>
<td>43</td>
</tr>
<tr>
<td>8.1</td>
<td>Bone fracture incidence (Relative risk and 95% CI)</td>
<td>47</td>
</tr>
</tbody>
</table>
The review team gratefully acknowledges the invaluable contributions of the members of the Advisory Board: The Earl Baldwin of Bewdley, House of Lords; Sir Iain Chalmers, UK Cochrane Centre; Dr. Sheila Gibson, Glasgow Homeopathic Hospital; Ms. Sarah Gorin, Help for Health Trust; Professor MA Lennon, Department of Clinical Dental Sciences, University of Liverpool School of Dentistry, Chairman of the British Fluoridation Society; Dr. Peter Mansfield, Director of Templegarth Trust; Professor JJ Murray, Dean of Dentistry, University of Newcastle; Mr. Jerry Read, Department of Health; Dr. Derek Richards, Centre for Evidence-Based Dentistry; Professor George Davey Smith, Department of Social Medicine, University of Bristol; Ms. Pamela Taylor, Water UK.

Special thanks to Professor Trevor Sheldon, Department of Health Studies, University of York, who chaired the Advisory Board.

The team also acknowledges Dr. Keith Abrams, University of Leicester for commentary on the analysis, Marijke Van Gestel for assistance in the early stages of the review, and Vanda Castle for secretarial support.

Thanks to Dr. Alan Glanz from the Department of Health for efficient collaboration on the organisational aspects of the project.

We also greatly appreciate the contributions of many scientists and members of the public who submitted papers for inclusion and made valuable comments about the protocol, data extraction tables and results of the review.
EXECUTIVE SUMMARY

This systematic review has been commissioned by the Chief Medical Officer of the Department of Health to 'carry out an up to date expert scientific review of fluoride and health' (Paragraph 9.20, Our Healthier Nation).

Overall, the aim has been to assess the evidence on the positive and negative effects of population wide drinking water fluoridation strategies to prevent caries. To achieve this aim five objectives were identified:

Objective 1: What are the effects of fluoridation of drinking water supplies on the incidence of caries?

Objective 2: If water fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

Objective 3: Does water fluoridation result in a reduction of caries across social groups and between geographical locations, bringing equity?

Objective 4: Does water fluoridation have negative effects?

Objective 5: Are there differences in the effects of natural and artificial water fluoridation?

Methods

A search of 25 electronic databases (with no language restrictions) and the world-wide-web was undertaken. Relevant journals and indices were hand searched and attempts were made to contact authors for further information.

Quality inclusion criteria were based on a pre-defined hierarchy of evidence (A, B, and C). Studies of efficacy were included if they were of evidence level A or B. In order to allow the broadest search for evidence on potential adverse effects, studies of all levels of evidence were included. Objective specific inclusion criteria, based on selection of participants, intervention, outcomes assessed, and study design appropriate for a given objective were then applied. Study validity was formally assessed using a published checklist modified for this review (CRD Report 4, 1996).

Inclusion criteria were assessed independently by at least two reviewers. Extraction of data from, and validity assessment of, included studies was independently performed by two reviewers, and checked by a third reviewer. Disagreements were resolved through consensus.

Where the data were in a suitable format, measures of effect and 95% confidence intervals (CI) were plotted. Heterogeneity was investigated by visual examination and statistically using the Q-statistic. Where no evidence of heterogeneity was found a meta-analysis was conducted to produce a pooled estimate of the measure of effect. Statistically significant heterogeneity was investigated using meta-regression. Multiple regression analysis was used to explore the relationship between fluoridation and fluorosis.

Results

214 studies met full inclusion criteria for one or more of the objectives. No randomised controlled trials of the effects of water fluoridation were found. The study designs used included 45 ‘before and after’ studies, 102 cross-sectional studies, 47 ecological studies, 13 cohort (prospective or retrospective) studies and 7 case-control studies. Several studies were reported in multiple papers over a number of years.
Results by Objective

Objective 1

A total of 26 studies of the effect of water fluoridation on dental caries were found. For this objective, the quality of studies found was moderate (no level A studies). A large number of studies were excluded because they were cross-sectional studies and therefore did not meet the inclusion criteria of being evidence level B or above. All but three of the studies included were before-after studies, two included studies used prospective cohort designs, and one used a retrospective cohort design. All before-after studies located by the search were included. The most serious defect of these studies was the lack of appropriate analysis. Many studies did not present an analysis at all, while others only did simple analyses without attempting to control for potentially confounding factors. While some of these studies were conducted in the 1940’s and 50’s, prior to the common use of such analyses, studies conducted much later also failed to use methods that were commonplace at the time of the study.

Another defect of many studies was the lack of any measure of variance for the estimates of decay presented. While most studies that presented the proportion of caries-free children contained sufficient data to calculate standard errors, this was not possible for the studies that presented dmft/DMFT scores. Only four of the eight studies using these data provided estimates of variance.

The best available evidence suggests that fluoridation of drinking water supplies does reduce caries prevalence, both as measured by the proportion of children who are caries free and by the mean change in dmft/DMFT score. The studies were of moderate quality (level B), but of limited quantity. The degree to which caries is reduced, however, is not clear from the data available. The range of the mean difference in the proportion (%) of caries-free children is -5.0 to 64%, with a median of 14.6% (interquartile range 5.05, 22.1%). The range of mean change in dmft/DMFT score was from 0.5 to 4.4, median 2.25 teeth (interquartile range 1.28, 3.63 teeth). It is estimated that a median of six people need to receive fluoridated water for one extra person to be caries-free (interquartile range of study NNTs 4, 9). The best available evidence from studies following withdrawal of water fluoridation indicates that caries prevalence increases, approaching the level of the low fluoride group. Again, however, the studies were of moderate quality (level B), and limited quantity. The estimates of effect could be biased due to poor adjustment for the effects of potential confounding factors.

Objective 2

To address this objective, studies conducted after 1974 were examined. While only nine studies were included for Objective 2, these would have been enough to provide a confident answer to the objective’s question if the studies had been of sufficient quality. Since these studies were completed after 1974, one might expect that the validity assessments would be higher than the earlier studies following the introduction of more rigorous study methodology and analytic techniques. However, the average validity checklist score and level of evidence was essentially the same for studies after 1974 as those conducted prior to 1974. Hence, the ability to answer this objective is similar to that in Objective 1.

In those studies completed after 1974, a beneficial effect of water fluoridation was still evident in spite of the assumed exposure to non-water fluoride in the populations studied. The meta-regression conducted for Objective 1 confirmed this finding.

Objective 3

No level A or B studies examining the effect of water fluoridation on the inequalities of dental health between social classes were identified. However, because of the importance of this objective, level C studies conducted in England were included. A total of 15 studies investigating the association of water fluoridation, dental caries and social class in England were identified. The quality of the evidence of the studies was low, and the measures of social class that were used varied. Variance data were not reported in most of these studies, so a statistical analysis was not undertaken.

There appears to be some evidence that water fluoridation reduces the inequalities in dental health across social classes in 5 and 12 year-olds, using the dmft/DMFT measure. This effect was not seen in the proportion of caries-free children among 5 year-olds. The data for the effects in children of other
ages did not show an effect. The small quantity of studies, differences between these studies, and their low quality rating, suggest caution in interpreting these results.

Objective 4

DENTAL FLUOROSIS

Dental fluorosis was the most widely and frequently studied of all negative effects. The fluorosis studies were largely cross-sectional designs, with only four before-after designs. Although 88 studies of fluorosis were included, they were of low quality. The mean validity score for fluorosis was only 2.8 out of 8. All, but one, of the studies were of evidence level C. Observer bias may be of particular importance in studies assessing fluorosis. Efforts to control for the effects of potential confounding factors, or reducing potential observer bias were uncommon.

As there may be some debate about the significance of a fluorosis score at the lowest level of each index being used to define a person as ‘fluorosed’, a second method of determining the proportion ‘fluorosed’ was selected. This method describes the number of children having dental fluorosis that may cause ‘aesthetic concern’.

With both methods of identifying the prevalence of fluorosis, a significant dose-response relationship was identified through a regression analysis. The prevalence of fluorosis at a water fluoride level of 1.0 ppm was estimated to be 48% (95% CI 40 to 57) and for fluorosis of aesthetic concern it was predicted to be 12.5% (95% CI 7.0 to 21.5). A very rough estimate of the number of people who would have to be exposed to water fluoride levels of 1.0 ppm for one additional person to develop fluorosis of any level is 6 (95% CI 4 to 21), when compared with a theoretical low fluoride level of 0.4 ppm. Of these approximately one quarter will have fluorosis of aesthetic concern, but the precision of these rough estimates is low. These estimates only apply to the comparison of 1.0 ppm to 0.4 ppm, and would be different if other levels were compared.

BONE FRACTURE AND BONE DEVELOPMENT PROBLEMS

There were 29 studies included on the association between bone fracture and bone development problems and water fluoridation. Other than fluorosis, bone effects (not including bone cancers) were the most studied potential adverse effect. These studies had a mean validity score of 3.4 out of 8. All but one study were of evidence level C. These studies included both cohort and ecological designs, some of which included analyses controlling for potential confounding factors. Observer bias could potentially play a role in bone fracture studies, depending on how the study is conducted.

The evidence on bone fracture can be classified into hip fracture and other sites because there are more studies on hip fracture than any other site. Using a qualitative method of analysis (Figure 8.1), there is no clear association of hip fracture with water fluoridation. The evidence on other fractures is similar. Overall, the findings of studies of bone fracture effects showed small variations around the 'no effect' mark. A meta-regression of bone fracture studies also found no association with water fluoridation.

CANCER STUDIES

There were 26 studies of the association of water fluoridation and cancer included. Eighteen of these studies are from the lowest level of evidence (level C) with the highest risk of bias.

There is no clear association between water fluoridation and overall cancer incidence and mortality. This was also true for osteosarcoma and bone/joint cancers. Only two studies considered thyroid cancer and neither found a statistically significant association with water fluoridation.

Overall, no clear association between water fluoridation and incidence or mortality of bone cancers, thyroid cancer or all cancers was found.

OTHER POSSIBLE NEGATIVE EFFECTS

A total of 33 studies of the association of water fluoridation with other possible negative effects were included in the review. Interpreting the results of studies of other possible negative effects is very difficult because of the small numbers of studies that met inclusion criteria on each specific outcome,
and poor study quality. A major weakness of these studies generally was failure to control for any confounding factors.

Overall, the studies examining other possible negative effects provide insufficient evidence on any particular outcome to permit confident conclusions. Further research in these areas needs to be of a much higher quality and should address and use appropriate methods to control for confounding factors.

Objective 5:

The assessment of natural versus artificial water fluoridation effects is greatly limited due to the lack of studies making this comparison. Very few studies included both natural and artificially fluoridated areas, and direct comparisons were not possible for most outcomes. No major differences were apparent in this review, however, the evidence is not adequate to make a conclusion regarding this objective.

Conclusions

This review presents a summary of the best available and most reliable evidence on the safety and efficacy of water fluoridation.

Given the level of interest surrounding the issue of public water fluoridation, it is surprising to find that little high quality research has been undertaken. As such, this review should provide both researchers and commissioners of research with an overview of the methodological limitations of previous research conducted in this area.

The evidence of a benefit of a reduction in caries should be considered together with the increased prevalence of dental fluorosis. The research evidence is of insufficient quality to allow confident statements about other potential harms or whether there is an impact on social inequalities. This evidence on benefits and harms needs to be considered along with the ethical, environmental, ecological, costs and legal issues that surround any decisions about water fluoridation. All of these issues fell outside the scope of this review.

Any future research into the safety and efficacy of water fluoridation should be carried out with appropriate methodology to improve the quality of the existing evidence base.
This review has been commissioned by the Chief Medical Officer of the Department of Health to ‘carry out an up to date expert scientific review of fluoride and health’ (Paragraph 9.20, Our Healthier Nation). The original objective given to the review team by the Department of Health was to conduct a systematic review of the efficacy and safety of water fluoridation. The protocol, including specific objectives, was then written by the review team, with the consultation and agreement of the advisory panel and in discussion with the Department of Health. The review agreed upon was a review of human epidemiological studies of water fluoridation.

The impact of fluoridation of drinking water supplies depends on a number of major issues: the potential benefits (including improved dental health and reductions in dental health inequalities); the potential benefits over and above that offered by the use of alternative interventions and strategies (e.g. fluoridated toothpaste); and the potential harms (including dental fluorosis, bone fractures and bone development problems, genetic mutations, birth defects, cancer and hypersensitivity).

This study aims to provide a systematic review of the best available evidence on potential positive and negative effects in order to assess the effects of water fluoridation. Decisions on artificial water fluoridation of course need to examine ethical issues, environmental and ecological impacts, cost and legal issues. These considerations are outside the scope of this review.

Systematic reviews locate, appraise and synthesise evidence from scientific studies in order to provide informative empirical answers to scientific research questions. They are therefore valuable sources of information for decision-makers. Systematic reviews differ from other types of review in that they adhere to a strict scientific design with the aims of making them more comprehensive, minimising the chance of bias and improving reliability. The intention is that a systematic review, rather than reflecting the views of authors or being based on only (a possibly biased) selection of the published literature, will contain a comprehensive assessment and summary of the available evidence. (For further information on systematic review methodology, see NHS Centre for Reviews and Dissemination Report 4 1996 and Sutton 1998.)

The history of health technology development shows that there have been numerous new interventions that were promising (or harmful) in animal and laboratory studies that turned out to be ineffective (or safe) when tested in humans. One example would be the drug omeprazole (Losec®) which caused gastric tumours in pre-clinical animal studies. However, such tumours have not been documented in humans, even in patients with conditions that require continuous treatment for many years. In general, when human data are available, animal or laboratory data provide far less reliable estimates of effect and, as such, do not bear significant weight on decisions about interventions. Such data will not be considered in this review.

A variety of study designs can be used to assess the effectiveness of a population-based intervention such as water fluoridation. These range from simple descriptive studies (e.g. cross-sectional), to studies of correlation at the population level (e.g. ecological studies), to studies of individual-based associations (e.g. case-control, before-after, and cohort studies) to formal experiments (e.g. randomised controlled trials).

The randomised controlled trial randomising individuals to fluoridated or non-fluoridated water would be the gold standard. However, studying the effects of water fluoridation poses problems for the use of the randomised controlled trial design. Water fluoridation affects population groups and it is thus difficult to randomly assign individuals to receive either fluoridated or non-fluoridated water. An alternative would be to randomise communities to fluoridated or non-fluoridated water. The fact that whole populations are either exposed or not exposed also poses a problem for cohort and case-control studies. Comparing exposures and outcomes between different population groups may cause problems as the two populations may differ with respect to other exposures or characteristics and so a causal relationship between the observed exposure and outcomes cannot be assumed. In observational studies (e.g. other than a randomised controlled trial) many people know whether or not a water supply is fluoridated and so blinding would not be possible, thus risking bias in observations.
Some possible adverse effects of water fluoridation may take many years to develop and so unless a study is specifically designed to investigate the relationship of these outcomes to fluoridation the relationship may go undetected. An assessment of the effectiveness of fluoridation on the incidence of caries is difficult because there are a number of factors that may influence caries prevalence other than fluoride in water, and these have changed over time. These factors include the introduction of fluoridated toothpaste, mouth rinses and improved dental hygiene in general. Traditional reviews of the literature tend to ignore the variable quality of studies and are therefore unlikely to present a reliable summary. Ideally, systematic reviews concentrate on studies that provide the strongest evidence, but where only a few good studies are available weaker designs may have to be considered.

Existing reviews do not address the major issues of benefit and harm in conjunction and in a systematic manner, as this review aims to do. The explicit methods used in this systematic review will limit bias through the use of specific inclusion criteria, and a formal assessment of the quality and reliability of the studies reviewed. The use of meta-analysis will increase statistical power and thus the precision of estimates of treatment effects and exposure risks. Finally, this review attempts to generate new questions and identify gaps in the research evidence.

1.1 Purpose

The aim of this systematic review is to assess the evidence on the positive and negative effects of population-wide drinking water fluoridation strategies to prevent caries. To achieve this aim five objectives have been identified:

Objective 1: What are the effects of fluoridation of drinking water supplies on the incidence of caries?

Objective 2: If water fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

Objective 3: Does water fluoridation result in a reduction of caries across social groups and between geographical locations, bringing equity?

Objective 4: Does water fluoridation have negative effects?

Objective 5: Are there differences in the effects of natural and artificial water fluoridation?
2. METHODS

A diagram illustrating the stages of this systematic review's methods is presented in Figure 2.1.

2.1 Search strategy

2.1.1 Preliminary search

A preliminary search was undertaken to provide information on available reviews of fluoridation and to estimate the potential size of the research evidence on the effects of fluoride supplementation of drinking water. The preliminary search was carried out in several stages:

- Identification and collection of reviews of fluoridation.
- Medline search using a methodology filter strategy to identify the scope of the systematic reviews and meta-analyses literature (date range 1966 - 03/1999).
- Medline and Embase searches using a methodology filter strategy to identify primary studies including any randomised trials. (Medline date range 1966 - 05/1999; Embase date range 1980 – 05/1999).

The Medline and Embase databases were both searched using WinSpirs/SilverPlatter software. Further details about the preliminary search process are given in Appendix B, Section 1. The preliminary search strategy to retrieve systematic review and meta-analyses literature is included in Appendix B, Section 3.

2.1.2 Electronic database search

The full search built on the preliminary search strategies and involved searching a wide range of medical, political and environmental/scientific databases to identify primary studies. Each database was searched from its starting date to June/October 1999 (due to the number of databases, searches were carried out over a four month period). A list of the databases searched at each stage of the review and the dates searched are given in Appendix B, Section 2. Full details of all the strategies used in this review are given in Appendix B, Section 4. The databases searched were as follows:

- Medline
- Embase
- NTIS (National Technical Information Service)
- Biosis
- Current Contents Search (Science Citation Index and Social Science Citation Index)
- Healthstar (Health Service Technology, Administration and Research)
- HSRProj
- TOXLINE
- Chemical Abstracts
- OldMedline
- CAB Health
- FSTA (Food Science and Technology Abstracts)
- JICST- E Plus (Japanese Science and Technology)
- Pascal
- EI Compendex (Engineering Index)
- Enviroline
- PAIS (Public Affairs Information Services)
- SIGLE (System for Information on Grey Literature in Europe)
- Conference Papers Index
- Water Resources Abstracts
- Agricola (Agricultural Online Access)
- Waternet
- AMED (Allied and Complementary Medicine Database)
- Psyclit
- LILACS (Latin American and Caribbean Health Sciences Literature)
Relevance Criteria
1. Relates directly to fluoride in drinking water supplies
2. Is a primary study (not a review of studies)
3. Research involves only humans
4. Involves two groups with different fluoride concentrations in water supply
5. For caries studies: evaluates two points in time, one of which is less than one year since the change of water fluoridation status in one of the groups

Inclusion Criteria (set 1)
Studies measuring possible positive effects (i.e. caries)
1. At least two populations compared
2. Different fluoride levels in different populations
3. Prospective study design, assessing two points in time
4. Start of study less than one year since change in fluoridation status
5. Measurable outcomes reported (i.e. Decayed, Missing and Filled Teeth score)

Inclusion Criteria (set 2)
Studies measuring possible negative effects (i.e. cancer, fluorosis, etc)
1. At least two populations compared
2. Different fluoride levels in different populations

Figure 2.1 Review methods
2.1.3 Other searching

The World Wide Web was searched for web pages maintained by others interested in the issue of water fluoridation. A web page was designed and maintained by the NHS Centre for Reviews and Dissemination, University of York to inform the public on the purpose, methods and progress of the review. The web site included an e-mail response to enable members of the public and other organisations to submit articles for consideration. In addition to numerous individuals, examples of organisations that submitted lists of references are the National Pure Water Association and the British Fluoridation Society. Furthermore, advisory board members were asked to submit references or reports.

2.1.4 Hand searches

Hand searching of Index Medicus and Excerpta Medica was undertaken. Index Medicus was searched from 1959 back to 1945; Excerpta Medica was searched from 1973 back to 1955. A further sample of studies published before 1945 was retrieved from Index Medicus and Excerpta Medica and established that further searching was not required. Appendix B, Section 3 provides a list of search terms used in this hand searching process. The bibliographies of the eligible papers were also hand searched. Attempts were made to contact authors for further information if necessary. Further information about studies done in the UK was sought and obtained through the Public Records Office.

2.1.5 Updating the search

Update searches were undertaken at the beginning of February 2000. In order to identify the most useful databases, the included studies were examined to determine which of the above resources yielded the most studies included. Medline, Embase, Toxline and the Current Contents (Science Citation Index) were identified in this manner and included in the update search process.

2.1.6 Management of references

As such a wide range of databases had been searched, some degree of duplication of references resulted. In order to manage this issue, the titles and abstracts of the bibliographic records retrieved were downloaded and imported into Endnote (ISI ReSearch Soft, USA) reference management software to remove duplicate records.

2.2 Inclusion criteria

2.2.1 Methodological and quality criteria

Groups exposed or not exposed to fluoride may differ in respect to factors other than fluoride exposure itself. Some of these differences may be related to the outcomes under investigation (level of tooth decay, dental fluorosis, fractures etc) and so will confound any observed relationship and thus should be controlled for in the analysis. Confounding factors are factors that can cause or prevent the outcome of interest. In the case of water fluoridation these are likely to include age, gender, ethnicity, other sources of fluoridation and social class. Factors likely to modify the effect of fluoride on the outcomes under investigation, such as the level of tooth decay or delayed tooth eruption in the population before the introduction of fluoridation should also be considered.

Another important factor to be taken into account in assessing the effects of water fluoridation is blinding of outcome assessment. Blinding should be used to protect against the possibility that knowledge of participant’s exposure to water fluoridation may affect the ways in which the investigators assess outcomes. Knowledge of outcomes may also affect assessment of fluoridation status and other factors in retrospective studies.

The following methodological issues were considered when assessing studies for inclusion: selection, confounding, and measurement. Study designs are often graded hierarchically according to their quality, or degree to which they are susceptible to bias. The hierarchy indicates which studies should be given most weight in a synthesis. In this review, the degree to which each study dealt with the methodological issues was graded into three levels of evidence:
LEVEL A (HIGHEST QUALITY OF EVIDENCE, MINIMAL RISK OF BIAS)

- Prospective studies that started within one year of either initiation or discontinuation of water fluoridation and have a follow up of at least two years for positive effects and at least five years for negative effects.
- Studies either randomised or address at least three possible confounding factors and adjust for these in the analysis where appropriate.
- Studies where fluoridation status of participants is unknown to those assessing outcomes.

LEVEL B (EVIDENCE OF MODERATE QUALITY, MODERATE RISK OF BIAS)

- Studies that started within three years of the initiation or discontinuation of water fluoridation, with a prospective follow up for outcomes.
- Studies that measured and adjusted for less than three but at least one confounding factor.
- Studies in which fluoridation status of participants was known to those assessing primary outcomes, but other provisions were made to prevent measurement bias.

LEVEL C (LOWEST QUALITY OF EVIDENCE, HIGH RISK OF BIAS)

- Studies of other designs (e.g. cross-sectional), prospective or retrospective, using concurrent or historical controls, that meet other inclusion criteria.
- Studies that failed to adjust for confounding factors.
- Studies that did not prevent measurement bias.

Studies meeting two of the three criteria for a given evidence level were assigned the next level down. For example, if a study met the criteria for prospective design and blinding for level A, but was neither randomised nor controlled for three or more potential confounding factors, it was assigned level B. Evidence rated below level B was not considered in our assessment of positive effects. However, this restricted assessment of the evidence for Objective 3, so the best level of evidence relevant to this objective (from any study design) was included. In our assessment of possible negative effects, all levels of evidence were considered. Adjustment for confounding factors required analysis of data, simply stating that two study groups were similar on noted confounding factors was not considered adequate.

2.2.2 Objective specific criteria

Specific inclusion criteria for each objective were based on the participants, intervention, outcomes measured and overall design of the study. All criteria were defined before the studies were assessed and were based on criteria commonly applied when critically appraising community based interventions (Elwood 1998). This review is limited to studies investigating the effects of water fluoridation on human populations. The objective-specific criteria for inclusion based on study design were:

OBJECTIVE 1. DOES FLUORIDATION OF DRINKING WATER SUPPLIES PREVENT CARIES?

Participants:
- Populations receiving fluoridated water (naturally or artificially)
- Populations receiving non-fluoridated water

Intervention:
- A change in the level of fluoride in the water supply of at least one of the study areas, within three years of the baseline survey.

Outcomes:
- Any measure of dental decay

Study designs:
- Prospective studies comparing at least two populations, one receiving fluoridated the other non-fluoridated water, with at least two points in time evaluated.
OBJECTIVE 2. IF FLUORIDATION IS SHOWN TO HAVE BENEFICIAL EFFECTS, WHAT IS THE EFFECT OVER AND ABOVE THAT OFFERED BY THE USE OF ALTERNATIVE INTERVENTIONS AND STRATEGIES?

Participants:
- Populations receiving fluoridated water (naturally or artificially) in addition to other interventions.
- Populations receiving non-fluoridated water in addition to other interventions.

Intervention:
- A change in the level of fluoride in the water supply of at least one of the study areas, within three years of the baseline survey.

Outcomes:
- Any measure of dental decay.

Study designs:
- Prospective studies comparing at least two populations, to investigate the differences in levels of tooth decay between the populations in the presence of other sources of fluoride, e.g. fluoridated toothpaste. Where specific information on the use of other sources of fluoride is not supplied, populations in studies conducted after 1975 in industrialised countries were assumed to have been exposed to fluoridated toothpaste.

OBJECTIVE 3. DOES FLUORIDATION RESULT IN A REDUCTION OF CARIES ACROSS SOCIAL GROUPS AND BETWEEN GEOGRAPHICAL LOCATIONS?

Participants:
- Populations from different social groups and geographic locations receiving fluoridated water (naturally or artificially).
- Populations from different social groups and geographic locations receiving non-fluoridated water.

Intervention:
- Fluoride at any concentration present in drinking water, either controlled or naturally occurring

Outcomes:
- Any measure of dental decay.

Study designs:
- Any study design comparing two populations, one receiving fluoridated the other non-fluoridated water, across different social groups and geographic locations.

OBJECTIVE 4. DOES FLUORIDATION HAVE NEGATIVE EFFECTS?

Participants:
- Populations receiving fluoridated water (either naturally or artificially).
- Populations receiving non-fluoridated water.

Intervention:
- Fluoride at any concentration present in the water supply, either naturally occurring or artificially added.

Outcomes:
- Dental fluorosis, skeletal fluorosis, hip fractures, cancer, congenital malformations, mortality and any other possible negative effects reported in the literature.

Study designs:
- Any study design comparing the incidence of any possible adverse effect between two populations, one with fluoridated water and the other with non-fluoridated water.

OBJECTIVE 5. ARE THERE DIFFERENTIAL EFFECTS OF NATURAL AND ARTIFICIAL FLUORIDATION?

Participants:
- Populations receiving artificially fluoridated water.
- Populations receiving naturally fluoridated water.
• Populations receiving non-fluoridated water.

Intervention:
• Fluoride at any concentration from a naturally or an artificially fluoridated water source.

Outcomes:
• Possible positive effects: Any measure of dental decay.
• Possible negative effects: Dental fluorosis, skeletal fluorosis, hip fractures, cancer, congenital malformations, mortality and any other possible negative effects reported in the literature.

Study designs:
• Any study design comparing populations exposed to different water fluoride concentrations, results obtained from areas using artificially and naturally fluoridated water supplies were compared to investigate any differences in effect.

Studies meeting the above objective specific criteria for inclusion were also assigned a level of evidence, as described above.

2.3 Assessment of papers for inclusion

2.3.1 Relevance assessment

Three reviewers independently assessed each title and abstract located through the searches for relevance to the review. Decisions about the inclusion of studies were made according to the following pre-determined criteria:
• Relates directly to fluoride in drinking water supplies.
• Is a primary study (not a review of studies).
• Research involves humans.
• Involves two groups with different fluoride concentrations in water supply.
• For caries studies: evaluates two points in time, one of which is less than three years since the change of water fluoridation status in one of the two groups.

Full articles of titles and abstracts found to be relevant to the review were obtained for full assessment of inclusion criteria.

2.3.2 Assessment of papers for inclusion criteria

Three reviewers independently assessed each paper for the pre-determined inclusion criteria, as stated above. Inclusion criteria were assessed for each of the objectives separately. Disagreements were resolved through consensus.

2.4 Data extraction

Extraction of data from individual included studies was independently performed by two reviewers, and checked by a third reviewer. Disagreements were resolved through consensus. Papers in languages other than English were assessed for inclusion criteria and data extracted using appropriate translators. Languages translated were Bulgarian, Chinese, Czech, Dutch, French, German, Greek, Hungarian, Italian, Portuguese, Russian and Spanish. Data were extracted into an MS Access database (Microsoft Corporation 1989-96). Tables showing baseline information and results were produced for each study and are presented in Appendix C.

2.5 Assessment of study validity

Study validity was formally assessed using validity checklists based on the checklist in NHS Centre for Reviews and Dissemination Report Number 4 (NHS CRD, 1996). The checklist was modified to address issues of water fluoridation. Separate checklists were devised for studies using a case-control design and all other study designs combined. These checklists are presented in Appendix D. Each study was assigned a ‘level of evidence’ using the definitions given above, and a validity score, based on the number of checks achieved on the checklist. The maximum score was 8 for all study designs except case control studies which had a total of 9 possible points. Study validity was assessed independently by two reviewers, with disagreements resolved through consensus.
The level of evidence (A, B, or C) is generic, and was used to classify studies for inclusion criteria based on overall quality and chance for bias. The validity assessment checklist is more specific to water fluoridation studies. Therefore, the validity checklist assessment is stricter.

2.6 Data analysis

Where the data were in a suitable format, measures of effect (with their 95% confidence intervals) for the major outcomes identified were shown on forest plots. This allowed a visual evaluation of the overall data set. The range of measures of effect for each outcome is also presented in the text.

Differences among studies may explain why individual studies report differing estimates of effect. These differences may relate to study design, geographic location, age of participants, type and duration of intervention, and methods of outcome assessment. Such differences between studies are known as heterogeneity, which may or may not be important. Some heterogeneity can be expected to occur by chance. A distinction is sometimes made between statistical heterogeneity (differences in the reported effects), methodological heterogeneity (differences in study design) and clinical heterogeneity (differences between studies in key characteristics of the participants, interventions or outcome measures). Statistical tests for heterogeneity are used to assess whether the observed variability in study results (measures of effect) is greater than that expected to occur by chance. If there is statistically significant heterogeneity between the estimates derived from different studies, this may result in a decision not to combine the studies in a meta-analysis. Statistical heterogeneity can exist even when all the studies included show an effect in the same direction (e.g. a protective effect), but there is variation in the estimate of the magnitude of the effect. Heterogeneity was investigated by visual examination of the forest plots and statistically using the Q-statistic. Even if the assessment of heterogeneity is not statistically significant there may be important heterogeneity.

Where no evidence of statistically significant heterogeneity was found, a meta-analysis was conducted to produce a pooled estimate of the measure of effect. The DerSimonian and Laird random effects model, which assumes that the study specific measures of effect come from a random distribution of measures of effect with a fixed mean and variance, was used to combine studies. It is a more conservative analysis, resulting in broader confidence intervals, used because some degree of underlying heterogeneity among the studies was assumed.

Tables indicating the general effect of fluoridation found in each study were created for each item, and, where possible, the point estimate and a measure of statistical significance (using the 95% confidence interval or p-value) of the finding was also included. Validity scores were included in these tables to allow assessment of the relationship between study quality and strengths of the association with fluoridation. Statistical analysis was carried out using StatsDirect (CamCode, England), Stata (Stata Corporation, USA), SAS (SAS institute Inc., USA) and Access (Microsoft Corporation, USA).

A table was not made for dental fluorosis, as the method of analysis used for this outcome differed from that used for other outcomes. The analysis used for fluorosis compared each fluoridated study area to each non-fluoridated study area, using a regression analysis, rather than comparing the differences found within each study to the differences found within other studies.

Where possible, meta-regression was used to investigate and explain sources of heterogeneity among studies. Meta-regression is an exploratory statistical analytical technique, which investigates the importance and nature of relationships between study results and study characteristics, and can be used to explore sources of heterogeneity. This is a modelling exercise that estimates the amount by which each identified ‘predictor variable’ (e.g. age) reduces the remaining heterogeneity. Dental caries and bone fracture results were analysed using meta-regression in order to assess the impact of potential sources of heterogeneity and estimate the underlying effect of water fluoridation. Meta-regression was carried out using Stata v. 6.0 (Stata Corporation, USA). The heterogeneity among fluorosis studies was explored by including variables that may account for the observed heterogeneity in the regression model.

Publication bias is defined as the failure to publish research on the basis of the nature and directional significance of the results. Because of this, systematic reviews that fail to include unpublished studies may overestimate the true effect of an intervention. The data provided by the studies included in this review were not in a suitable format to allow investigation of publication bias using standard procedures (e.g. Funnel plots), and so a narrative approach was used to discuss publication bias.
3. GENERAL RESULTS

3.1 General results
The search identified over 3200 papers, of which 734 met relevance criteria. Upon closer inspection, 254 of these met full inclusion criteria for one or more of the objectives; these 254 papers relate to 214 studies (some papers refer to the same study). Among these there were 26 studies relevant to Objective 1, the effect of water fluoridation on dental caries; 9 of these also met inclusion criteria for Objective 2. For Objective 3, 13 studies were included. For Objective 4, a total of 176 studies were included. There were 88 studies on dental fluorosis, 29 on bone fractures, 26 on cancer, and 33 studying other possible adverse effects. These included studies came from 30 countries, were published in 14 languages and ranged in publication dates from 1939 to 2000. No randomised controlled trials of the effects of water fluoridation were found. The study designs used included 45 ‘before and after’ studies, 102 cross-sectional studies, 47 ecological studies, 13 cohort (prospective or retrospective) studies and seven case-control studies. Several studies were reported in multiple papers over a number of years. For example, the original studies from Michigan were published in six papers, between 1942 and 1962.

3.2 Validity assessment
None of the included studies were of evidence level A. The reason for this among the studies evaluating dental caries was that none addressed three or more confounding factors. For Objectives 1 and 2, all studies that met inclusion criteria were evidence level B. All but three of the studies assessing Objective 3, were evidence level C, the others were evidence level B. Among the studies of possible adverse effects of water fluoridation, Objective 4, the majority were found to be level C evidence because they lacked a prospective, longitudinal design. Studies used to compare the effects of natural versus artificial water fluoridation, Objective 5, were evidence level B for possible positive effects and mainly level C for possible negative effects. The validity checklist scores and level of evidence are presented in D.

3.3 Extracted data
Data extracted from all of the included studies are presented in tables in Appendix C. Each outcome is presented in two separate tables, the first listing baseline data about the groups being studied, such as location and year of study, gender, and the methods used to assess outcome. The second table presents the results of each study by each outcome.

3.4 Protocol changes
Changes to the original protocol were minimal. The wording of the objective specific inclusion criteria was altered to clarify the intent of the criteria. The range of analyses undertaken was broader than had been described in the protocol. Due to extremely limited evidence, the inclusion criteria for Objective 3 were expanded to include studies of level C evidence, and limited to studies from the UK. These changes were made with the consultation of and agreement from the advisory panel. Full details of changes are included in Appendix M.
What are the effects of fluoridation of drinking water supplies on the incidence of caries?

A total of 26 studies of the effect of water fluoridation on dental caries were found, reported in 73 articles published between 1951 and 2000. Five unpublished studies were located (Hobbs 1994, Wragg 1992, Gray 1999, Holdcroft 1999 and Gray, 2000). The before-after study design was used in all but three of the included studies. The three exceptions were two prospective cohort studies (Hardwick 1982, Maupomé 2000) of caries in children and one retrospective cohort study (Pot 1974) of adults with false teeth. An example of the before-after design is a study in which two groups of 12-year olds from two similar populations were examined for prevalence of caries prior to initiating water fluoridation in one of the groups. Five years after starting water fluoridulation, 12 year olds were examined in the two areas (one fluoridated, the other not). The rates of caries in the first groups were then compared with the rates in the second groups. It is important to note that the children are different in the before and after periods. All before-after studies identified by the search met the inclusion criteria. Three of the studies met inclusion criteria but were not included in the main analysis and are discussed in section 4.3 (Klein 1946, Holdcroft 1999 and Gray 2000). The Hardwick cohort study examined two groups of British children at age 12 prior to the initiation of fluoridation in the water supply of one group, and followed these same children with annual examinations for four years.

Seven studies assessed the effect of discontinuing water fluoridation, including seven before-after analyses and one cohort study (Attwood 1988, Hobbs 1994, Kalsbeek 1993, Kunzel 1997, Maupomé 2000, Seppa 1998 and Wragg 1992). The Maupomé cohort study examined two groups of 8 and 14 year-old children within 14 to 19 months after fluoridation was stopped in one area and continued in the other. These same children were then re-examined three years later. This study also included a second group of children 8 and 14 years old at the follow-up examination, and so is both a before-after and cohort design. Only one of the 26 studies included examined adults (Pot 1974).

The studies assessing efficacy of water fluoridation all achieved evidence level B, and an average checklist score of 5 out of 8 (range 3.5 to 6.8). The checklist items most commonly missed by these studies were blinding of the examiners assessing outcomes to the children's exposure status, reliable measurement (or adequate reporting) of the fluoride concentration, and adequate investigation of confounding factors. None attempted to control for confounders using multivariate analysis (a technique commonly used since the early 1980s). The only method used to address confounding was by presenting data stratified by age or gender. Many additional studies were excluded because they failed to include a baseline examination prior to starting or stopping water fluoridation.

The measure of effect measure used in the main analysis was the difference of the change in caries from the baseline to the final examination in the fluoridated compared with the control area (Appendix E). For example, the change in DMFT in the fluoridated area (final survey minus baseline survey) minus the change in DMFT in the control (non-fluoridated) area (final survey minus baseline survey) is the difference in the change in DMFT for that study. The two main outcomes investigated by studies estimating the effect of fluoridation on caries were DMFT (and dmft) score and the proportion of caries-free children (in both primary and secondary dentition).

Tables 4.1 - 4.5 show the 26 studies that have been included in assessing objective 1. In these tables, the mean difference of the change in caries measurement between the fluoride and control areas is shown. If the reduction in dental caries between pre- and post-fluoridation periods was greater in the fluoridated group than in the non-fluoridated group the mean difference will be greater than zero. Thus, a mean difference greater than zero indicates a benefit of water fluoridation and a mean difference less than zero indicates no benefit of water fluoridation. If the 95% confidence intervals include zero the difference is not statistically significant at the 5% level.
4.1 Studies in which fluoridation was initiated

Figure 4.1 shows the mean difference of the change in the proportion (%) of caries-free children in the exposed (fluoride) group compared with the control group (low fluoride), for all ages extracted (colour coded by age), for studies in which fluoridation was initiated after the baseline survey.

Figure 4.1: Increase in proportion (%) of caries-free children in fluoridated compared to non-fluoridated areas (mean difference and 95% CI)
The vertical line, at 0, is the 'no effect' line for measures of difference. Studies are indicated with a rectangle showing the 95% confidence intervals around the mean. The 95% confidence interval is the interval within which 95% of values of estimates derived from identified studies will fall. The rectangles are colour coded by age. If the rectangle crosses the 'no effect' line the difference is not statistically significant. If the rectangle is entirely to the right of the line the difference is statistically significant and fluoridation is associated with an increase in the proportion of children who are caries-free. If the rectangle is entirely to the left of the line the difference is statistically significant and fluoridation is associated with a decrease in the proportion of children who are caries-free.

The range of the mean difference in the proportion (%) of caries-free children is -5.0 to 64%, with a median of 14.6% (interquartile range 5.05, 22.1%). There was a statistically significant change, with a greater proportion of caries-free children in the fluoridated area, in 19 analyses. One analysis found a statistically significant greater decrease in the proportion of caries-free children exposed to fluoridated water compared with those exposed to non-fluoridated water. The remaining 10 analyses were unable to detect a statistically significant difference. It is estimated that a median of six people need to receive fluoridated water for one extra person to be caries-free (interquartile range of study NNTs 4, 9).

Figure 4.2 shows the mean difference of the change in dmft/DMFT score compared with the control group (low fluoride), separately by age (colour coded) for the four studies reporting dmft/DMFT, with 95% CIs.

Fifteen studies found a statistically significantly greater mean change in dmft/DMFT scores in the fluoridated areas than the non-fluoridated areas. The range of mean change in dmft/DMFT score was from 0.5 to 4.4, median 2.25 teeth (interquartile range 1.28, 3.63 teeth).

Figure 4.2: Change in dmft/DMFT Score (mean difference and 95% CI)
The Hardwick cohort study was plotted separately (figure 4.3) because the outcome measurements (increment in DMFT and DMFS) were too dissimilar to the others. In this study the effect of water fluoridation was assessed in the same children over a three-year period. This study showed a statistically significant mean difference in the increment in DMFT/DMFS score, with children in the fluoridated area having fewer new decayed, missing or filled teeth (or surfaces) after the three-year period. The examiners in this study were blind to the fluoridation status of the children.

![Graph](image)

Figure 4.3 DMFT/DMFS increment over four years (mean difference and 95% CI)

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Teeth Type</th>
<th>Mean Difference (95% CI)</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunzel (1997)</td>
<td>5</td>
<td>Primary</td>
<td>9.4 (0.9, 17.9)</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>41.1 (36.0, 46.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>19.4 (15.9, 22.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>25.2 (21.1, 29.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>9.5 (6.3, 12.7)</td>
<td></td>
</tr>
<tr>
<td>Beal (1981)</td>
<td>5</td>
<td>Primary</td>
<td>16.0 (3.2, 28.8)</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>19.0 (4.8, 33.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>6.0 (-3.4, 15.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>-5.0 (-15.0, 5.0)</td>
<td></td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>5</td>
<td>Primary</td>
<td>17.0 (2.1, 31.9)</td>
<td>5.5</td>
</tr>
<tr>
<td>England</td>
<td>8</td>
<td>Not stated</td>
<td>18.0 (0.7, 35.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Not stated</td>
<td>8.0 (-1.2, 17.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Permanent</td>
<td>5.0 (-4.4, 14.4)</td>
<td></td>
</tr>
<tr>
<td>Wales</td>
<td>5</td>
<td>Primary</td>
<td>14.0 (3.5, 24.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Not stated</td>
<td>9.0 (1.2, 16.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Permanent</td>
<td>3.0 (-2.9, 8.9)</td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td>5</td>
<td>Primary</td>
<td>14.6 (4.7, 24.4)</td>
<td></td>
</tr>
<tr>
<td>Adriasola (1959)</td>
<td>5</td>
<td>Primary</td>
<td>5.1 (-1.9, 12.1)</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Not stated</td>
<td>5.0 (0.1, 9.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Not stated</td>
<td>-4.9 (-8.3, -1.5)</td>
<td></td>
</tr>
<tr>
<td>Guo (1984)</td>
<td>5</td>
<td>Primary</td>
<td>-2.0 (-6.4, 2.4)</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>64.1 (55.4, 72.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>0.4 (-4.8, 5.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>28.5 (20.5, 36.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>34.4 (19.7, 49.1)</td>
<td></td>
</tr>
<tr>
<td>Beal (1971)</td>
<td>5</td>
<td>Not stated</td>
<td>4 (-8.0, 16.0)</td>
<td>4.8</td>
</tr>
<tr>
<td>Ast (1951)</td>
<td>5</td>
<td>Primary</td>
<td>22.1 (10.9, 33.3)</td>
<td>4.5</td>
</tr>
<tr>
<td>Brown (1965)</td>
<td>12-14</td>
<td>Permanent</td>
<td>15.8 (11.8, 19.8)</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>9-11</td>
<td>Permanent</td>
<td>36.1 (30.5, 41.7)</td>
<td></td>
</tr>
<tr>
<td>Gray (1999)</td>
<td>5</td>
<td>Primary</td>
<td>26.0 (19.4, 32.6)</td>
<td>3.5</td>
</tr>
</tbody>
</table>

The associations that were found in the studies in which fluoridation was initiated are presented in Tables 4.1 and 4.2. Table 4.3 shows the results of studies using outcome measures other than the proportion of caries-free children or dmft/DMFT score. Some studies either did not provide data on the variance of the estimate of effect or the number of individuals studied. Further information was sought from the authors of these studies, however, only one author was contacted successfully.
Studies without variance data were not included in the plots or in the meta-regression. The reason for excluding data from further analysis is stated in the table.

Whilst in 27 of the 30 analyses the direction of association between water fluoridation and the change in the proportion of caries-free children was positive (fewer caries), in only 20 of these comparisons were the differences statistically significant. In three analyses the direction of association was negative (one in five-year-olds and two in 12 year-olds), but only one of these found a statistically significant effect (Table 4.1).

In all 31 analyses the direction of association of the dmft/DMFT scores with fluoridation status was positive. Standard error data were only available for 16 of these analyses, all but one of which showed a statistically significant positive effect of fluoridation (Table 4.2).

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Teeth Type</th>
<th>Mean Difference (95% CI)</th>
<th>Included in Analysis</th>
<th>Reason not Included in Further Analysis</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunzel (1997)</td>
<td>5</td>
<td>Primary</td>
<td>0.6 (0.2, 1.0)</td>
<td>Yes</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>2.1 (1.8, 2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>1.3 (1.2, 1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Primary</td>
<td>2.9 (2.6, 3.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>3.7 (3.3, 4.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beal (1981)</td>
<td>5</td>
<td>Primary</td>
<td>1.7 (0.6, 2.8)</td>
<td>Yes</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>0.5 (0.1, 0.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>1.2 (0.4, 2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Primary</td>
<td>0.6 (-0.2, 1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>5</td>
<td>Primary</td>
<td>1.6</td>
<td>No</td>
<td>No standard error data</td>
<td>5.5</td>
</tr>
<tr>
<td>England</td>
<td>8</td>
<td>Permanent</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Permanent</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wales</td>
<td>5</td>
<td>Primary</td>
<td>2.1</td>
<td>No</td>
<td>No standard error data</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Permanent</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loh (1996)</td>
<td>7-9</td>
<td>Permanent</td>
<td>3.1</td>
<td>No</td>
<td>No standard error data</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>7-9</td>
<td>Permanent</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo (1984)</td>
<td>5</td>
<td>Primary</td>
<td>3.6 (2.6, 4.6)</td>
<td>Yes</td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>1.6 (1.4, 1.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>4.4 (3.9, 4.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Primary</td>
<td>2.6 (2.2, 3.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Primary</td>
<td>3.8 (2.7, 4.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvarez-Ubilta (1959)</td>
<td>5</td>
<td>Primary</td>
<td>2.2</td>
<td>No</td>
<td>No standard error data</td>
<td>4.5</td>
</tr>
<tr>
<td>Arnold (1956)</td>
<td>12</td>
<td>Permanent</td>
<td>1.2</td>
<td>No</td>
<td>No standard error data</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blayney (1960)</td>
<td>12</td>
<td>Permanent</td>
<td>3.4</td>
<td>No</td>
<td>No standard error data</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown (1965)</td>
<td>12-14</td>
<td>Permanent</td>
<td>4.1 (3.4, 4.8)</td>
<td>Yes</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>9-11</td>
<td>Permanent</td>
<td>2.1 (1.7, 2.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study with the highest validity score (Hardwick, 1982) showed a statistically significant difference in the increment in both DMFS and DMFT scores, with a lower increment in the fluoridated area compared with the control area. One study (Backer-Dirks, 1961) considered the average number of all dentinal lesions and the average number of approximal dental lesions. This study found the direction of association of fluoridation with caries to be positive (fewer caries) but no measure of the statistical significance of this effect was provided. Two studies (Beal, 1971 and Arnold, 1956) looked at deft score. Whilst both these studies found the direction of association to be positive, only one of these studies (Beal, 1971) provided standard error data. This study showed a statistically significant
positive effect of fluoridation. One study (Ast, 1951) compared the number of erupted teeth per child before and after fluoridation was initiated and found the direction of association to be positive with fluoridation (more erupted teeth per child) in 12 year-olds but negative in 8 year-olds. No measure of the statistical significance of this association was provided, however, and the difference was so small that it is unlikely that there was a statistically significant difference in the number of erupted teeth in the fluoridated compared with the control area. This same study also looked at the DMFT rate per 100 erupted teeth and found the direction of association to be positive (greater decrease in the DMFT rate in the fluoridated area compared with the control area) with water fluoridation. However no measure of the significance of this association was provided. One study (Pot, 1974) found the proportion of adults with false teeth to be statistically significantly greater in the control (low-fluoride) area compared with the fluoridated area.

Table 4.3 Mean difference of the change in other caries measurements between the fluoride and control areas

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Mean Difference (95% CI)</th>
<th>Outcome</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwick (1982)</td>
<td>12</td>
<td>2.5 (1.0, 3.9)</td>
<td>Increment in DMFS score</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.1 (0.4, 1.8)</td>
<td>Increment in DMFT score</td>
<td></td>
</tr>
<tr>
<td>Backer-Dirks (1961)</td>
<td>11-15</td>
<td>2.7</td>
<td>Average number of all approximal lesions</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>1.4</td>
<td>Average number of approximal dentinal lesions</td>
<td></td>
</tr>
<tr>
<td>Beal (1971)</td>
<td>5</td>
<td>2.5 (1.3-3.7)</td>
<td>deft score</td>
<td>4.8</td>
</tr>
<tr>
<td>Arnold (1956)</td>
<td>5</td>
<td>1.6</td>
<td>deft score</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ast (1951)</td>
<td>12</td>
<td>0.1</td>
<td>Number of erupted permanent teeth per child</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10.5</td>
<td>DMFT rate per 100 erupted permanent teeth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pot (1974)</td>
<td>5-55</td>
<td>11.2 (3.8, 18.6)</td>
<td>% with false teeth</td>
<td>4.0</td>
</tr>
</tbody>
</table>

4.2 Studies in which fluoridation was discontinued

Figure 4.4 shows the mean difference of the change in the dmft/DMFT and DMFS score in children in the exposed (fluoride) group compared with the control group (low fluoride), in studies in which fluoridation was discontinued after the baseline survey.

Wragg (1992)
Attwood (1988)
Kalsbeek (1993)
Seppa (1998) Age 9
Seppa (1998) Age 12
Seppa (1998) Age 15
Kalsbeek (1993)

![Figure 4.4: Stopping fluoridation: dmft/DMFT or DMFS score (mean difference and 95% CI)](image-url)
The range of measures of effect in dmft/DMFT scores (Figure 4.4) is –7.4 to –0.6. Two of the three studies using dmft/DMFT show a statistically significant difference: when fluoridation was discontinued there was a greater increase in caries in the fluoridated compared with the control area suggesting that fluoridation had been beneficial. The range in measures of effect for DMFS score was –18.8 to 0.2, with all but one of the studies suggesting that stopping water fluoridation had led to a greater increase in caries in the previously fluoridated area than in the non-fluoridated area. Only one of the four analyses using DMFS found a statistically significant difference. The three analyses that did not find a statistically significant effect all came from the same study (Seppa, 1998), but relate to different age groups (ages 9, 12 and 15 shown in ascending order of age on the graph).

Table 4.4 shows the results of the studies that examined the effects of stopping water fluoridation. In this table a positive difference indicates that the difference between the fluoridated and non-fluoridated areas in the caries outcome became greater after the cessation of water fluoridation. A negative difference shows that the difference narrowed when fluoridation stopped.

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Teeth Type</th>
<th>Mean Difference (95% CI)</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of caries-free children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunzel (1997)</td>
<td>8</td>
<td>Permanent</td>
<td>8.6 (-5.3, -2.5)</td>
<td>5.8</td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>5</td>
<td>Primary</td>
<td>-2.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Wragg (1992)</td>
<td>5</td>
<td>Primary</td>
<td>-21.6 (-37.1, -16.3)</td>
<td>4.5</td>
</tr>
<tr>
<td>Mean difference in dmft/DMFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunzel (1997)</td>
<td>12, 15, 8</td>
<td>Permanent</td>
<td>0.1 (-0.4, 0.3)</td>
<td>5.8</td>
</tr>
<tr>
<td>Kalsbeek (1993)</td>
<td>15</td>
<td>Permanent</td>
<td>-7.4 (-8.5, -6.3)</td>
<td>5.5</td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>5</td>
<td>Primary</td>
<td>-16</td>
<td>5.5</td>
</tr>
<tr>
<td>Attwood (1988)</td>
<td>10</td>
<td>Permanent</td>
<td>-0.6 (-1.3, 0.1)</td>
<td>4.8</td>
</tr>
<tr>
<td>Hobbs (1994)</td>
<td>5</td>
<td>Primary</td>
<td>-1.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Wragg (1992)</td>
<td>5</td>
<td>Primary</td>
<td>-1.5 (-2.2, -0.7)</td>
<td>4.5</td>
</tr>
<tr>
<td>DMFS score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seppa (1998)</td>
<td>6, 9, 12, 15</td>
<td>Not stated</td>
<td>-0.1 (-0.5, 0.9)</td>
<td>5.8</td>
</tr>
<tr>
<td>Kalsbeek (1993)</td>
<td>15</td>
<td>Permanent</td>
<td>-18.8 (-21.3, -16.3)</td>
<td>5.5</td>
</tr>
<tr>
<td>Mean Difference in D1D2MFS* Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maupomé (2000)</td>
<td>8, 14</td>
<td>Permanent</td>
<td>0.59 (0.41, 0.77)</td>
<td>6.0</td>
</tr>
<tr>
<td>D1D2MFS* Incidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maupomé (2000)</td>
<td>11, 17</td>
<td>Permanent</td>
<td>0.13 (-0.07, 0.34)</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*D1D2MFS is a modified DMFS score where D1 = an incipient lesion, D2 = a cavitated lesion

Of 22 analyses of stopping water fluoridation, 14 found the direction of association to be negative (that stopping water fluoridation led to an increase in caries in the previously fluoridated area compared to the never-fluoridated area). However only eight of these studies provided a measure of the significance of this association. Four of these analyses found that stopping water fluoridation had a statistically significant effect at the 5% level, while the other four did not. Eight analyses found the direction of association to be positive (that stopping fluoridation had not led to increases in caries in the previously fluoridated areas). Seven of these analyses (from Seppa 1998 and Maupomé 2000 of both before-after and cohort analyses), provided standard error data. Only the Maupomé before-after study found a statistically significant association, in both 8 and 14 year olds.
The Maupomé study also included a multiple regression on both the before-after and cohort data including age, sex, socio-economic status, site (still fluoridated or no longer fluoridated), use of snacks, swallowing of toothpaste, use of fluoride supplements and brushing/rinsing regime. For prevalence of D1D2MFS, higher age and lower socio-economic status were statistically significantly associated with caries prevalence. Higher scores were associated with the still-fluoridated site for the D1D2MFS score and D1 alone, but higher D2 alone scores were associated with the fluoridation ended site. For the cohort data, the regression analysis showed again that higher age and lower socio-economic status were associated with higher D1D2MFS scores. However, the association between score and site (still fluoridated or fluoridation ended) were less clear.

4.3 Studies which met inclusion criteria but were not included in the main analysis

Table 4.5 is a summary of the studies that met our inclusion criteria, but contained data in forms that could not be used in the pre-defined analysis. The data used in the reports by Holdcroft and Gray were derived from the British Association for the Study of Community Dentistry (BASCD) survey data. Each year the BASCD conducts an epidemiological survey of dental health in the UK. Every second year, 5-year-old children are examined in most regions of the UK (either a random sample or the whole population of a given health authority). These surveys are co-ordinated and published by the University of Dundee.

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Reason</th>
<th>Author’s Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein (1946)</td>
<td>Caries</td>
<td>Different caries measurement at baseline and final surveys</td>
<td>Author states that the findings of this report support a beneficial role of fluoride in caries prevention</td>
</tr>
<tr>
<td>Holdcroft (1999)</td>
<td>dmft</td>
<td>Results presented for 14 areas, no pairing of exposed and control areas so could not make direct comparisons</td>
<td>The conclusion of this study was that significant improvements in dmft levels is possible in non-fluoridated districts. When measured against fluoridated districts, it implies that the effectiveness of fluoridation is at least exaggerated. Efforts to improve dental health outside of the influence of drinking fluoridated water will impact changes in dmft level.</td>
</tr>
<tr>
<td>Gray (2000)</td>
<td>dmft</td>
<td>Results presented for 10 areas, 6 areas fluoridated, no pairing of exposed and control areas so could not make direct comparisons</td>
<td>After 10 years of fluoridation dental decay was lower in the fluoridated than in the low fluoride areas.</td>
</tr>
</tbody>
</table>

4.4 Studies with more than two study areas

The majority of studies assessing caries compared one fluoridated area to one non-fluoridated area. However, there were five studies with more than two study areas, such as two fluoridated areas compared with one non-fluoridated area. In the DHSS Welsh studies (DHSS 1969), data from Holyhead were excluded from the analysis because although Holyhead usually received fluoridated water, occasionally the water supply was supplemented from a non-fluoridated source.

For two studies (Gray 1999, Wragg 1992) the data from the two areas with the same fluoride level in their water supplies were combined as no differences between the study areas were discussed. In the Beal (1971) study, two of the study areas were similar in social class structure (one fluoridated and one non-fluoridated area) while the other fluoridated area had a higher proportion of immigrants and was poorer on the basis of a number of indicators than the other two. Therefore, this area was dropped from the analysis and only the two similar areas were included. The comparison of the lower social class area with the higher social class area is considered under Objective 3.

The fifth study with more than two areas was the Canadian study of the Brantford-Sarnia-Stratford areas (Brown 1965), which included a non-fluoridated area, an artificially fluoridated area, and a naturally fluoridated area. The non-fluoridated and artificially fluoridated areas were used for the analysis of Objective 1, while the comparison of artificial and naturally fluoridated areas is considered under Objective 5.
4.5 Possible confounding factors

There are a number of potential confounding factors in assessing the development of caries within studies. Age, gender, social class, ethnicity, country, tooth type (primary or permanent), mean daily regional temperature, use of fluoride, total fluoride consumption, method of measurement (clinical exam, radiographs, or both), and training of examiners are all possible confounding factors. While most studies described the age of participants, data on other potential confounders were rarely available. Another possibly important confounding factor is the number of erupted teeth per child. It has been suggested that fluoridation may delay the eruption of teeth and thus caries incidence could be delayed as teeth would be exposed to decay for a shorter period of time. Only one study compared the number of erupted teeth per child. The difference was very small and in opposite directions in the two age groups examined, however no measure of the statistical significance of these differences was provided. Only one of the studies attempted to control for confounding factors using multivariate analysis (Maupomé 2000).

4.6 Meta-regression

A meta-regression analysis was undertaken to investigate possible sources of heterogeneity between studies. Variables that may account for the differences in measures of effect seen among different studies (or in this case each different measure of effect included in the analysis) were included in the regression model. Variables included in the analysis relate to study design and patient characteristics. The analysis aims to investigate why there is a difference in the measure of effect calculated from each study rather than why caries prevalence differs between study areas within studies.

The outcome measure used for this analysis is different from that used in previous analyses. The outcome measure used is taken from only the final survey data and corresponds to the mean difference (MD) for the dmft/DMFT data and the risk difference (RD) for the proportion of caries free children data. The reason for using only data from the final survey was to allow investigation of the effect of baseline caries levels by including this as a variable in the meta-regression. If the mean difference of the change in caries incidence was used as the outcome measure (as it has for the earlier analyses) this may lead to a spurious association being found, due to the correlation between the outcome variable and the baseline caries variable.

A paired t-test was carried out to investigate whether there were any statistically significant differences between caries prevalence (as measured by the proportion of caries-free children or dmft/DMFT) in the two study areas at baseline for each study (Appendix J). No statistically significant differences were found (p = 0.97 for proportion caries-free children and p = 0.77 for dmft/DMFT), and so the final outcome measures could be taken as measures of the effect of fluoridation on caries incidence. This also permitted the calculation of the mean proportion of caries free children or dmft/DMFT at baseline for each study, this variable was included in the regression analysis as an estimate of caries experience at baseline for each study comparison.

The analysis was carried out separately for the two main caries outcome measurements: the proportion (%) of caries-free children and dmft/DMFT. Data on possible sources of heterogeneity were extracted from the studies where possible. If not described in the paper, data on altitude and mean daily temperature were obtained from published sources.

The studies included in this analysis contribute more than one estimate to the meta-regression, although different children contribute to the different estimates within studies. It has been assumed in this analysis that these subgroups of people are independent, and hence each estimate has been treated as though it came from a separate study. For example, most of the studies report results separately for children of more than a specific age, so the results for each age group were included separately in the analysis. The potential limitations of including this type of data are discussed in section 12.6.

Continuous measures were centred on the mean (the mean value of each variable was subtracted from each of the individual measures), before including them in the regression model. Centering continuous variables in this way results in the constant (or intercept) of the regression model pertaining to the pooled estimate of the measure of effect when the explanatory variable takes its mean value.
A univariate analysis was undertaken in which each of the variables was included individually in the regression model with the measure of effect. The random effects meta-regression models (mixed models) were implemented to combine studies. Although age is related to tooth type (primary or permanent) both were included in the univariate analyses because the 8 year-old age group could have primary and/or permanent teeth. However, neither of the multivariate models included both terms.

A measure of the between study variance (heterogeneity) remaining after the variables included in the model had been accounted for was calculated using restrictive maximum likelihood estimation. Variables which showed a statistically significant association with the measure of effect (MD or RD) at the 15% statistical significance level (p<0.15) in the univariate analysis were included in the multivariate analysis. This significance level was chosen to conservatively identify variables that could potentially be important in the multivariate model. The multivariate analysis was carried out using a step-down analysis in which each variable was included in the initial model. Variables were dropped one by one, with the variable that showed the least evidence of a statistically significant association dropped first, until only variables which showed a statistically significant association at the 5% level were included in the analysis. The analysis was repeated using a step-up analysis to confirm the results of the step-down analysis. As a further exploratory analysis study validity was forced into the regression model as the effect of study validity was considered to be very important in these studies of variable quality. However, study validity was not found to be statistically significantly associated with the dependent variable in the analysis of dmft/DMFT score. The results of this analysis are presented in Appendix L.

4.6.1 Proportion (%) of caries-free children

A total of 31 RD estimates from 9 studies were included in the analysis. Several of these RD estimates came from the same study as each study provided estimates for more than one age group.

4.6.1.1 Univariate analysis

The results of the univariate analysis are shown in Table 4.6.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category or mean</th>
<th>Constant (95%CI)</th>
<th>p-value of constant</th>
<th>Co-efficient (95%CI)</th>
<th>p-value of co-efficient</th>
<th>Between study variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No variables (pooled estimate)</td>
<td></td>
<td>15.4 (10.8, 20.1)</td>
<td><0.001</td>
<td></td>
<td></td>
<td>163.0</td>
</tr>
<tr>
<td>Baseline %caries-free subject *</td>
<td></td>
<td>19.4</td>
<td>15.5 (11.7, 19.3)</td>
<td><0.001</td>
<td>0.4 (0.2, 0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Tooth type (n=29)*</td>
<td>Not stated</td>
<td>8.4 (0.4, 16.5)</td>
<td>0.039</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Permanent</td>
<td></td>
<td></td>
<td>13.4 (6.1, 23.6)</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
<td>3.6 (-7.9, 15.2)</td>
<td>0.538</td>
<td></td>
</tr>
<tr>
<td>Setting*</td>
<td>Taiwan</td>
<td>20.5 (9.6, 31.3)</td>
<td><0.001</td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td></td>
<td></td>
<td>-5.19 (-17.5, 7.1)</td>
<td>0.407</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. America</td>
<td></td>
<td></td>
<td>1.17 (-15.2, 17.6)</td>
<td>0.889</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td></td>
<td></td>
<td>-20.3 (-37.9, -2.6)</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Study duration*</td>
<td>9.0</td>
<td>15.4 (10.9, 19.8)</td>
<td><0.001</td>
<td>1.30 (0.0, 2.6)</td>
<td>0.049</td>
<td>147</td>
</tr>
<tr>
<td>Year of final survey</td>
<td>1969</td>
<td>15.4 (10.8, 20.1)</td>
<td><0.001</td>
<td>0.24 (-0.2, 0.7)</td>
<td>0.279</td>
<td>162</td>
</tr>
<tr>
<td>Number of years since change in fluoridation status</td>
<td>0.5</td>
<td>13.3 (5.9, 20.7)</td>
<td><0.001</td>
<td>-2.1 (-7.6, 3.5)</td>
<td>0.462</td>
<td>165</td>
</tr>
<tr>
<td>Age (years)</td>
<td>8.8</td>
<td>15.5 (10.7, 20.2)</td>
<td><0.001</td>
<td>-0.23 (-1.6, 1.1)</td>
<td>0.739</td>
<td>167</td>
</tr>
<tr>
<td>Validity score*</td>
<td>5.2</td>
<td>15.5 (10.7, 20.2)</td>
<td><0.001</td>
<td>-1.17 (-10.0, 7.7)</td>
<td>0.796</td>
<td>168</td>
</tr>
<tr>
<td>Average temperature (°C)</td>
<td>11.7</td>
<td>15.4 (10.7, 20.2)</td>
<td><0.001</td>
<td>0.11 (-0.7, 1.0)</td>
<td>0.795</td>
<td>168</td>
</tr>
</tbody>
</table>

*Included in multivariate analysis
The p-value shows whether the co-efficient is statistically significantly different from 0. If it is not statistically significantly different from 0 then this variable is not statistically significantly associated with the dependent variable (i.e. RD of proportion of caries-free children). The between study variance shows the estimate of the heterogeneity which is left between the estimates of the MD after that variable has been controlled for.

The model in which no variables (other than the risk difference) were included shows the pooled estimate of the risk difference of the change in the proportion of caries-free children to be 15.5% (95% CI: 10.8, 20.1). This is the same as the measure that would be produced by a standard meta-analysis. However, the measure of between study variance (heterogeneity) is large and highly statistically significant (p<0.001) and so this value should be interpreted with extreme caution.

At the 15% statistical significance level the following variables showed a statistically significant association with the risk difference: tooth type, study duration, setting, and baseline proportion of caries-free children. The risk difference increased with increasing proportion of caries-free children at baseline and study duration, and was greater in permanent teeth than in primary teeth and than in studies in which tooth type was not stated. The risk difference also varied according to setting and was greater in Taiwan and the North America and lower in Europe and Chile. Age, number of years since change in fluoridation status, average temperature, study validity and year of final survey did not show an association with the risk difference of caries incidence. Study validity was forced into the regression model for the reasons discussed above.

4.6.1.2 Multivariate Analysis

The multivariate model shows the effect of each variable controlled for the possible effects of the other variables included in the model. The results of the multivariate analysis are shown in Table 4.7. All the variables were centered in the same way as in the univariate analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category (mean)</th>
<th>Co-efficient (SE)</th>
<th>p-value</th>
<th>Between study Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>14.3 (6.7, 21.9)</td>
<td><0.001</td>
<td>53.1</td>
<td></td>
</tr>
<tr>
<td>Baseline %caries-free children</td>
<td>19.4</td>
<td>0.61 (0.43, 0.80)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>-1.85 (-10.9, 7.2)</td>
<td>0.688</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. America</td>
<td>22.90 (10.7, 35.1)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>-4.71 (-17.1, 7.7)</td>
<td>0.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity score</td>
<td>5.2</td>
<td>16.78 (8.9, 24.7)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

The proportion of caries-free children at baseline, setting and validity score show a statistically significant association at the 5% level with the risk difference of the proportion of caries-free children between fluoridated and control areas. These variables appear to account for a lot of the variation seen in the initial model where the measure of heterogeneity was 163. Including these variables in the regression model reduced the between study variance to 53. In this model the MD increases with increasing caries-free children at baseline, validity score and study duration, and is greatest in North America and Taiwan and is lowest in Europe and Chile. The model obtained using a step-up regression analysis was similar. The association of validity score with the risk difference is in the opposite direction in the univariate to that in the model presented above (negative association in the univariate, positive association in the multivariate). The reason for this is unclear but it is possible that this is related to the fact that setting, validity score and study duration will be the same for each analysis from the same study and thus some degree of colinearity is likely to exist between these three variables. It should also be noted that the association was not significant in the univariate analysis suggesting that one or more of the other variables included in the multivariate analysis act to confound the relationship between study validity score and the risk difference.

4.6.2 dmft/DMFT

4.6.2.1 Univariate Analysis

A total of 16 MD estimates from 4 studies were included in the analysis. The results of the univariate analysis are shown in Table 4.8.
Table 4.8 Results of the univariate meta-regression analysis for dmft/DMFT score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category or mean</th>
<th>Constant (95% CI)</th>
<th>p-value of constant</th>
<th>Co-efficient (95% CI)</th>
<th>p-value of co-efficient</th>
<th>Between study Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No variables (pooled estimate)</td>
<td></td>
<td>2.3 (1.8, 2.8)</td>
<td><0.001</td>
<td></td>
<td></td>
<td>1.068</td>
</tr>
<tr>
<td>Baseline dmft/DMFT *</td>
<td>3.6</td>
<td>2.3 (1.9, 2.7)</td>
<td><0.001</td>
<td>0.3 (0.1, 0.5)</td>
<td>0.006</td>
<td>0.713</td>
</tr>
<tr>
<td>Setting*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>1.3 (0.4, 2.2)</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td>0.777</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study duration (years)*</td>
<td>10.7</td>
<td>2.3 (1.9, 2.8)</td>
<td><0.001</td>
<td>0.2 (0.03, 0.4)</td>
<td>0.018</td>
<td>0.815</td>
</tr>
<tr>
<td>Validity score*</td>
<td>5.3</td>
<td>2.3 (1.8, 2.8)</td>
<td><0.001</td>
<td>-1.0 (-1.9, 0.0)</td>
<td>0.048</td>
<td>0.897</td>
</tr>
<tr>
<td>Age (years)*</td>
<td>9.5</td>
<td>2.3 (1.8, 2.8)</td>
<td><0.001</td>
<td>0.1 (-0.01, 0.3)</td>
<td>0.062</td>
<td>0.903</td>
</tr>
<tr>
<td>Temperature (^oC)</td>
<td>13.3</td>
<td>2.3 (1.8, 2.8)</td>
<td><0.001</td>
<td>0.0 (-0.03, 0.1)</td>
<td>0.229</td>
<td>1.04</td>
</tr>
<tr>
<td>Number of years since change in</td>
<td>-0.6</td>
<td>2.2 (1.3, 3.0)</td>
<td><0.001</td>
<td>-0.1 (-0.6, 0.4)</td>
<td>0.707</td>
<td>1.13</td>
</tr>
<tr>
<td>fluoridation status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of final survey</td>
<td>1975</td>
<td>2.3 (1.8, 2.9)</td>
<td><0.001</td>
<td>0.0 (-0.1, 0.1)</td>
<td>0.906</td>
<td>1.14</td>
</tr>
<tr>
<td>Tooth type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>2.3 (1.5, 3.2)</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td>1.14</td>
</tr>
<tr>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Included in multivariate analysis

The model in which no variables (other than the MD) were included shows the pooled estimate of the MD in dmft/DMFT between the fluoridated and control areas to be 2.3 (95% CI: 1.8, 2.8). This is the same as the measure that would be produced by a standard meta-analysis. However, the measure of between study variance (heterogeneity) is large and highly statistically significant (p<0.001) and so this value should be interpreted with extreme caution.

At the 15% statistical significance level the following variables showed a statistically significant association with the MD: baseline dmft/DMFT, setting, study duration, validity score and age. The MD was highest in Taiwan and North America, followed by Germany and the UK. Study duration, age, and baseline dmft/DMFT score showed a positive association with the MD – as the value of these variables increased so did the MD. Validity score showed a negative association with MD with the lowest validity studies showing a greater MD.

4.6.2.2 MULTIVARIATE ANALYSIS

Table 4.9 Results of the multivariate meta-regression analysis for dmft/DMFT score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Co-efficient</th>
<th>p-value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.61 (2.31, 2.91)</td>
<td></td>
<td><0.001</td>
<td>0.111</td>
</tr>
<tr>
<td>Baseline dmft/DMFT</td>
<td>3.6</td>
<td>0.37 (0.26, 0.48)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.5</td>
<td>0.11 (0.04, 0.18)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Study duration (years)</td>
<td>10.7</td>
<td>0.26 (0.18, 0.34)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Setting*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>-0.74 (-1.20, -0.29)</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. America</td>
<td>-0.57 (-1.27, 0.13)</td>
<td>0.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>Dropped</td>
<td>dropped</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age, baseline dmft/DMFT, setting and study duration show a statistically significant association at the 5% level with the MD in the dmft/DMFT. These variables appear to account for a lot of the variation seen in the initial model where the measure of heterogeneity was 1.07. Including these variables in the regression model reduced the between study variance to 0.111. All of the variables except study setting showed a positive association with the MD – as each variable increases so does the MD. Setting shows that the MD was smaller in Germany and North America than in the UK. There was insufficient data for the effects of Taiwan to be investigated and this was dropped from the analysis. The analysis was repeated using a step-up analysis and produced similar results. Validity score was did not show a significant association with the MD in the multivariate model. The model in which study validity was included is presented in Appendix L. Forcing study validity into the model had very little effect on the co-efficients and standard errors of the other variables.
4.7 Numbers needed to treat

The number needed to treat (NNT) represents the number of children that need to receive the intervention for one person to benefit from the intervention. The NNT can be calculated by taking the inverse of the risk difference. This is the measure that was calculated for the meta-analysis of the proportion of caries free children above. In this case it represents the number of people exposed to fluoridation for one additional child to be caries-free. An NNT is valid only for the comparison it is based on, for example water fluoride levels < 0.7 ppm versus 0.7 to 1.2 ppm.

The risk difference was calculated for each study comparison – for some studies more than one risk difference was calculated if caries measurement was made in more than one age group. A meta-analysis was conducted to provide a pooled estimate of the mean risk difference between the exposed and control groups. This was carried out for all teeth types combined (permanent, primary and not stated) and separately for permanent and primary teeth. Heterogeneity was investigated and found to be statistically significant in all models (the Q statistic) and so the results of these analyses should be interpreted with caution.

Table 4.10 Meta analysis of risk difference in the proportion (%) of caries-free children

<table>
<thead>
<tr>
<th>Tooth type</th>
<th>Age</th>
<th>Number of studies</th>
<th>Risk Difference % (95% CI)</th>
<th>Q-statistic – measure of heterogeneity</th>
<th>P-value for heterogeneity at the 5% level</th>
<th>NNT (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>31</td>
<td>15.5 (10.7, 20.2)</td>
<td>1421.0</td>
<td><0.001</td>
<td>6 (5, 9)</td>
</tr>
<tr>
<td>Primary</td>
<td>All</td>
<td>15</td>
<td>11.4 (6.5, 16.3)</td>
<td>354.4</td>
<td><0.001</td>
<td>9 (6, 15)</td>
</tr>
<tr>
<td>Permanent</td>
<td>All</td>
<td>16</td>
<td>19.1 (11.4, 26.7)</td>
<td>751.3</td>
<td><0.001</td>
<td>5 (4, 9)</td>
</tr>
<tr>
<td>Primary</td>
<td>5</td>
<td>11</td>
<td>13.2 (6.8, 20.0)</td>
<td>137.5</td>
<td><0.001</td>
<td>8 (5, 15)</td>
</tr>
<tr>
<td>Primary</td>
<td>8</td>
<td>4</td>
<td>7.2 (-3.6, 18.0)</td>
<td>211.3</td>
<td><0.001</td>
<td>14 (6, x)</td>
</tr>
<tr>
<td>Permanent</td>
<td>8</td>
<td>4</td>
<td>35.6 (22.4, 48.8)</td>
<td>39.1</td>
<td><0.001</td>
<td>3 (2, 5)</td>
</tr>
<tr>
<td>Permanent</td>
<td>12</td>
<td>6</td>
<td>13.1 (0.8, 25.5)</td>
<td>215</td>
<td><0.001</td>
<td>8 (4, 125)</td>
</tr>
<tr>
<td>Permanent</td>
<td>14-15</td>
<td>4</td>
<td>8.8 (0.7, 16.9)</td>
<td>36.8</td>
<td><0.001</td>
<td>11 (6, 143)</td>
</tr>
</tbody>
</table>

The numbers needed to treat with 95% confidence intervals are given in the final column of Table 4.10. For all teeth combined 6 people need to receive fluoridated water for one extra person to be caries-free, with a 95% confidence interval of between 5 and 9 people. Due to the heterogeneity the median risk difference was calculated for all teeth combined, for primary teeth and for permanent teeth. This was translated into a number needed to treat. The median NNT for all teeth combined was 6, for primary teeth was also 6 and for permanent teeth was 5. These numbers are very similar to those obtained using the meta-analysis suggesting that these figures are a relatively accurate estimation based on the data from the studies included in this analysis.

To investigate whether including estimates for multiple ages from one study in the meta-regression as if they were independent was leading to bias in the result, NNTs were calculated separately for each tooth type and age group (Table 4.10). The NNT was greater in primary than in permanent teeth and within permanent teeth increased with age. This would be expected as the univariate meta-regression showed that age had a negative association with the risk difference (and hence a positive association with the NNT), although this relationship was not significant in the multivariate analysis. The estimates of the risk difference were positive for all age groups reported. The variation in RD and NNT suggests that although there may have been some bias introduced by including estimates for multiple ages from the same study as if they were independent, this does not alter the conclusion that the overall effect is positive.

4.8 Publication bias

Although it is possible to create a funnel plot from the studies including the proportion (%) of caries-free children this has not been done because some studies would contribute several points, this would make the funnel plot difficult to interpret. It would be possible to take only one point from each study but this would only give nine points that would also lead to problems with regard to interpreting the plot. It is thus difficult to estimate whether publication bias is having an effect. It has been argued that it is easier to get a study published that shows a beneficial effect of water fluoridation. However, considering the broad approach to searching for studies and the inclusion of unpublished studies in this report it is unlikely that any major studies on the association of dental caries with water fluoridation have been missed. Importantly, any missed study would have to be very large, and very different to those that were included to overturn the overall result.
4.9 Discussion

Objective 1 attempts to assess the effect of water fluoridation on the development of caries. A small number of studies meeting the pre-defined criteria were found. While many cross-sectional studies exist, relatively few studies were designed to assess the effects of water fluoridation over time. Studying populations exposed or not exposed to water fluoridation longitudinally allows baseline dental health to be taken into account and differences developing over time to be assessed. Studies that assess dental caries at one point in time using an ecological or cross-sectional study design only show the differences in caries prevalence at that particular point in time. In such studies it is not possible to tell whether the observed differences have always existed between these populations or whether they are the result of the differing levels of water fluoride content between the study areas.

When diagnosing caries it is usual to have very specific written criteria. However, these criteria vary from study to study. In particular, they have changed over time as treatment philosophies have also changed. This means that there is likely to be inter-study variation in the threshold at which caries is diagnosed. What is more important is whether the diagnostic criteria have remained the same within studies. As this systematic review has used the difference in change between DMFT/dmft the intra-study variation is likely to be of minimal importance.

For this objective, the quality of studies found was only moderate (level B). A large number of studies were excluded because they were cross-sectional studies and therefore did not meet the inclusion criteria of being evidence level B or above. All but one of the studies included were before-after studies; three included studies used a cohort design, two prospective and one retrospective. The most serious defect of these studies was the lack of appropriate analysis. Many studies did not present an analysis at all, while others only did simple analyses without attempting to control for potentially confounding factors. Although the size of the differences found might be affected by confounding factors, the differences estimated in this review were sufficiently large that it is unlikely that confounding factors would account for them entirely. While some of these studies were conducted in the 1940’s and 50’s, prior to the common use of such analyses, studies conducted much later also failed to use methods that were commonplace at the time of the study. As an example, no study used an analysis that would control for the frequency of sugar consumption or the number of erupted teeth per child. Another defect of many studies was the lack of any measure of variance for the estimates of decay presented. This was not so much of a problem for the studies, which presented the proportion of caries-free children, as all these studies contained sufficient data to calculate standard errors for the data provided. However, for the studies that presented dmft/DMFT scores this was more of a problem with only four of the eight studies providing any estimate of variance.

To have clear confidence in the ability to answer the question in this objective, the quality of the evidence would need to be higher. The failure of these studies to deal with potential confounding factors or to provide standard error data means that the ability to answer the objective is limited.

Tables 4.1 to 4.3 and Figures 4.1 and 4.2 suggest, through a simple qualitative method of analysis, using means, and confidence intervals where available, that water fluoridation does appear to reduce caries. Table 4.4 shows that when water fluoridation is stopped, in 12 out of 16 studies the direction of the association is that the caries burden increases more in the previously-fluoridated groups than in the never fluoridated groups. Only eight of these studies provided a measure of the significance of this association and of these, four showed a statistically significant positive effect. When fluoridation is discontinued caries prevalence appears to increase in the area that had been fluoridated compared with the control area. Interpreting from this data the degree to which water fluoridation works to reduce caries is more difficult.

The meta-analysis showed a statistically significant effect of water fluoridation in reducing dental caries as measured by both dmft/DMFT and the proportion of caries-free children. However, the results showed statistically significant evidence of heterogeneity and thus the pooled estimates should be interpreted with caution. The meta-regression carried out to investigate the heterogeneity between studies showed that, for both dmft/DMFT and the proportion of caries-free children, the baseline caries measurement and study duration both accounted for a significant proportion of this heterogeneity. For both these outcome measurements, increased duration of follow up was associated with a greater difference in the change in caries measurement from baseline to final examination in the fluoridated compared with the control group.
The baseline measure of dental caries also showed a positive association with the mean difference. This is what would be expected for dmft/DMFT: the greater the population prevalence of tooth decay at the baseline examination the greater the effect of water fluoridation in decreasing this decay in the fluoridated area. However, the situation is slightly more complex for the proportion of caries-free children. The results suggest that the greater the proportion of caries-free children at baseline (i.e. the less decay in the population) the greater the change in the mean difference. This is possibly related to the distribution of caries-free children within a population. A population with a high proportion of caries-free children will also probably have more children with few decayed teeth than a population with a small proportion of caries-free children, which is likely to have more children with more decayed teeth. Such a population would only require a small decrease in decay for a noticeable increase in the proportion of caries-free children.

The meta-regression of the proportion of caries-free children found that setting accounts for a significant proportion of the heterogeneity. The results showed that the mean difference was highest in North America. However, this variable was the same for each analysis from the same study and so some caution should be exercised in interpreting these results. Average temperature and age were also statistically significantly associated with the mean difference in the meta-regression of the mean difference in dmft/DMFT. Both of these variables showed a positive association with the mean difference. Temperature was the same for each analysis from the same study; this may be a particular problem for these data as the 16 measures included in the analysis came from only four studies, and so the results for this variable should also be interpreted with caution.
5. OBJECTIVE 2

If water fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

Studies carried out after 1974 were selected to examine the effect of water fluoridation over and above the effect of other sources of fluoride, especially fluoridated toothpaste. As toothpaste containing fluoride was being widely used in industrialised countries by the early 1970's, examining the effect of water fluoridation after 1974 should allow for any modifying effect of fluoride toothpaste and other sources of dental fluoride (e.g. mouthrinses, tablets) to be apparent. Studies carried out post-1974 which were conducted in industrialised countries were considered to have included the effects of these sources of fluoride, unless the study stated otherwise. Of the 24 studies that met the inclusion criteria for Objective 1, ten were completed after 1974 (1978 – 1997). The mean validity score of these ten studies is 5.0 (range 3.5 to 6.8 out of 8). Five of these studies were conducted in the UK (Wragg 1992; Attwood 1988; Hardwick 1982, Hobbs 1994; Gray 1999). The others were from the Netherlands, Finland, Germany, and Taiwan. Among these were eight before and after studies and two cohort study (Hardwick 1982, Maupomé 2000). Six of the before and after studies examined the discontinuation of water fluoridation.

The results of the studies in which fluoridation was initiated and which were completed after 1974 are displayed in Table 5.1. The results of the studies in which fluoridation was discontinued during this time period are presented in Table 5.2. In addition to the ten studies outlined above, two studies (Gray, 2000 and Holdcroft, 1999) met inclusion criteria but direct comparison data could not be extracted and were excluded from this table. The results of these studies can be found in Table 4.5 in chapter 4.

Table 5.1 Caries studies of fluoridation initiation, completed after 1974

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Teeth Type</th>
<th>Mean Difference (95% CI)</th>
<th>Year of final survey</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo (1984)</td>
<td>5</td>
<td>Primary</td>
<td>-2.0 (-6.4, 2.4)</td>
<td>1971 - 1984</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>64.1 (55.4, 72.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>0.4 (-4.8, 5.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>28.5 (20.5, 36.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>34.4 (19.7, 49.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray (1999)</td>
<td>5</td>
<td>Primary</td>
<td>26.0 (19.4, 32.6)</td>
<td>1988 - 1997</td>
<td>3.5</td>
</tr>
<tr>
<td>dmft/DMFT Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo (1984)</td>
<td>5</td>
<td>Primary</td>
<td>3.6 (2.6, 4.6)</td>
<td>1971 - 1984</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Permanent</td>
<td>1.6 (1.4, 1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Primary</td>
<td>4.4 (3.9, 4.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>2.6 (2.2, 3.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Permanent</td>
<td>3.8 (2.7, 4.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort Study: Difference in Increment in DMFS/DMFT score (Control – Fluoridated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardwick (1982)</td>
<td>12</td>
<td>Permanent</td>
<td>DMFS 2.5 (1.0, 3.9)</td>
<td>1974 - 1978</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Permanent</td>
<td>DMFT 1.1 (0.4, 1.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of the six studies assessing the proportion of caries-free children, five studies found the direction of association of water fluoridation and caries to be positive. Four of these found a statistically significant benefit. One study found the direction of association to be negative, but this effect was not statistically significant. All of the five analyses investigating the mean difference in dmft/DMFT were from the same study (Guo, 1984). All found a statistically significant positive association between water fluoridation and the mean difference in the change in dmft/DMFT. The cohort study of water fluoridation initiation found a statistically significant difference in the increment in both DMFT and
DMFS scores between the fluoridated and control area with the control area showing the greatest increment (Hardwick, 1982).

Table 5.2 Caries studies in which fluoridation was discontinued completed after 1974

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Teeth Type</th>
<th>Mean Difference (95% CI)</th>
<th>Year of final survey</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>proportion of caries-free children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunzel (1997)</td>
<td>8</td>
<td>Permanent</td>
<td>8.6 (-2.5, 1.3)</td>
<td>1991 - 1995</td>
<td>5.8</td>
</tr>
<tr>
<td>dmft/DMFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attwood (1988)</td>
<td>10</td>
<td>Permanent</td>
<td>-0.6 (-1.3, 0.1)</td>
<td>1980 – 1986</td>
<td>4.8</td>
</tr>
<tr>
<td>Hobbs (1994)</td>
<td>5</td>
<td>Primary</td>
<td>-1.2</td>
<td>1989 - 1993</td>
<td>4.5</td>
</tr>
<tr>
<td>Kunzel (1997)</td>
<td>12</td>
<td>Permanent</td>
<td>0.1</td>
<td>1991 - 1995</td>
<td>5.8</td>
</tr>
<tr>
<td>Wragg (1992)</td>
<td>5</td>
<td>Primary</td>
<td>-1.5 (-2.2, -0.7)</td>
<td>1985 – 1995</td>
<td>4.5</td>
</tr>
<tr>
<td>DMFS score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seppa (1998)</td>
<td>6</td>
<td>Not stated</td>
<td>-0.1</td>
<td>1992 - 1995</td>
<td>5.8</td>
</tr>
<tr>
<td>9</td>
<td>Permanent</td>
<td>0.2 (-0.5, 0.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Permanent</td>
<td>-1.1 (-2.3, 0.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Permanent</td>
<td>-0.9 (-4.2, 2.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Difference in D1D2MFS* Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maupomé (2000)</td>
<td>8</td>
<td>Permanent</td>
<td>0.59 (0.41, 0.77)</td>
<td>1993 – 1997</td>
<td>6.0</td>
</tr>
<tr>
<td>14</td>
<td>Permanent</td>
<td>1.39 (0.23, 2.55)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1D2MFS* Incidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maupomé (2000)</td>
<td>11</td>
<td>Permanent</td>
<td>0.13 (-0.07, 0.34)</td>
<td>1993 – 1997</td>
<td>6.0</td>
</tr>
<tr>
<td>17</td>
<td>Permanent</td>
<td>0.47 (-0.02, 0.96)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*D1D2MFS is a modified DMFS score where D1 = an incipient lesion, D2 = a cavitated lesion

There were 20 analyses looking at the discontinuation of water fluoridation, four of which looked at the proportion of caries-free children, seven looked at the dmft/DMFT score, five looked at the DMFS score and four reported on the D1D2MFS score. Of these 20 analyses, 12 found the direction of association to be positive (ie a greater increase in caries in the area that had been fluoridated compared with the control area). Twelve of the 20 analyses provided a measure of the significance of the association, four of the studies found a statistically significant positive association. Four analyses from a single study (Maupomé 2000) found the direction of association to be negative (the level of caries improved more in the area that discontinued fluoridation than in the area that was never fluoridated). Two of these results (from the before-after study but not in the cohort study) were statistically significant.

In the development of both of the meta-regression models of caries for Objective 1, the baseline disease level was included and found to be statistically significant. At lower levels of disease the reduction of dmft/DMFT was less in fluoridated areas than in non-fluoridated areas but there was a larger increase in the number of children found to be caries-free. Both of these differences were statistically significant. If other sources of fluoride are shown to have an effect on dental caries then decay should drop, thus baseline levels of decay would be at lower levels than when many of the original studies looking at water fluoridation were started. Water fluoridation would thus be expected to have less of an effect on the severity of dental caries, as measured by the dmft/DMFT score, but would be expected to have a greater effect on the proportion of caries-free children (see discussion section of chapter 4). Year of final study was also included as an explanatory variable in the univariate meta-regression for both the caries-free and dmft/DMFT analysis. This variable did not show any evidence of a significant association with the mean difference and so was not included in the multivariate analysis.
5.1 Discussion

This objective assesses the impact of water fluoridation on caries after the advent of other sources of fluoride, especially toothpaste containing fluoride. Relatively few studies qualified to address this issue (10). None of these identified this objective as the purpose of the study, but were conducted in time periods and countries where fluoridated toothpaste use was widespread. No included study specifically measured fluoride exposure from sources other than water although Hardwick (1982) reported the use of fluoridated toothpaste in both groups. The studies included for Objective 2 are a subset of those in Objective 1. The studies included in Objective 2 are of moderate quality (level B). Aside from design issues, their major failing was lack of analyses controlling for exposure to other sources of fluoride, including toothpaste.

While only ten studies were included for Objective 2, these would be enough to provide a confident answer to the objective’s question if the studies were of sufficient quality. Since these studies were completed after 1974, one might expect that the validity assessments would be higher than the earlier studies due to the introduction of more rigorous study methodology and analytic techniques. However, the average validity checklist score and level of evidence was essentially the same for studies completed after 1974 as the whole group of caries studies. Hence, the ability to answer this objective is similar to that in Objective 1.

In examining the post-1974 studies (Table 5.1), the evidence suggests that water fluoridation has an effect over and above that of fluoridated toothpaste (and other sources of fluoride). If fluoridated toothpaste was responsible for reducing the difference in baseline caries between fluoridated and non-fluoridated areas, then the meta-regression models created for Objective 1 suggest that at lower levels of caries the reduction in DMFT would be less but the proportion of caries-free children would be greater. The study included in the review with the highest validity score (Hardwick 1982) showed a statistically significant difference in caries increment between fluoridated and non-fluoridated areas. Those in the non-fluoridated area had the greatest increment, in spite of fluoridated toothpaste being used by both groups (94% vs 95% used only fluoride toothpaste in the fluoridated and non-fluoridated groups, respectively).
Determination of whether fluoridation results in a reduction of caries across social groups and between geographical locations bringing equity

No level A studies, and very few level B studies for Objective 3 were identified by the search. Because the issue of social class effects of water fluoridation was considered highly important, studies of any level that were conducted in the UK were included. A total of 15 studies investigating the association of water fluoridation, dental caries and social class were identified, ranging in publication dates from 1969-1999. Among these were three unpublished studies (Holdcroft 1999; Gray 2000, Jones 2000). Details of baseline information and results from each study can be found in tables in Appendix C. All but three of the included studies were cross-sectional in design. These three were before-after study designs (DHSS, 1969: Holdcroft, 1999; Gray, 2000). Seven of the studies presented measures of caries experience (proportion (%) of caries-free children, DMFT and dmft) stratified according to the Registrar General's social class classification (see Appendix H). Of these studies, five examined caries experience in children aged five, and two also examined 8, 12 and 14 year-olds. One study studied 10 year-olds only and another 15-16 year-olds only. Two studies presented data in a similar way but used different methods of classifying social class (low versus high deprivation and urban ordinary versus social priority). Urban ordinary and social priority was a classification used by the education authority to classify its schools at the time of the study, with social priority indicating less privileged students. Two studies used a regression analysis to investigate the association of caries experience (dmft and DMFT) with a measure of social deprivation (Jarman and Townsend scores, section 6.3), separately for high and low fluoride areas. The remaining two studies presented dmft and proportion caries-free data for a sample of fluoridated and non-fluoridated areas together with the Jarman score for each area, before and after water fluoridation was introduced in some of these areas.

If water fluoridation results in a reduction in caries across social class, reducing social inequalities in dental health, these studies would be expected to show that caries experience is lower in fluoridated than non-fluoridated areas. Importantly, the difference in caries experience between the social classes would be less in the fluoridated than in the non-fluoridated areas.

All except two of the studies investigating the association between caries experience, water fluoridation and social class were of evidence level C. The only exceptions were the before-after studies, which were level B. The average checklist score was 1.6 out of 8 (range 0.8 to 5.3), with eight of the 12 studies scoring only 0.8. Only two of the studies were prospective, had a baseline survey and follow-up and so the remaining studies lost marks for these checklist items. Only one study reported reliable measurement (or adequate reporting) of the fluoride concentration. None of the studies attempted to control for confounding using multivariate analysis – the only confounders considered were age (most studies presented results for one age only or stratified on age) and ethnic group (two of the studies only included children from one ethnic group).

Because there were very limited data available in formats that allowed pooling of results using meta-analytic techniques a more simple approach was adopted. For studies in which caries experience was presented by social class, as measured by the Registrar General’s grouping, some pooling was possible and the results of this are presented below. For the other studies a qualitative analysis has been presented.

6.1 Proportion (%) of caries-free children stratified by the Registrar General's classification of social class

The proportion of caries-free children for each age group was determined by calculating the total number of children with no caries experience (caries-free), summing this number across studies and dividing by the sum of the total number of children from all studies. This method also allowed the calculation of a standard error and confidence interval. The results of this analysis are presented in Table 6.1. The studies included were Bradnock, 1984; Carmichael, 1980; DHSS, 1969; Evans, 1996;
Murray, 1984; and Murray, 1991. If there were several studies from one geographical area the most recent study for that age group was included. This decision was made in order to minimise the effect of any confounding variables operating in this area.

Table 6.1 Proportion of caries-free children by social class and water fluoride level

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>Studies Included</th>
<th>Age</th>
<th>Social Class I & II</th>
<th>Social Class III</th>
<th>Social Class IV & V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Caries-free</td>
<td>% Caries-free</td>
<td>% Caries-free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>55 (48, 63)</td>
<td>153</td>
<td>43 (37, 49)</td>
</tr>
<tr>
<td>High Low</td>
<td>Murray 1984</td>
<td>10</td>
<td>43 (31, 55)</td>
<td>67</td>
<td>29 (23, 35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>26 (16, 36)</td>
<td>80</td>
<td>26 (20, 32)</td>
</tr>
<tr>
<td>High Low</td>
<td>Murray 1991</td>
<td>15-16</td>
<td>31 (22, 40)</td>
<td>94</td>
<td>27 (20, 35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-16</td>
<td>23 (14, 32)</td>
<td>80</td>
<td>20 (13, 27)</td>
</tr>
</tbody>
</table>

With the exception of one study of 15 to 16 year-old children (Murray 1991, social classes IV & V), these results show that for all age groups and all social classes the proportion of caries-free children is higher in the fluoridated than in the non-fluoridated areas. With the exception of the same study, caries experience is higher in the lower social classes (social class IV and V) than the higher social classes in both fluoridated and non-fluoridated areas. In most of the age groups, and for both high and low fluoride areas, a gradient relationship exists between social class and the proportion of caries-free children, this is illustrated graphically for children aged five in Figure 6.1. Data from children aged five years were graphed as four studies were included which looked at the association of water fluoride level, social class and caries experience in children of this age. Only two studies were found for other age groups, one each for ages 10 and 15-16.

Figure 6.1 Proportion of (%) caries-free five-year-old children (95% CI) by social class in high and low fluoride areas

Figure 6.1 illustrates the higher proportion of caries-free children aged five years in the areas receiving fluoridated water compared with those receiving water with a low fluoride concentration. It also shows the increase in caries experience across the social classes for children aged 5 years. The absolute difference in the proportion (%) of caries-free children between Classes I & II and IV & V in the fluoridated group is 20%, while it is 18% in the non-fluoridated group. Thus there is no evidence from these studies to suggest that fluoridation reduces the social gradient.
6.2 dmft/DMFT stratified by the Registrar General’s classification of social class

The mean number of dmft/DMFT per child for each age-group was determined by calculating the total dmft/DMFT in each study, summing this number across studies and dividing by the sum of the total number of children from all studies. This method did not allow the calculation of a standard error, and too many of the studies did not provide information on standard errors to allow this to be estimated. For children aged five, results from seven study analyses contributed to this analysis (from Bradnock 1984; Carmichael 1980; Carmichael 1989; DHSS 1969; and Evans 1996). For 8,12 and 14 year-olds, two analyses contributed (DHSS 1969, England and Wales data). However, for ages 10 and 15-16 data were only available from one study each (Murray 1984; Murray 1991). The results of this analysis are presented in Table 6.2.

Tables 6.2 dmft/DMFT by age, social class and water fluoride level

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>Studies Included</th>
<th>Age</th>
<th>Social Class I & II</th>
<th>Social Class III</th>
<th>Social Class IV & V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMFT</td>
<td>Number</td>
<td>DMFT</td>
</tr>
<tr>
<td>High</td>
<td>Bradnock 1984;</td>
<td>5</td>
<td>1.1</td>
<td>343</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Carmichael 1980;</td>
<td></td>
<td>1.8</td>
<td>292</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Carmichael 1989;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DHSS (England,)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1969; Evans 1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>5</td>
<td>1.8</td>
<td>292</td>
<td>3.1</td>
</tr>
<tr>
<td>High</td>
<td>DHSS (England)</td>
<td>8</td>
<td>1.0</td>
<td>39</td>
<td>1.3</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>8</td>
<td>1.2</td>
<td>49</td>
<td>2.0</td>
</tr>
<tr>
<td>High</td>
<td>Murray 1984</td>
<td>10</td>
<td>1.5</td>
<td>67</td>
<td>1.7</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>10</td>
<td>1.8</td>
<td>80</td>
<td>2.0</td>
</tr>
<tr>
<td>High</td>
<td>DHSS (England)</td>
<td>12</td>
<td>3.6</td>
<td>15</td>
<td>3.5</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>12</td>
<td>5.3</td>
<td>15</td>
<td>5.6</td>
</tr>
<tr>
<td>High</td>
<td>DHSS (England)</td>
<td>14</td>
<td>5.5</td>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>14</td>
<td>6.8</td>
<td>13</td>
<td>7.8</td>
</tr>
<tr>
<td>High</td>
<td>Murray 1991</td>
<td>15-16</td>
<td>2.2</td>
<td>94</td>
<td>2.7</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>15-16</td>
<td>2.9</td>
<td>80</td>
<td>3.4</td>
</tr>
</tbody>
</table>

These results show that for all age groups and all social classes the dmft/DMFT is lower in the fluoridated than in the non-fluoridated areas. On average there is more caries in the lower social classes (social class IV and V) than the higher social classes. In most of the age groups, and for both high and low fluoride areas, a gradient relationship exists between social class and the dmft/DMFT score, this is illustrated graphically for children aged five in Figure 6.2. As above children aged five were selected for further analysis as seven analyses were included for children of this age while data were only available from one or two analyses for each of the other age groups.

Figure 6.2 dmft by social class in high and low fluoride areas for children aged 5 years
Figure 6.2 illustrates the lower dmft in the areas receiving fluoridated water compared with those receiving water with a low fluoride concentration. It also shows the increase in caries experience across the social classes. The social class gradient is steeper in the low fluoride areas, in contrast to the proportion (%) of caries-free children graph. These data from 5-year-old children suggest that water fluoridation is leading to a decrease in dmft across the social classes and reducing the inequalities in dental health between the social classes. However this trend is not seen in the other age groups. It may be a finding peculiar to the younger age group or it may be because only a very small number of studies were included in the older age groups.

6.3 Other studies looking at dental decay, water fluoridation and social class

Two studies of five year-old children (Provart, 1995; and Rugg-Gunn, 1977) present results in a similar way to those outlined above but use different classifications of social class. The Provart study used the Townsend index (see Appendix H) to classify social deprivation, and then grouped the children into two groups, ‘low’ and ‘high’ deprivation. The cut-off used for this classification was not stated in the article. The Rugg-Gunn study used a classification system that was currently being used by the school system. Schools were classified as ‘ordinary’ or ‘social priority’. Full details of these classifications were not given. These studies both show decreased caries experience in the fluoridated compared with the non-fluoridated areas. Comparing the fluoridated areas, Provart (1995) shows greater caries experience (measured by both dmft and proportion of caries-free children) in areas of ‘high deprivation’ compared with areas of ‘low deprivation’. This finding is not confirmed by the Rugg-Gunn study, which did not find any difference in caries experience (deft and proportion of caries-free children) in areas defined as ‘social priority’ compared with areas defined as ‘urban ordinary’.

A regression analysis approach was used in two studies, one of which was later re-analysed using a different measure of social deprivation (Riley, 1999; and Jones, 1997 and 2000). Riley selected five year-olds in seven fluoridated areas and seven non-fluoridated areas and calculated the slopes and intercept of the regression line, plotting mean dmft versus Townsend score for all fluoridated areas and all non-fluoridated areas. The slope of the regression line was positive in both groups of areas (the higher the deprivation scores the higher the dmft score) and the y intercept was lower in fluoridated areas (0.77 vs 1.7 for non-fluoridated areas). This means that the dmft experience is lower in fluoridated areas for all levels of deprivation. The slope of the regression line was statistically significantly less steep in the fluoridated areas than in the non-fluoridated areas (beta coefficient 0.08 vs 0.17, p < 0.001). This suggests that dental decay increases with increased social deprivation (as measured by the Townsend index), that dental decay is greater in non-fluoridated compared with fluoridated areas and that the difference in dental decay between the fluoridated and non-fluoridated areas increases with increased social deprivation.

The Jones 1997 study used data on five and 12 year-olds and calculated similar regression lines using the Jarman index. This study showed similar findings to the Riley study for dmft/DMFT scores. Dental decay had a significantly negative relationship with water fluoridation, and a significantly positive association with social deprivation. In this study, water fluoridation was also found to reduce the effect of deprivation. An unpublished report (Jones 2000) reassessed the impact of water fluoridation on caries by deprivation level using the same caries data for 12 year-old children, but classifying deprivation by the Townsend index rather than the Jarman index. The findings of the original study were confirmed, finding that the more deprived areas achieved greater reductions in tooth decay with water fluoridation than less deprived areas.

The Gray (2000) and Holdcroft (1999) reports present similar before-after data, comparing the dmft of children aged five before the introduction of water fluoridation in a selection of areas and 10 years after water fluoridation had been introduced. Jarman scores were presented for each area (based on the 1991 census). The authors have not presented enough suitable data for making comparisons. In particular, the areas that met inclusion criteria for having a baseline survey within one year of starting fluoridation were limited. In addition, none of the non-fluoridated areas presented had Jarman scores above zero, while the fluoridated areas had mixed Jarman scores. Matching fluoridated and non-fluoridated areas within these data sets is difficult due to the wide variation in Jarman scores, proportions of populations fluoridated, and starting dates of fluoridation.

The Beal 1971 study presents before and after data comparing the decayed, extracted and filled teeth (deft) and proportion of caries-free children aged five before the introduction of water fluoridation in
two of three areas and three years later after water fluoridation had been introduced. One of the fluoridated areas is described as poorer and with a higher proportion of immigrants. The other two areas (one fluoridated, one not) are described as industrial areas. While there is no formal assessment of social class, the findings of this study are presented for comparison. The mean change in deft score in the poorer fluoridated area was larger than in the fluoridated industrial area (difference of 3.22 compared with 2.46). The change in the percent caries-free was also larger in the poorer group (difference of 39% compared with 13%). This implies that the effect is greater in the lower social classes.

6.4 Discussion

The number of UK studies with adequate social class data (15) was very small. Many other studies mentioned social class in some way, such as the typical occupations of the ‘head of the house’, or simply stated that social class in the areas being compared was similar. The quality of the evidence of the studies was low (all but 4 were level C), and the measures of social class that were used varied. Most of the studies that had enough information on social class to be evaluated were cross-sectional, with two before-after studies. Additionally, some of the included studies did not record individual exposure to water fluoride but were based on an ecological analysis, which is likely to be less accurate. Variance data were not reported for dmft/DMFT scores in these studies, so a statistical analysis was not undertaken. While these studies provide an indication of the effect, the ability to answer this question is low.

The effect of water fluoridation in reducing the difference in dental health between social classes classified by the Registrar General’s classification shows varying effects. In the proportion of caries-free children analysis (Table 6.1 and Figure 6.1), a positive effect of water fluoridation is seen among children aged five years in all social classes. However, the difference between the classes does not vary between the high and low fluoride areas. In the mean change of dmft/DMFT analysis (Table 6.2 and Figure 6.2), water fluoridation does appear to be having an impact on reducing the differences between the social classes among children aged five years. In Figure 6.2 the slopes of the two lines are divergent, indicating a greater effect in the lower social classes (IV and V). This effect was not seen in 10 and 15-16 year-olds.

Two studies using regression analysis (presented in three analyses, Riley 1999; Jones 1997, Jones 2000) found similar effects on dmft/DMFT scores among five and 12 year-olds using measures of social deprivation (Townsend and Jarman indices) rather than the Registrar General's classification. These studies reported a statistically significant greater effect in the most deprived groups.

The meta-regression analysis reported in chapter 4 is also relevant to the discussion of the effect of water fluoridation on inequities in levels of dental caries. One of the findings of the social class studies is that people of lower social class had higher levels of dental caries. Thus their caries baseline score is higher. The results of the meta-regression analysis suggests that these children would have a higher reduction in mean dmft/DMFT but a lower reduction in the number of children who are caries-free. The meta-regression is based upon studies of stronger design than the majority of studies included in these analyses.

The small quantity of studies, differences between these studies, and their low quality rating, suggest caution in interpreting these results. There appears to be some evidence that water fluoridation reduces the inequalities in dental health across social classes in five and 12 year-olds, using the dmft/DMFT measure. This effect was not seen in the proportion of caries-free children among five year-olds. There were not sufficient data for the effects in children of other ages to be investigated fully.
Objective 4: Does water fluoridation have negative effects?

Any study of a potential negative effect of fluoridation that met inclusion criteria was reviewed. However, more studies were found and included on fluorosis, bone fracture, and cancer than other outcomes. This objective was broken down into four sections, fluorosis, bone fracture (and bone development effects), cancer and other possible adverse effects.

7. DENTAL FLUOROSIS

A total of 88 studies looking at the association of dental fluorosis with water fluoridation met inclusion criteria. Most of these studies examined children, but a few studied adults or did not state the age studied. Four of these studies used a before-after study design, one was a case-control study and the rest were cross-sectional studies in which the prevalence of dental fluorosis was measured at one point in time in areas with different water fluoride concentrations. Of these, 14 did not state whether the water was artificially or naturally fluoridated, 20 compared areas artificially fluoridated to a level of 0.6–1.2ppm with areas with low (<0.3ppm) or very high (4–7ppm) natural fluoride content. The remaining studies compared naturally fluoridated areas. These studies were conducted in 30 countries. For this analysis, study areas with natural fluoride levels above 5ppm were excluded. This is significantly above the level recommended for artificial fluoridation. The range of 0 to 5ppm is broad enough to be able to explore whether a dose-response relationship exists. Details of baseline information and results from each study can be found in the tables in Appendix C. Twelve studies met inclusion criteria but were not included in the main analysis for various reasons, the results of these studies and the reasons for their exclusion from the main analyses are presented in section 7.4.

One study achieved evidence level B, all of the remaining studies looking at dental fluorosis were of evidence level C. The validity scores ranged from 1.3 to 5.8 with a mean score of 2.8 out of a possible 8. Only one study included a baseline survey at the time of a change in the water fluoride level of one of the study areas (the level B study). Only four studies used a prospective study design and only 16 of the studies used any form of blinding.

Because the studies used different indices to assess fluorosis, the percentage prevalence of fluorosis was selected as the outcome of interest. Using this measure, all children with some degree of fluorosis were classified as ‘fluorosed’ as opposed to normal. Using the different indices, children with a TSIF, T&F or DDE score greater than zero and Dean’s classification of ‘questionable’ or higher were classified as fluorosed. For the modified DDE index the number of children in the first category (‘all’) was taken as the number of children with dental fluorosis (see Appendix I). The term ‘fluorosis’ is used throughout this report, however it should be understood that the indices used to measure fluorosis also measure enamel opacities not caused by fluoride. Hence, the levels of fluorosis described here include some amount of overestimation of the prevalence of true fluorosis. This may be particularly true of those studies using the modified DDE index.

As there may be some debate about the significance of a fluorosis score at the lowest level of each index being used to define a person as ‘fluorosed’, a second method of determining the percent ‘fluorosed’ was selected. This method describes the number of children having dental fluorosis that may cause ‘aesthetic concern’. The level at which fluorosis was judged to cause aesthetic concern was taken from a study by Hawley (1996). Children from Manchester aged 14 were shown pictures of fluorosis classified using the T & F index and asked to rate the appearance of each as either very poor, poor, acceptable, good or very good. The cut-off point for this analysis was taken as the level of fluorosis above which the children classified the photographs as “very poor” or “poor”. This corresponded to a T & F score of three or more (Hawley, 1996). This was translated as being equivalent to Dean’s score of “mild” or worse and a TSIF score of two or more. This additional analysis was restricted to these three indices, as the definition was not transferable to the other fluorosis indices.

A regression analysis was used to investigate the association of water fluoride level with the prevalence of dental fluorosis (the analysis was conducted separately for the two measures of fluorosis outlined above). A multilevel model was used to combine studies. Each area with a different fluoride concentration under observation within a study was included separately in the model. The log
(odds) of having fluorosis/aesthetic fluorosis was modelled as a function of fluoride level. If the exact or average level of fluoridation was known this was included in the model. When a range of fluoridation level or an upper limit was provided the mid-value was used (for example if fluoridation was given as <0.7ppm, 0.35ppm was entered in the model for that group of people). When only a lower limit was given, 0.5ppm was added to this limit if it was less than 2ppm, and 1.0 was added if the limit was greater than 2ppm (e.g. if the level of fluoridation was given as >2.5ppm, then the level was entered as 3.5ppm). A sensitivity analysis was used to assess the robustness of the model’s fit to the choice of values allotted to groups for which only lower limits were known. This was done by applying the lower limits themselves, and the lower limits +1.5ppm for levels with lower limits less than 2ppm, and 2ppm to groups with lower limits greater than 2ppm. The sensitivity analysis did not change the results of the analysis, so only the results of the main analyses are presented below.

The univariate regression model consisted of two parts. In the first, the standard fixed effect model, the log-odds of fluorosis was fitted as the outcome and the water fluoride level was fitted as the exposure variable. In the second, a random effects model was included to allow for the fact that some of the study areas came from the same studies (e.g. two low fluoride areas and four high fluoride areas from one study). Separate intercepts and slopes were permitted for each study by fitting these terms as random effects. In a similar fashion to more standard meta-analysis models, weighting of individual groups of people in the model was inversely proportional to the variance of the outcome estimate for that group. A normal distribution was assumed for the log odds for each group. Models were fitted using the ‘PROC MIXED’ procedure in the SAS software package, version 6.12 (SAS Institute Inc., USA). The algebraic form of the model used is presented in Appendix J.

The relationship between the log odds of aesthetic fluorosis and fluoride level appeared to be linear. However, the relationship between the log odds of fluorosis and the log of fluoride level appeared linear, and hence a log transformation of fluoride level was used in the model for this outcome. Both fluoride level and log fluoride level were centred before modelling.

A multivariate analysis was used to investigate possible sources of heterogeneity. This was similar to the univariate model in that it included two components, random and fixed effects. The effects of several potential factors were explored by including them as covariates in the above model. The effect of indices of fluorosis (e.g. Dean’s), average age, source of fluoridated water (artificial, natural or both), mean altitude level, average temperature, type of teeth assessed (permanent, both, primary, not stated), method of assessment (clinical, photograph, both, not stated), study location (Europe, North America, S. America, Africa, Asia, Caribbean, Scandinavia, Australia), water source (public water, well, both, not stated), year of study report and study validity score were investigated.

The results of the analyses considering the proportion of people with any form of fluorosis and the proportion of people with fluorosis of aesthetic concern are presented separately.

7.1 Proportion of the population with dental fluorosis

7.1.1 Univariate analysis

The results of the univariate regression model are presented in Table 7.1

This model shows that log of the odds of the prevalence of dental fluorosis shows a positive linear association with the log of water fluoride level. Thus as water fluoride concentration increases so does the prevalence of dental fluorosis in the population. The random effects section of the model shows the variation between the intercepts and slopes fitted to the individual studies. Using this model, estimates with confidence intervals can be constructed for the proportion of persons in a population with fluorosis for a given level of water fluoridation.
Table 7.1 Results of the univariate analysis of the regression of water fluoride level against the proportion of the population with dental fluorosis

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value individual parameters</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.01</td>
<td>-0.440</td>
<td>0.030</td>
<td>0.644 (0.455 to 0.912)</td>
</tr>
<tr>
<td>Log fluoride level (centred by adding .526051)</td>
<td>0.0001</td>
<td>0.7155</td>
<td>0.0061</td>
<td>2.045 (1.750 to 2.390)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>2.024</td>
</tr>
<tr>
<td>Between study (fluoride level – slope)</td>
<td></td>
<td></td>
<td></td>
<td>0.362</td>
</tr>
<tr>
<td>Covariance of intercept and slope</td>
<td></td>
<td></td>
<td></td>
<td>-0.412</td>
</tr>
</tbody>
</table>

This association is illustrated graphically in Figure 7.1. The size of the circles on the graph indicates the weighting of the study. Larger circles represent the larger studies.

![Graph showing relationship between fluoride level and proportion of population with dental fluorosis](image)

Figure 7.1 Proportion of the population with dental fluorosis by water fluoride level together with the 95% upper and lower confidence limits for the proportion

Examples of this model are illustrated in Table 7.2

Table 7.2 The estimated proportion (%) of the population with dental fluorosis at different water fluoride concentrations

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>Proportion (%) of the population affected by dental fluorosis (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>15 (10, 22)</td>
</tr>
<tr>
<td>0.2</td>
<td>23 (17, 30)</td>
</tr>
<tr>
<td>0.4</td>
<td>33 (26, 41)</td>
</tr>
<tr>
<td>0.7</td>
<td>42 (34, 51)</td>
</tr>
<tr>
<td>1</td>
<td>48 (40, 57)</td>
</tr>
<tr>
<td>1.2</td>
<td>52 (43, 60)</td>
</tr>
<tr>
<td>2</td>
<td>61 (51, 69)</td>
</tr>
<tr>
<td>4</td>
<td>72 (62, 80)</td>
</tr>
</tbody>
</table>
These results show a strong association between water fluoride level and the proportion of the population with dental fluorosis. The model may not fit data at the extreme ends (low or high levels of fluoride) very well, due to the small numbers of data points. While many areas in Britain may have water fluoride levels lower than this, 0.4ppm has been chosen as the comparator (low fluoride) in subsequent analyses to ensure that the results are as reliable as possible. The effect of changing the water fluoride level of a low fluoride area with 0.4ppm fluoride in the water supply to an area with 0.7, 1.0 and 1.2ppm in the water supply is shown in Table 7.3.

<table>
<thead>
<tr>
<th>Fluoride ppm</th>
<th>Difference in proportions (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 v 0.7</td>
<td>9.3 (-1.9, 20.6)</td>
</tr>
<tr>
<td>0.4 v 1.0</td>
<td>15.7 (4.1, 27.2)</td>
</tr>
<tr>
<td>0.4 v 1.2</td>
<td>18.9 (7.2, 30.6)</td>
</tr>
</tbody>
</table>

These results show that there are relatively large differences in the prevalence of dental fluorosis at the level of water fluoridation 0.7-1.2ppm when compared with an area with a relatively low water fluoride content (0.4 ppm). The differences in the prevalence of dental fluorosis at 1.0 and 1.2 compared with 0.4ppm are statistically significant (the confidence limits do not include 0). The numbers needed to harm (cause fluorosis) provide an estimate of the number of people that need to receive water fluoridated at the new level (compared to 0.4 ppm) for 1 extra person to have dental fluorosis. Increasing the level of water fluoride concentration from 0.4 to a slightly higher figure of 1.0 (the level which water is usually artificially fluoridated to) would lead to one extra person with dental fluorosis for every 6 people receiving the new higher level of water fluoride. In this case, the confidence interval ranges from 4 to 21 people. It must be remembered that these numbers are found when comparing to a theoretical low level of 0.4 ppm to 1.0 ppm, if the comparison level was lower the numbers needed to harm would be lower.

7.1.2 Multivariate analysis

The results of the multivariate analysis are presented in Table 7.4. All variables included in this model were statistically significant at the 5% level; all other variables which were investigated (see above) showed no statistically significant association at this level.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameter</th>
<th>P-value individual parameters</th>
<th>P-values Overall Variables</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>0.85</td>
<td>-0.069</td>
<td>0.146</td>
<td>0.933</td>
<td>(0.435 to 2.003)</td>
</tr>
<tr>
<td>Fluoride level</td>
<td>Fluoride</td>
<td>0.0001</td>
<td>0.718</td>
<td>0.006</td>
<td>2.050</td>
<td>(1.766 to 2.379)</td>
</tr>
<tr>
<td>Method of assessment</td>
<td>Clinical</td>
<td>0.77</td>
<td>0.0001</td>
<td>0.123</td>
<td>0.177</td>
<td>0.455 (0.220 to 0.943)</td>
</tr>
<tr>
<td></td>
<td>Photograph</td>
<td>0.12</td>
<td>1.186</td>
<td>0.580</td>
<td>0.044</td>
<td>(0.007 to 0.275)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.0001</td>
<td>2.582</td>
<td>0.432</td>
<td>0.005</td>
<td>(0.000 to 0.125)</td>
</tr>
<tr>
<td>Teeth type</td>
<td>Permanent</td>
<td>0.04</td>
<td>0.0002</td>
<td>-0.787</td>
<td>0.138</td>
<td>1.131 (0.495 to 2.583)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.001</td>
<td>-3.131</td>
<td>0.880</td>
<td>3.274</td>
<td>(0.736 to 14.571)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>0.002</td>
<td>-5.241</td>
<td>2.606</td>
<td>13.218</td>
<td>(3.642 to 47.977)</td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>.</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>1.308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (fluoride level)</td>
<td></td>
<td></td>
<td></td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance of intercept & slope</td>
<td></td>
<td></td>
<td></td>
<td>-0.195</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These results show that the only variables to show a statistically significant association at the 5% level with the prevalence of dental fluorosis were water fluoride level, method of outcome assessment and teeth type. The odds of fluorosis were higher in studies using both a photographic and clinical assessment, compared with studies using a clinical or photographic examination and were slightly
higher in studies using a photographic rather than a clinical assessment (in both high fluoride and low fluoride areas). This may be due to the drying of teeth before photographing them, allowing visualisation of more enamel defects. The odds of fluorosis were higher in permanent than primary teeth, and in studies looking at permanent teeth only compared with those looking at both permanent and primary dentitions. Controlling for these factors led to a small decrease in the between study variance for both the estimates of the intercept and slope. Some examples of the proportion of the population that would be predicted to have dental fluorosis at various levels of the exposures included in the final multivariate model are provided in Table 7.5.

Table 7.5 Multivariate model prediction of proportion of the population that would be expected to have dental fluorosis at various levels of exposure, method of measurement and teeth type

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>Proportion (%) of the population with dental fluorosis (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2ppm fluoride, identified clinically, both teeth types</td>
<td>2 (0, 11)</td>
</tr>
<tr>
<td>0.4ppm fluoride, identified clinically, both teeth types</td>
<td>3 (1, 17)</td>
</tr>
<tr>
<td>0.7ppm fluoride, identified using photograph, permanent teeth</td>
<td>61 (31, 85)</td>
</tr>
<tr>
<td>1.0ppm fluoride, identified using photograph, permanent teeth</td>
<td>67 (37, 88)</td>
</tr>
<tr>
<td>1.0ppm fluoride, identified using both methods of assessment, both teeth types</td>
<td>44 (12, 81)</td>
</tr>
<tr>
<td>2.0ppm fluoride, identified clinically, permanent teeth</td>
<td>54 (45, 62)</td>
</tr>
</tbody>
</table>

* both teeth types = permanent and primary teeth combined

7.2 Proportion of the population with dental fluorosis of aesthetic concern

7.2.1 Univariate analysis

The results of the model fitted in the univariate analysis are presented in Table 7.6

Table 7.6 Proportion of the population with dental fluorosis of aesthetic concern

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.0001</td>
<td>-1.729</td>
<td>0.108</td>
<td>0.177 (0.091 to 0.346)</td>
</tr>
<tr>
<td>Fluoride level</td>
<td>0.0001</td>
<td>0.829</td>
<td>0.0231</td>
<td>2.293 (1.685 to 3.120)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept) Sigma 2u</td>
<td></td>
<td></td>
<td></td>
<td>3.830</td>
</tr>
<tr>
<td>Between study (fluoride level – slope) Sigma 2v</td>
<td></td>
<td></td>
<td></td>
<td>0.634</td>
</tr>
<tr>
<td>Covariance of intercept and slope Sigma uv</td>
<td></td>
<td></td>
<td></td>
<td>0.113</td>
</tr>
</tbody>
</table>

This shows that fluoride level has a statistically significant positive association with the prevalence of fluorosis of aesthetic concern. The between study variance in the estimate of the intercept slope of the regression line are higher than they were for the overall fluorosis analysis, indicating greater heterogeneity between studies. Using these model estimates, confidence intervals can be constructed for the proportion of persons in a population with fluorosis for a given level of water fluoridation (see Table 7.7).

Table 7.7 The proportion (%) of the population with dental fluorosis of aesthetic concern at different water fluoride concentrations

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>% of the population affected by fluorosis of aesthetic concern (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>6.3 (3.2, 12.4)</td>
</tr>
<tr>
<td>0.2</td>
<td>6.9 (3.5, 13.1)</td>
</tr>
<tr>
<td>0.4</td>
<td>8.2 (4.2, 14.9)</td>
</tr>
<tr>
<td>0.7</td>
<td>10.0 (5.0, 17.9)</td>
</tr>
<tr>
<td>1</td>
<td>12.5 (7.0, 21.5)</td>
</tr>
<tr>
<td>1.2</td>
<td>14.5 (8.2, 24.4)</td>
</tr>
<tr>
<td>2</td>
<td>24.7 (14.3, 39.4)</td>
</tr>
<tr>
<td>4</td>
<td>63.4 (37.9, 8.3)</td>
</tr>
</tbody>
</table>

This association is illustrated in Figure 7.2.
Proportion with fluorosis of aesthetic concern

Fluoride level - ppm

0 0.4 0.8 1.2 1.6 2 2.5 3 3.5 4 4.5

Figure 7.2 Proportion of the population with dental fluorosis of aesthetic concern by water fluoride level together with the 95% upper and lower confidence limits for the proportion

Figure 7.2 shows an increasing prevalence of fluorosis of aesthetic concern with increasing water fluoride level. The effect that changing the water fluoride level of a low fluoride area with 0.4ppm fluoride in the water supply to an area with 0.7, 1.0 and 1.2ppm in the water supply is shown in Table 7.8.

Table 7.8 Difference in the proportion of the population affected with fluorosis of aesthetic concern comparing a low level of water fluoride to levels around 1ppm

<table>
<thead>
<tr>
<th>Fluoride ppm</th>
<th>Difference in proportions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 v 0.7</td>
<td>2.0 (-6 to 10)</td>
</tr>
<tr>
<td>0.4 v 1.0</td>
<td>4.5 (-4.5 to 13.6)</td>
</tr>
<tr>
<td>0.4 v 1.2</td>
<td>6.5 (-3.3 to 16.2)</td>
</tr>
</tbody>
</table>

The figures shown in Table 7.8 show that the difference between the proportion of the population affected with fluorosis of aesthetic concern at 0.4ppm compared with 0.7ppm is considerably lower than the difference in the proportion comparing 0.4ppm to 1.0ppm and 1.2ppm. Increasing the water fluoride level from 0.4 to 1.0ppm, the level to which water supplies are often artificially fluoridated, would mean that one additional person for every 22 people receiving water fluoridated to this level would have fluorosis of aesthetic concern. However, the confidence limits around this value include infinity, which means that it is possible that there is no risk. This is because the differences in proportions were not statistically significant (the confidence intervals include zero).

7.2.2 Multivariate analysis

The multivariate analysis of fluorosis of aesthetic concern is presented in Appendix K because the findings were similar to the findings on the primary analysis of fluorosis, section 7.1.2.

7.3 Sensitivity analysis

A sensitivity analysis of the regression analysis was conducted in which all data points above 1.5ppm were removed from the data set. It was suggested that the higher water fluoride levels were forcing the regression line to show a relationship that may not actually exist for the lower levels of fluoride. Restricting the analysis to levels less than 1.5ppm allowed the investigation of any association at these lower levels.
7.3.1 Fluorosis sensitivity analysis

The results of the univariate regression model are presented in Table 7.9.

Table 7.9 Results of the univariate regression of water fluoride level against the proportion of the population with dental fluorosis (sensitivity analysis)

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value individual parameters</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.01</td>
<td>-0.475</td>
<td>0.031</td>
<td>0.622 (0.437 to 0.885)</td>
</tr>
<tr>
<td>Log fluoride level (centred by adding .526051)</td>
<td>0.0001</td>
<td>0.5861</td>
<td>0.0070</td>
<td>1.797 (1.525 to 2.118)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>2.026</td>
</tr>
<tr>
<td>Between study (fluoride level – slope)</td>
<td></td>
<td></td>
<td></td>
<td>0.349</td>
</tr>
<tr>
<td>Covariance of intercept and slope</td>
<td></td>
<td></td>
<td></td>
<td>-0.338</td>
</tr>
</tbody>
</table>

The model shows similar findings to the previous model (Table 7.1). The log of the odds of the prevalence of dental fluorosis continues to show a linear association with the log of water fluoride level. However, the gradient of the effect is slightly shallower (the increase in odds of fluorosis were 2.05 (95% CI: 1.75 to 2.39) in the first model and 1.80 (95% CI: 1.53 to 2.12) per unit increase of fluoride) in the sensitivity analysis.

Table 7.10 shows the estimates of the proportion (%) of the population with fluorosis at various water fluoride levels predicted by the model.

Table 7.10 Proportion of the population with dental fluorosis by water fluoride level together with the 95% upper and lower confidence limits for the proportion (sensitivity analysis)

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>Proportion (%) of the population affected by fluorosis (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>18 (12, 26)</td>
</tr>
<tr>
<td>0.2</td>
<td>25 (18, 33)</td>
</tr>
<tr>
<td>0.4</td>
<td>33 (26, 41)</td>
</tr>
<tr>
<td>0.7</td>
<td>41 (33, 49)</td>
</tr>
<tr>
<td>1</td>
<td>46 (37, 55)</td>
</tr>
<tr>
<td>1.2</td>
<td>49 (40, 58)</td>
</tr>
</tbody>
</table>

The proportions of the population predicted to have fluorosis by this model are similar to the initial model in the lower water fluoride levels. However, the confidence intervals are larger. The graphical representation of this model is shown in Figure 7.3.

Figure 7.3 Proportion of the population with dental fluorosis by water fluoride level and predicted 95% confidence limits (sensitivity analysis)
7.3.2 Fluorosis of aesthetic concern sensitivity analysis

The results of the univariate regression model of fluorosis of aesthetic concern are presented in Table 7.11.

Table 7.11 Results of the univariate regression of water fluoride level against the proportion of the population with fluorosis of aesthetic concern (sensitivity analysis)

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.0001</td>
<td>-1.953</td>
<td>0.130</td>
<td>0.142 (0.070 to 0.287)</td>
</tr>
<tr>
<td>Fluoride level (centred by subtracting 1.2565)</td>
<td>0.02</td>
<td>0.712</td>
<td>0.083</td>
<td>2.038 (1.159 to 3.583)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>4.117</td>
</tr>
<tr>
<td>Between study (fluoride level – slope)</td>
<td></td>
<td></td>
<td></td>
<td>0.238</td>
</tr>
<tr>
<td>Covariance of intercept and slope</td>
<td></td>
<td></td>
<td></td>
<td>1.657</td>
</tr>
</tbody>
</table>

Similar to the original model, this model shows that fluoride level is statistically significantly associated with the prevalence of fluorosis of aesthetic concern. Again, the odds are slightly lower in this model, 0.14 (95% CI: 0.07 to 0.29), than in the original model, 0.18 (0.09 to 0.35). The predictions of the new model are given in Table 7.12.

Table 7.12 The proportion (%) of the population with dental fluorosis of aesthetic concern at different water fluoride concentrations

<table>
<thead>
<tr>
<th>Fluoride level</th>
<th>% of the population affected by fluorosis of aesthetic concern (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>6 (2, 14)</td>
</tr>
<tr>
<td>0.2</td>
<td>6 (3, 14)</td>
</tr>
<tr>
<td>0.4</td>
<td>7 (3, 15)</td>
</tr>
<tr>
<td>0.7</td>
<td>9 (4, 17)</td>
</tr>
<tr>
<td>1</td>
<td>10 (5, 20)</td>
</tr>
<tr>
<td>1.2</td>
<td>12 (6, 22)</td>
</tr>
</tbody>
</table>

The point estimates here are slightly lower than in the original model (Table 7.6), but there is more uncertainty reflected in the larger confidence intervals. The graphical representation of the model is show in Figure 7.4.

Figure 7.4 Proportion of the population with fluorosis of aesthetic concern by water fluoride level and predicted 95% Confidence Intervals
7.4 Studies that met inclusion criteria but were not included in the main analysis

The studies included in Table 7.13 were not included in the main analysis for the reasons outlined in the table. The conclusions of these studies appear to be compatible with the results of the main analysis of an increase in dental fluorosis with increased water fluoride concentration, so that their exclusion does not materially effect the result.

Table 7.13 Studies that met inclusion criteria but were not included in the main analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Outcome</th>
<th>Reason for exclusion</th>
<th>Author’s conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhagan</td>
<td>Dental fluorosis</td>
<td>No separate results provided for control area – aggregate data only</td>
<td>The intensity of dental fluorosis is related to the concentration of fluoride in the water</td>
</tr>
<tr>
<td>(1996)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissanayake</td>
<td>Dental fluorosis</td>
<td>The levels of fluoride in the exposed groups cover very wide ranges (0.3-3.8 and 0.3-4.6), which are very close to the levels of the control groups (< 0.2). These data can thus not be analysed in a meaningful way together with the other studies looking at fluorosis</td>
<td>Author does not make any conclusions regarding the incidence of dental fluorosis. Results indicate a considerably higher incidence of fluorosis in the areas with the higher ranges of fluoride concentrations in the water supplies</td>
</tr>
<tr>
<td>(1979)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forsman</td>
<td>Dental fluorosis</td>
<td>Different age groups are examined for the different fluoride exposure groups and so the results are not comparable between study areas</td>
<td>A greater proportion of children were affected by fluorosis in the higher fluoride area (2.75ppm) and fluorosis was also more severe in this area compared to the control areas (<1.5ppm)</td>
</tr>
<tr>
<td>(1977)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hellwig</td>
<td>Dental fluorosis</td>
<td>Children from naturally fluoridated areas combined with children from areas which changed from a low-fluoride supply to an optimally fluoridated supply 2 years prior to the examination– a significant proportion of the exposed group would not have been exposed to fluoride for enough time for a noticeable effect to have occurred</td>
<td>The incidence and severity of dental fluorosis was higher in the fluoridated areas compared to the control area</td>
</tr>
<tr>
<td>(1985)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larsen</td>
<td>Dental fluorosis, nail mottling and prevalence of goitre</td>
<td>Measures of fluorosis are presented graphically for each tooth type. From these figures it is not possible to obtain an accurate reading.</td>
<td>The prevalence of dental fluorosis increases with the age during which the individual tooth is formed. The concentration of fluoride in the drinking water influenced the occurrence of fluorosis by resulting in a steeper profile of the prevalence from lower incisor to second molars rather than by increasing the prevalence for all teeth.</td>
</tr>
<tr>
<td>(1987)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latham</td>
<td>Dental fluorosis, nail mottling and prevalence of goitre</td>
<td>The results are not broken down as much as the water fluoride levels, giving very wide ranges of fluoride levels in some of the areas for which results are presented. All the areas are fluoridated at above 1ppm and some with fluoride levels as high as 45.5ppm</td>
<td>Author does not specifically relate results to water fluoride content of the area – he comments generally on the results seen in the whole sample studied, as all areas are exposed to comparatively high levels of fluoride. The incidence of dental fluorosis was high in all areas (>82%), as was the percentage of people with mottled nails (>26%), and the prevalence of goitre (12-41%). As these results are not specifically related to the water fluoride level and there was no control area it is difficult to link these findings to the water fluoride levels.</td>
</tr>
<tr>
<td>(1967)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Outcome</td>
<td>Reason for exclusion</td>
<td>Author’s conclusions</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Opinya (1991)</td>
<td>Dental fluorosis</td>
<td>Exposed area had fluoride level of 9ppm – considerably above level that would be encountered in artificially fluoridated area. Fluorosis data presented graphically for tooth type, not possible to obtain accurate data from the graphs</td>
<td>The incidence and severity of fluorosis was greater in the high fluoride area compared to the control area</td>
</tr>
<tr>
<td>Teng (1996)</td>
<td>Dental fluorosis</td>
<td>Areas selected because they were known to have a high incidence of fluorosis and then water fluoride level investigated. Reasons other than the fluoride content of the water are also investigated for the incidence of fluorosis.</td>
<td>Index of children’s dental fluorosis has shown a decreased trend since the fluoride level of the water has been reduced</td>
</tr>
<tr>
<td>Gopalakrishnan (1999)</td>
<td>Dental fluorosis</td>
<td>Areas selected because they were known to have a high incidence of fluorosis and then water fluoride level investigated. Reasons other than the fluoride content of the water are also investigated for the incidence of fluorosis.</td>
<td>Dental fluorosis is related to the high fluoride content of drinking water.</td>
</tr>
<tr>
<td>Morgan (1998)</td>
<td>Dental fluorosis and childhood behaviour problems</td>
<td>Children classified according to Dean’s classification for fluorosis and then fluoride exposure examined. Childhood behaviour problems classified according to dental fluorosis levels not water fluoride levels.</td>
<td>The use of supplemental fluoride prior to age 3 was found to be a risk factor for dental fluorosis. No significant association was found between fluoride history variables in aggregate (including water fluoride level) and dental fluorosis. Dental fluorosis was not significantly associated with behaviour problems in the children studied</td>
</tr>
</tbody>
</table>

7.5 Prevalence of fluorosis over time

As with caries, the introduction of fluoride toothpaste in the 1970’s could play a role in increasing the prevalence or degree of fluorosis occurring. Figure 7.5 presents the data on percent prevalence of fluorosis from 32 studies divided into before 1975 (23) and after 1985 (9), to allow sufficient time for fluorosis development after exposure to fluoridated toothpaste. These studies were conducted in nine countries (Australia, Canada, Finland, Ireland, Italy, New Zealand, Sweden, Britain, and the USA). Figure 7.5 is the main analysis measure of fluorosis; there were not enough data points to assess fluorosis of aesthetic concern. The bars represent different ranges of water fluoride (natural or artificial).

![Figure 7.5 Prevalence of dental fluorosis at different water fluoride levels before 1975 and after 1985](image-url)
Figure 7.5 shows similar patterns and prevalence of fluorosis both before 1975 and after 1985. An increase in the prevalence of fluorosis over time was not seen in this analysis of water fluoridation studies. While this finding is counterintuitive, no explanation is evident from these data. However, the measure of use of other fluoride sources was very crude.

Table 7.14 Studies that controlled for the effects of other fluoride use.

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Sources of fluoride</th>
<th>Other variables included in model</th>
<th>Classification of fluorosis</th>
<th>Results: Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ismail (1990)</td>
<td>Fluoride tablet use</td>
<td>Type of school, city, sex, age</td>
<td>TSIF>=1</td>
<td>F tablet use = 1.70 (1.28, 2.27)</td>
</tr>
<tr>
<td>Riordan (1991)</td>
<td>Fluoride tablet use (short, medium and long term) versus no fluoride tablet use, likes toothpaste, started toothpaste < 1 year and 1-3 years versus >3 years, and swallowed toothpaste</td>
<td>Resident in fluoridated area for 1.2-4 years or 2.5-4 years versus <1 year</td>
<td>TF score >0</td>
<td>F tablets short: 1.55 (0.54, 4.42) F tablets medium: 0.87 (0.30, 2.52) F tablets long: 4.63 (1.97, 10.90) Likes toothpaste: 1.27 (0.75, 2.15) Started toothpaste <1 yr: 1.35 (0.72, 2.55) Started toothpaste 1-3 yr: 1.20 (0.63, 2.29) Swallowed toothpaste: 1.02 (0.71, 1.45)</td>
</tr>
<tr>
<td>Szpunar (1988)</td>
<td>Fluoride rinse, use of fluoride supplements, dental attendance, age started brushing</td>
<td>Town, male education, age</td>
<td>Categorised as having fluorosis at TSIF>=1</td>
<td>Use of fluoride supplements, dental attendance, age started brushing not associated with fluorosis (no results presented). Fluoride rinse use = 1.57 (1.02, 2.41)</td>
</tr>
<tr>
<td>Brothwell (1999)</td>
<td>Fluoride supplements, fluoridated mouthwash, age parent brushed with fluoride paste, Home air conditioning, race, total dissolved solids and zinc</td>
<td>Water fluoride level, breast feeding, highest level of education, household income</td>
<td>Categorised as having fluorosis at TSIF>=1</td>
<td>Fluoride supplements: 1.93 (1.02-3.62) Fluoride mouthwash: 2.73 (1.06-7.05) Age parent brushed: 0.93 (0.40-2.19)</td>
</tr>
<tr>
<td>Butler (1985)</td>
<td>Fluoride toothpaste, number of fluoride treatments, fluoride drops</td>
<td>FCI (Dean’s community fluorosis index) stratified by exposure.</td>
<td>FCI (Dean’s community fluorosis index) stratified by exposure.</td>
<td>Use of fluoride toothpaste/drops and number of fluoride treatments almost identical in those that did and did not develop moderate fluorosis, therefore not included in multivariate analysis.</td>
</tr>
<tr>
<td>Heller (1997)</td>
<td>Fluoride drops, fluoride tablets, professional F treatment, school fluoride rinses</td>
<td>Water fluoride level, age</td>
<td>Fluorosis categorised as Dean’s score of very mild or greater</td>
<td>Fluoride drops: 1.49 (1.11, 1.99) Fluoride tablets: 1.20 (0.96, 1.49) Professional F: 1.05 (0.85, 1.28) School fluoride rinse: 1.14 (0.84, 1.55)</td>
</tr>
<tr>
<td>Angelillo (1999)</td>
<td>Frequency of tooth brushing</td>
<td>Univariate analysis results presented</td>
<td>CFI (Dean’s community fluorosis index) stratified by exposure.</td>
<td>Results presented as CFI (sd): Tooth-brushing < 1 day: 0.15 (0.31) > 1 day: 0.13 (0.37) No significant association so not included in multivariate analysis.</td>
</tr>
<tr>
<td>Kumar (1999)</td>
<td>Fluoride tablets and early brushing</td>
<td>Race and water fluoride level</td>
<td>Compared very mild or worse with normal.</td>
<td>Early brushing: 2.0 (1.2, 3.3) Fluoride tablet: 2.9 (1.3, 4.7) All compared to no fluoride exposure from any of these sources or from water fluoride.</td>
</tr>
<tr>
<td>Skotowsk i (1995)</td>
<td>Fluoride supplements, age started brushing, total toothpaste usage in 8 years, mouth rinse usage</td>
<td>Drinking water fluoride</td>
<td>Dental fluorosis present if received TSIF score>=1.</td>
<td>Fluoride-supplement use, mouth rinse use and age started brushing not significant in univariate analysis so not included in multivariate analysis. Fluoride exposure from toothpaste significant in univariate and multivariate analysis (adjusted OR not presented).</td>
</tr>
</tbody>
</table>
7.6 Possible confounding factors

There are likely to be many possible confounding factors in cross-sectional studies of dental fluorosis. Temperature and altitude are two that are frequently mentioned, but not controlled for in these studies. People living in climates with a higher mean temperature drink more water, thus being exposed to more total fluoride. Higher altitude has also been thought to be associated with the development of fluorosis, although the mechanism for this is unclear. Fluorosis can be difficult to distinguish from other developmental defects of enamel.

7.6.1 Studies which adjusted for the possible confounding effect of other sources of fluoride

Nine studies of the association between fluorosis and water fluoridation used multiple logistic regression analysis to control for the possible confounding effects of other sources of fluoride. The results of these analyses and the variables controlled for in the regression analysis are presented in Table 7.14. All results presented as adjusted odds ratios with 95% confidence intervals. These studies found mixed results, with no definite association between the other sources of fluoride studied and fluorosis.

7.7 Potential publication bias

The data were analysed in such a way that an measure of effect was not produced for each individual study thus it was not possible to investigate publication bias using standard methods.

7.8 Discussion

Fluorosis was the most widely and frequently studied of all the possible adverse effects considered. The fluorosis studies used cross-sectional designs, with a few before-after designs (again using different groups of people at each time point). The mean validity score was only 2.8 out of 8 and all but one of the studies were of evidence level C. Observer bias may be of particular importance in studies assessing fluorosis. Efforts to control for potential confounding factors, or reducing potential observer bias were infrequently undertaken. Seventy-two of 88 studies did not use any form of blinding of the assessor, and 50 of 88 did not control for confounding factors, other than by simple stratification by age or sex.

The primary fluorosis analysis was based on prevalence of ‘fluorosed’ people, including any degree of fluorosis. A conservative approach to defining fluorosis was used for this analysis, in that the ‘questionable’ category in Dean’s index was counted as fluorosis. Because there is evidence that very mild forms of fluorosis are not concerning to people (indeed some even preferred photographs of mildly fluorosed teeth) a secondary analysis assessed the prevalence of fluorosis of ‘aesthetic concern’.

With both methods of measuring the prevalence of fluorosis, a significant dose-response relationship was identified through the univariate regression analysis (Tables 7.1 and 7.6; Figures 7.1 and 7.2). The prevalence of fluorosis at a water fluoride level of 1.0ppm was estimated to be 48% (95% CI 40 to 57) for any fluorosis and 12.5% (95% CI 7.0, 21.5) for fluorosis of aesthetic concern. The numbers of additional people who would have to be exposed to water fluoride levels of 1.0 or 1.2ppm for one additional person to develop fluorosis of any level were quite low, 5 or 6 when comparing to a theoretical low fluoride level of 0.4ppm (Table 7.3). For fluorosis of aesthetic concern to occur in one additional person, however, the number was 22 at 1ppm, but the 95% CI included infinity (Table 7.8).

The multivariate analysis of fluorosis took into account variables potentially contributing to the heterogeneity between studies. This analysis found a statistically significantly higher risk in children with permanent teeth, compared with primary teeth or both types (Table 7.4). The multivariate analysis of fluorosis of aesthetic concern confirmed these findings (Appendix K). A sensitivity analysis limiting the range of water fluoride levels entered into the model did not alter the findings in any meaningful way.

The estimated NNT for one extra child to be caries-free (Chapter 4) was seven (95% CI 5 to 10), while the NNH for fluorosis is six (95% CI 4 to 21), with approximately a quarter of these being of aesthetic concern. These estimates are based on comparisons of specific levels of water fluoridation (e.g. < 0.7 ppm vs 0.7 to 1.2 ppm for caries, and 0.4 ppm vs 1.0 ppm for fluorosis). The numbers would change if different levels of fluoridation were compared.
Objective 4: Does water fluoridation have negative effects?

8. BONE FRACTURE AND BONE DEVELOPMENT PROBLEMS

A total of 29 studies of the effect of exposure to fluoridated water on bones met inclusion criteria. Among these were four prospective cohort studies, six retrospective cohort studies, 15 ecological studies, one case-control study, one study which used both a case-control and ecological design and two studies which met the inclusion criteria but was not included in the analysis for the reasons outlined in section 8.1. These papers studied a variety of fracture sites as well as slipped epiphysis in older children and young adults, and otosclerosis (malformation of bones in the ear). Hip fracture was included or was the only outcome in 18 studies. Details of baseline information and results from each study can be found in tables in Appendix C.

All but one of the studies looking at the association of water fluoride level with bone fractures were of evidence level C. The other study was of evidence level B, the average checklist score was 3.4 out of 8 (range 1.5 to 6.0). Only four of the 25 studies used a prospective study design, none used any form of blinding and only one study conducted a baseline examination prior to the introduction of fluoridation. The two lowest scoring studies did not address or control for any possible confounding factors. There were two case-control studies, both of which were of evidence level C, scoring 3.5 and 4 out of a possible 9 on the validity checklist.

Tables 8.1 to 8.4 present summaries of the findings of all eligible bone fracture studies included in the review, organised by fracture site or bone development problem. A point estimate of the size of the effect, the statistical significance of this measure and the study validity scores are also reported. In all calculations made by the review team, the area with the water fluoride level closest to 1.0 ppm was chosen and compared to the area with the lowest water fluoride level reported.

A forest plot of all the bone studies showing the measures of effect and their 95% confidence intervals was produced (Figure 8.1) for all studies that provided sufficient data to calculate a relative risk, odds-ratio or standardised rate-ratio and its 95% confidence interval. The majority of the measures of effect and their confidence intervals were distributed around 1, the line of no effect for related measures (suggesting no association), with no obvious outliers noted. The studies included in the forest plots differ from one another in a number of respects. Data are presented for both sexes, for different age groups and for different fracture sites (colour coded), using crude or adjusted outcomes and a variety of study designs.

In Figure 8.1, point estimates to the left of the vertical line indicate fewer fractures with exposure to fluoridated water, while those to the right side of the line indicate more fractures.
Figure 8.1 Bone fracture incidence (Measure of effect estimate and 95% CI)
Table 8.1 Effect of water fluoridation on hip fracture

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Sex</th>
<th>RR (95% CI)</th>
<th>Validity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cauley (1995)</td>
<td>65+</td>
<td>Women</td>
<td>0.44 (0.1, 1.9)*</td>
<td>6.0</td>
</tr>
<tr>
<td>Jacqmin-Gadda (1998)</td>
<td>65+</td>
<td>Both</td>
<td>2.43 (1.1, 5.3)*</td>
<td>5.5</td>
</tr>
<tr>
<td>Sowers (1991)</td>
<td>20-35</td>
<td>Women</td>
<td>1.68 (0.07, 40.1)*</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>Women</td>
<td>8.18 (0.46, 146.6)*</td>
<td></td>
</tr>
<tr>
<td>Li (1999)</td>
<td>50+</td>
<td>Both</td>
<td>0.99 (0.3, 3.2)</td>
<td>5.0</td>
</tr>
<tr>
<td>Jacqmin-Gadda (1995)</td>
<td>65+</td>
<td>Both</td>
<td>1.86 (1.0, 3.4)*</td>
<td>5.0</td>
</tr>
<tr>
<td>Kurttio (1999)</td>
<td>50+</td>
<td>Women</td>
<td>1.08 (0.9, 1.3)*</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>Men</td>
<td>0.67 (0.5, 0.8)*</td>
<td>4.3</td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td>65+</td>
<td>Women</td>
<td>0.69 (0.5, 1.0)*</td>
<td>4.3</td>
</tr>
<tr>
<td>Hillier (2000)</td>
<td>50+</td>
<td>Both</td>
<td>1 (0.7, 1.5)*</td>
<td>4.0</td>
</tr>
<tr>
<td>Lehmann (1998)</td>
<td>35+</td>
<td>Women</td>
<td>0.83 (0.7, 0.9)</td>
<td>3.8</td>
</tr>
<tr>
<td>Danielson (1992)</td>
<td>65+</td>
<td>Women</td>
<td>1.27 (1.1, 1.5)*</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.41 (1.0, 1.8)*</td>
<td></td>
</tr>
<tr>
<td>Jacobsen (1992)</td>
<td>65+</td>
<td>Women</td>
<td>1.08 (1.0, 1.10)</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.17 (1.13, 1.22)</td>
<td></td>
</tr>
<tr>
<td>Cooper (1990)</td>
<td>45+</td>
<td>Both</td>
<td>R=0.41, p=0.009</td>
<td>3.3</td>
</tr>
<tr>
<td>Suarez-Almazor (1993)</td>
<td>45-64</td>
<td>Women</td>
<td>0.85 (0.7, 1.03)</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>Women</td>
<td>0.96 (0.9, 1.03)</td>
<td></td>
</tr>
<tr>
<td>Madans (1983)</td>
<td>45-64</td>
<td>Men</td>
<td>1.13 (1.0, 1.27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.07 (.087, 1.32)</td>
<td></td>
</tr>
<tr>
<td>Simonen (1985)</td>
<td>50+</td>
<td>Women</td>
<td>0.7 (0.6, 0.9)*</td>
<td>2.5</td>
</tr>
<tr>
<td>Korns (1969)</td>
<td>50+</td>
<td>Men</td>
<td>0.4 (0.3, 0.6)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40+</td>
<td>Men</td>
<td>1.75 (0.6, 4.9)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40+</td>
<td>Women</td>
<td>0.91 (0.6, 1.5)</td>
<td></td>
</tr>
<tr>
<td>Karagas (1996)</td>
<td>65+</td>
<td>Women</td>
<td>No association</td>
<td>1.5</td>
</tr>
<tr>
<td>Arnala (1986)</td>
<td>50+</td>
<td>Both</td>
<td>0.96 (0.8, 1.2)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1 (0.9, 1.1)*</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* = unadjusted relative risk; RR = adjusted relative risk (see data extraction tables for further details of adjustment made in each study); 1 in the Sowers study there were no cases in the control group and so a Haldane approximation was used to estimate the relative risk.

A total of 18 studies (see Table 8.1) investigated the association of hip fracture with water fluoride level, making 30 analyses (e.g. men only, women only, both). Fourteen analyses found the direction of the association between water fluoridation and hip fracture to be positive (decreased hip fracture with increased water fluoride level). Five were statistically significant associations. Thirteen analyses found the direction of association to be negative (increased hip fracture), but only four of these found a statistically significant effect. Thirteen analyses found the direction of association positive in women but negative in men and one study found a negative effect in women and a positive effect in men.

There were no definite patterns of association for any of the fractures, for example, with all studies finding a positive effect for a particular fracture. A total of 30 analyses were conducted in 12 studies (see Table 8.2). Overall 14 analyses found the direction of association of water fluoridation and bone fracture to be negative (more fractures), of which one was statistically significant. Thirteen analyses found the direction of association to be positive (fewer fractures), of which one was statistically significant and two did not report variance data. Three analyses found no association. The two studies that found statistically significant effects were Li (1999), which found a small protective effect in both sexes for all fractures, while Karagas (1996) found a small negative effect in men for increased risk of fracture of the humerus. While both of these analyses were statistically significant, the 95% CI only just excluded 1.0.
Table 8.2 Effect of water fluoridation on other fractures

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Fracture</th>
<th>Age</th>
<th>Sex</th>
<th>RR (95% CI)</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowers (1991)</td>
<td>All fractures</td>
<td>20-35</td>
<td>Women</td>
<td>1.81 (0.8, 8.2)*</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55-80</td>
<td>Women</td>
<td>2.11 (1.0, 4.4)*</td>
<td></td>
</tr>
<tr>
<td>Jacqmin-Gadda (1995)</td>
<td></td>
<td>65+</td>
<td>Both</td>
<td>0.98 (0.8, 1.2)*</td>
<td>5.0</td>
</tr>
<tr>
<td>Li (1999)</td>
<td></td>
<td>50+</td>
<td>Both</td>
<td>0.69 (0.5, 0.9)</td>
<td>5.0</td>
</tr>
<tr>
<td>Avorn (1986)</td>
<td></td>
<td>65+</td>
<td>Women</td>
<td>1.2 (1.0, 1.5)</td>
<td>3.1</td>
</tr>
<tr>
<td>Kroger (1994)</td>
<td></td>
<td>47-56</td>
<td>Women</td>
<td>1.14 (0.9, 1.4)</td>
<td>2.8</td>
</tr>
<tr>
<td>McClure (1944)</td>
<td></td>
<td>19-23</td>
<td>Men</td>
<td>0.78 (0.6, 1.0)</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-17</td>
<td>Men</td>
<td>0.95 (0.7, 1.2)</td>
<td></td>
</tr>
<tr>
<td>Kroger (1994)</td>
<td>Ankle</td>
<td>47-56</td>
<td>Women</td>
<td>1.14 (0.7, 1.9)</td>
<td>2.8</td>
</tr>
<tr>
<td>Karagas (1996)</td>
<td></td>
<td>65+</td>
<td>Women</td>
<td>1 (0.9, 1.1)*</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.01 (0.9, 1.2)*</td>
<td></td>
</tr>
<tr>
<td>Bernstein (1966)</td>
<td>Collapsed vertebrae</td>
<td>45+</td>
<td>Women</td>
<td>0.26</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45+</td>
<td>Men</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Karagas (1996)</td>
<td>Distal forearm</td>
<td>65+</td>
<td>Women</td>
<td>Author states no association</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.16 (1.0, 1.3)*</td>
<td></td>
</tr>
<tr>
<td>Karagas (1996)</td>
<td>Humerus</td>
<td>65+</td>
<td>Women</td>
<td>Author states no association</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65+</td>
<td>Men</td>
<td>1.23 (1.1, 1.4)*</td>
<td></td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td>Non-hip</td>
<td>65+</td>
<td>Both</td>
<td>1.05 (0.7, 1.5)*</td>
<td>5.5</td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Non-spine</td>
<td>65+</td>
<td>Women</td>
<td>0.73 (0.5, 1.1)*</td>
<td>6.0</td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td></td>
<td>65+</td>
<td>Women</td>
<td>0.96 (0.8, 1.1)*</td>
<td>4.3</td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Osteoporotic</td>
<td>65+</td>
<td>Women</td>
<td>0.74 (0.5, 1.2)*</td>
<td>6.0</td>
</tr>
<tr>
<td>Kroger (1994)</td>
<td>Other</td>
<td>47-56</td>
<td>Women</td>
<td>1.03 (0.8, 1.3)</td>
<td>2.8</td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Vertebral</td>
<td>65+</td>
<td>Women</td>
<td>1.63 (0.6, 4.7)*</td>
<td>6.0</td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td></td>
<td>65+</td>
<td>Women</td>
<td>0.74 (0.6, 1.0)*</td>
<td>4.3</td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Wrist</td>
<td>65+</td>
<td>Women</td>
<td>0.95 (0.4, 2.3)*</td>
<td>6.0</td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td></td>
<td>65+</td>
<td>Women</td>
<td>1.3 (1.0, 1.7)*</td>
<td>4.3</td>
</tr>
<tr>
<td>Kroger (1994)</td>
<td></td>
<td>47-56</td>
<td>Women</td>
<td>1.3 (1.0, 2.1)</td>
<td>2.8</td>
</tr>
<tr>
<td>Koms (1969)</td>
<td></td>
<td>40+</td>
<td>Men</td>
<td>0.4 (0.0, 2.1)</td>
<td>2.5</td>
</tr>
<tr>
<td>Koms (1969)</td>
<td></td>
<td>40+</td>
<td>Women</td>
<td>0.95 (0.5, 1.7)</td>
<td></td>
</tr>
</tbody>
</table>

* = unadjusted relative risk ; RR = adjusted relative risk (see data extraction tables for further details of adjustment made in each study)

Three studies were included which examined the effects of water fluoridation on outcomes related to bone development (Table 8.3). Both studies of otosclerosis reported a beneficial effect of fluoridation, although no statistical analysis was presented. The study of slipped epiphyses found the direction of association to be positive (a protective effect) in girls and negative (increased risk) in boys, but neither of these was statistically significant at the 5% level.

Table 8.3 Effect of water fluoridation on bone development disorders

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Bone Development Defect</th>
<th>Age</th>
<th>Sex</th>
<th>RR (95% CI)</th>
<th>Validity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karjalainen (1982)</td>
<td>Otosclerosis</td>
<td>All</td>
<td>Women</td>
<td>0.93</td>
<td>3.7</td>
</tr>
<tr>
<td>Daniel (1969)</td>
<td>All</td>
<td>Women</td>
<td>Both</td>
<td>0.26</td>
<td>2.5</td>
</tr>
<tr>
<td>Kelsey (1971)</td>
<td>Slipped epiphysis</td>
<td><25</td>
<td>Women</td>
<td>0.65 (0.4, 1.2)</td>
<td>3.8</td>
</tr>
</tbody>
</table>

| | Men | 1.2 (0.9, 1.6) |
8.1 Studies that met inclusion criteria but were not included in the main analysis

Two studies met inclusion criteria but were not included in the main analysis. Details of the studies and the reason for not including them in the main analysis are provided in Table 8.4.

Table 8.4 Studies which met inclusion criteria but were not included in the main analysis

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Reason for exclusion</th>
<th>Author’s Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sowers (1986)</td>
<td>Bone fracture</td>
<td>The levels of fluoride in the control groups were similar to artificial levels of fluoridation. Women were classified according to water fluoride and calcium concentration. The high fluoride group (F level = 4ppm) was low in calcium and the lower fluoride groups (F level = 1ppm) had very high and high levels of calcium in the water. This was likely to confound any association observed between water fluoride level and fracture incidence.</td>
<td>Intake of water providing ~4ppm of fluoride does not decrease fracture rate in young adult women or in postmenopausal women in a population-based setting. There was a history of more frequent fracture among women in the community with greater fluoride in drinking water as compared to women in the other 2 communities. Substantial fluoride intake may magnify the need for adequate dietary calcium and vitamin D intake, particularly in premenopausal women.</td>
</tr>
<tr>
<td>Horne (2000)</td>
<td>Bone fracture</td>
<td>Only the abstract was available. This did not provide sufficient details for inclusion of this study in the main analysis. The authors compared hip fractures and knee DJD joint replacements among those >65 years for 1991-1996 in a community with fluoridated water and 2 without. Directly standardised age-adjusted rates were calculated, these are not presented in the abstract. Only reports on one age-group which showed a significant association, results of other age-groups not presented and so it is not possible to draw conclusions from the limited results presented.</td>
<td>An association between fluoride and DJD of the knee was not supported, while a trend in the females for hip fracture was observed.</td>
</tr>
</tbody>
</table>

The level of water fluoride concentration examined in the Sowers (1986) study was higher than the level to which water supplies would be artificially fluoridated. The authors did not appear to find any significant association of fracture with water fluoride concentration, despite the possible confounding effect of the difference in calcium concentrations between the study areas. Full details of the Horne (2000) study were not available and the results presented in the abstract were insufficient for inclusion in the review or to draw any conclusions as to the results of this study.

8.2 Potential confounding factors

The incidence of hip fracture is strongly associated with age and sex, thus any study investigating the incidence of hip fracture should control for these variables. Other factors that may confound the association between water fluoride content and fracture incidence include body mass index (BMI), ethnicity, calcium intake, certain drugs, non-water fluoride exposure and the menopausal status of women. Of the 27 studies included in the analysis of water fluoridation and fracture incidence, 10 studies presented crude results only (some of these stratified on age and sex), 12 presented adjusted effect measures such as relative risks and odds ratios, and five studies presented standardised results. Of these, six studies failed to control for the effect of any possible confounding factors. Five studies presented results separately by sex and three studies controlled for age only (one of these controlled for age by only selecting people above a certain age). Five studies included only people within a certain age grouping and presented results by sex. Four studies controlled for the effects of both age and sex. Three studies controlled for age, sex and BMI and four studies controlled for other variables in addition to these three variables.
8.3 Meta-regression

Heterogeneity was investigated using the Q statistic and found to be significant thus a meta-regression was carried out to investigate possible sources of heterogeneity between studies. Variables that may account for the differences in effect-size seen between studies were included in the regression model. The natural log of the outcome measure (relative risk, odds ratio or standardised rate ratio) was included as the dependent variable in the regression analysis. The results were then exponentiated to make the results more easy to interpret (see below for further details). The Haldane approximation was used to estimate variance where there were no cases in one of the groups. This involves adding 0.5 to the cells in a contingency table in which there are no cases.

Several of the studies included in the meta-regression contribute more than one estimate to the analysis. Some studies looked at different age groups or stratified results on sex and many of the studies looked at more than one fracture site. It has been assumed in this analysis that these subgroups of people are independent and hence each estimate has been treated as though it came from a separate study. The potential limitations of including these estimates in the same regression are discussed in section 12.6.

Continuous measures were centred on the mean (the mean value of each variable was subtracted from each of the individual measures), before including them in the regression model. Centring continuous variables in this way results in the constant (or intercept) of the regression model pertaining to the pooled estimate of the mean difference when the explanatory variable takes its mean value.

A univariate analysis was undertaken in which each of the variables was included individually in the regression model with the log of the relative risk, odds ratio or standardised rate ratio of the incidence of fracture in the fluoridated compared to the control study area. For studies that presented results for more than two study areas the comparison included in this analysis is the summary measure which compares the area with the fluoride level closest to 1ppm to the area with the lowest water fluoride level. If studies presented summary age-adjusted estimates in addition to age specific measures this estimate was included in the analysis, for studies in which no overall estimate was available age-specific or crude estimates were included.

A measure of the between study variance (heterogeneity) remaining after the variables included in the model had been accounted for was calculated using restrictive maximum likelihood estimation. Variables which showed a significant association with the outcome variable at the 15% significance level ($p<0.15$) in the univariate analysis were included in the multivariate analysis. The multivariate analysis was carried out using a step-down analysis in which each variable was included in the initial model. Variables were dropped one by one, with the variable that showed the least evidence of a significant association dropped first, until only variables which showed a significant association at the 5% level were included in the analysis. The analysis was repeated using step-up analysis to confirm the results of the step-down analysis. As a further exploratory analysis study validity was forced into the regression model as the effect of study validity was considered to be very important in these studies of variable quality.

8.3.1 Univariate analysis

The results of the univariate analysis are shown in Table 8.5. A total of 55 measure of effect estimates from 20 studies were included in the analysis.

At the 15% significance level the following variables showed a significant association with the summary measure: study duration and measure of exposure. These variables were included in the multivariate analysis. The model in which no variables (other than the outcome measure) were included shows the pooled estimate of the summary measure to be 1.00 (95% CI: 0.94, 1.06). This is the same as the measure that would be produced by a standard meta-analysis. The between study variance (heterogeneity) was investigated and found to be significant (Q statistic = 197 on 54 degrees of freedom, $p<0.001$). This pooled estimate suggests that there is no association between water fluoridation and fracture incidence. However, because of the significant heterogeneity this value should be interpreted with extreme caution.
Table 8.5 Results of the univariate meta-regression analysis for bone fractures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category (number of analyses)</th>
<th>Constant (95% CI)</th>
<th>p-value of constant</th>
<th>Co-efficient (95% CI)</th>
<th>p-value of co-efficient</th>
<th>Between study variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No variables (pooled estimate)</td>
<td></td>
<td>1.00 (0.94, 1.06)</td>
<td>0.926</td>
<td></td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td>Age</td>
<td><35 (4)</td>
<td>0.89 (0.69, 1.14)</td>
<td>0.345</td>
<td>1.00 (0.73, 1.38)</td>
<td>0.983</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>35+ (6)</td>
<td></td>
<td></td>
<td>1.21 (0.90, 1.62)</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-65 (6)</td>
<td></td>
<td></td>
<td>0.91 (0.68, 1.21)</td>
<td>0.502</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50+ (10)</td>
<td></td>
<td></td>
<td>1.20 (0.92, 1.56)</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+ (27)</td>
<td></td>
<td></td>
<td>1.10 (0.71, 1.71)</td>
<td>0.660</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study duration*</td>
<td><5 (17)</td>
<td>1.04 (0.96, 1.13)</td>
<td>0.357</td>
<td>1.03 (0.91, 1.17)</td>
<td>0.649</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>5-10 (19)</td>
<td></td>
<td></td>
<td>0.69 (0.56, 0.84)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>10 (4)</td>
<td></td>
<td></td>
<td>0.90 (0.77, 1.04)</td>
<td>0.160</td>
<td></td>
</tr>
<tr>
<td>Measure of exposure*</td>
<td>% exposed (10)</td>
<td>1.07 (0.95, 1.20)</td>
<td>0.271</td>
<td>0.92 (0.80, 1.07)</td>
<td>0.276</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>Water level (35)</td>
<td></td>
<td></td>
<td>0.85 (0.69, 1.04)</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Years of exposure (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest estimate of water fluoride level</td>
<td>Low (2)</td>
<td>1.30 (0.84, 1.99)</td>
<td>0.236</td>
<td>0.76 (0.20, 1.17)</td>
<td>0.214</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Optimum (49)</td>
<td></td>
<td></td>
<td>1.68 (0.75, 3.75)</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome measure</td>
<td>Relative risk (48)</td>
<td>0.98 (0.91, 1.05)</td>
<td>0.512</td>
<td>1.19 (0.93, 1.52)</td>
<td>0.178</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Odds Ratio (5)</td>
<td></td>
<td></td>
<td>1.15 (0.87, 1.53)</td>
<td>0.325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standardised rate ratio (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was an adjusted results presented?</td>
<td>No (18)</td>
<td>0.97 (0.86, 1.09)</td>
<td>0.594</td>
<td>1.04 (0.91, 1.20)</td>
<td>0.567</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Yes (37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was the result adjusted for bmi?</td>
<td>No (45)</td>
<td>0.99 (0.93, 1.41)</td>
<td>0.855</td>
<td>1.03 (0.84, 1.27)</td>
<td>0.771</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Yes (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was the result adjusted for age?</td>
<td>No (20)</td>
<td>0.97 (0.86, 1.10)</td>
<td>0.652</td>
<td>1.03 (0.90, 1.19)</td>
<td>0.634</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>Yes (34)</td>
<td></td>
<td></td>
<td>1.03 (0.61, 1.74)</td>
<td>0.919</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matched (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture site</td>
<td>Hip (27)</td>
<td>0.97 (0.89, 1.06)</td>
<td>0.549</td>
<td>1.03 (0.85, 1.25)</td>
<td>0.759</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>Wrist (5)</td>
<td></td>
<td></td>
<td>1.22 (0.90, 1.64)</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ankle (3)</td>
<td></td>
<td></td>
<td>1.05 (0.81, 1.36)</td>
<td>0.695</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distal forearm (1)</td>
<td></td>
<td></td>
<td>1.19 (0.81, 1.75)</td>
<td>0.374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humerus (2)</td>
<td></td>
<td></td>
<td>1.23 (0.90, 1.69)</td>
<td>0.196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-fal (1)</td>
<td></td>
<td></td>
<td>1.08 (0.65, 1.79)</td>
<td>0.771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-spine (2)</td>
<td></td>
<td></td>
<td>0.90 (0.65, 1.25)</td>
<td>0.538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Osteoporotic (1)</td>
<td></td>
<td></td>
<td>0.76 (0.42, 1.38)</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (1)</td>
<td></td>
<td></td>
<td>1.06 (0.68, 1.64)</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertebral (2)</td>
<td></td>
<td></td>
<td>0.85 (0.55, 1.32)</td>
<td>0.472</td>
<td></td>
</tr>
<tr>
<td>Was the result adjusted for sex?</td>
<td>No (5)</td>
<td>0.99 (0.81, 1.21)</td>
<td>0.917</td>
<td>1.01 (0.82, 1.24)</td>
<td>0.938</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>Yes (49)</td>
<td></td>
<td></td>
<td>1.01 (0.82, 1.27)</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matched (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male (8)</td>
<td>1.00 (0.89, 1.11)</td>
<td>0.948</td>
<td>1.00 (0.86, 1.15)</td>
<td>0.957</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>Female (31)</td>
<td></td>
<td></td>
<td>1.02 (0.82, 1.27)</td>
<td>0.832</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity*</td>
<td>3.65</td>
<td>0.99 (0.93, 1.06)</td>
<td>0.846</td>
<td>0.99 (0.94, 1.04)</td>
<td>0.748</td>
<td>0.030</td>
</tr>
</tbody>
</table>

*Included in multivariate analysis

8.3.2 Multivariate analysis

The multivariate model shows the effect of each variable controlled for the possible effects of the other variables included in the model. The results of the multivariate analysis are shown in Table 8.6. Study duration was the only variable to show a significant association at the 5% level with the summary measures (relative risk, odds ratio or standardised measure of effect) for the association of water fluoridation with bone fracture incidence. This variable reduced the between study variance from 0.029 to 0.018 in the final model. The analysis was repeated using a step-up analysis, this produced a similar model. This shows that the direction of association (non-significant) is negative (more fractures) for studies that last for less than five years and between five and 10 years and positive (fewer fractures) for studies in which duration is not stated. A statistically significant positive
association was seen in studies that lasted for longer than 10 years, meaning that fewer fractures occur in fluoridated areas compared to non-fluoridated areas if they are studied longer than 10 years. Study validity did not show a statistically significant association with the measure of effect at the 5% level, and was not included in the multivariate model. The model with validity forced in is presented in Appendix L.

Table 8.6 Results of the multivariate meta-regression analysis for bone fracture studies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Co-efficient (95% CI)</th>
<th>p-value</th>
<th>Between study variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>1.04 (0.96, 1.13)</td>
<td>0.357</td>
<td>0.018</td>
</tr>
<tr>
<td>Study duration</td>
<td><5 (17)</td>
<td>1.03 (0.91, 1.17)</td>
<td>0.649</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10 (19)</td>
<td>0.69 (0.56, 0.84)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>10 (4)</td>
<td>0.90 (0.77, 1.04)</td>
<td>0.160</td>
<td></td>
</tr>
</tbody>
</table>

8.4 Publication bias

A funnel plot to assess potential publication bias could not be constructed for bone fracture studies. The funnel plot graphs sample size versus measure of effect. The studies included in the meta-regression did not provide sufficient data on the sizes of the populations studied to make a plot. Because the measures of effect reported in these studies were distributed around 1, the line of no effect for relative measures, it would be unlikely that a funnel plot would be helpful in detecting potential publication bias. One additional study of osteoporotic bone fracture by Sowers, which included measurement of duration of residence, individual drinking water fluoride and serum fluoride levels, has been conducted. Communication with the author indicates that no association was found. However, while this study has been submitted to the Journal of Bone and Mineral Research, it has not yet been published.

8.5 Discussion

There were 29 studies included on bone fracture and bone development problems. Other than fluorosis, bone effects (not including bone cancers) were the most studied potential adverse effect. These bone studies also had low validity (3.4 out of 8) with all but one study being evidence level C. These studies included both retrospective and prospective cohort designs, some of which included appropriate analyses controlling for potential confounding factors. Observer bias could potentially play a role in bone fracture, depending on how the study is conducted.

The graph of estimates of association for all bone fracture studies (Figure 8.1) shows that the individual estimates of effect lie very close to a relative risk of 1.0. Most of the confidence intervals cross 1.0 (statistically non-significant). The only confidence intervals that do not include 1.0 (statistically significant) are evenly distributed, five indicating an increased risk of fracture and four indicating a decreased risk. The meta-regression showed that the pooled estimate of the association of bone fracture with water fluoridation was 1.00 (0.94, 1.06), however due to the significant heterogeneity between studies this value should be interpreted with extreme caution. The meta-regression showed that the only variable (out of 30 total) associated with the summary measure at the 5% significance level was study duration. Factors which would be expected to show an association with fracture incidence, such as fracture site, age and sex, were not associated with water fluoride level at the 5% significance level in either the univariate or multivariate models. This adds support to the result suggested by the pooled estimate of no association between water fluoridation and fracture incidence.

The evidence on bone fracture can be classified into hip fracture and other sites as there were a greater number of studies on hip fracture than any other site. Using a qualitative method of analysis, there is no clear association of hip fracture with water fluoridation (Table 8.5). Of 18 studies, three showed a statistically significant benefit, and two showed statistically significant harm, and three showed no effect of water fluoridation on hip fracture. One study found no cases of hip fracture in the low fluoride group, indicating harm from water fluoridation. The evidence on other fractures is similar (Table 8.2); of 30 study comparisons one found statistically significant benefit, one found statistically significant harm and three found no effect. The evidence on other bone outcomes was extremely limited. A negative association was suggested in the risk of slipped epiphysis in boys, but this finding was not statistically significant.
Objective 4: Does water fluoridation have negative effects?

CANCER STUDIES

A total of 26 studies examining the association between exposure to fluoridated water and cancer incidence and mortality met inclusion criteria; 10 before-after studies, 11 ecological studies, three case-control studies and two studies which met inclusion criteria but were not included in the main analysis for the reasons outlined in Table 9.4. These papers studied incidence and mortality from a variety of cancers, including all cancers, osteosarcoma, bone cancer, thyroid cancer and other site-specific cancers. Details of baseline information and results from each study can be found in tables in Appendix C.

Five of the studies of the association of cancer with water fluoride level achieved an evidence level of B (evidence of moderate quality, moderate risk of bias), the rest were of evidence level C (lowest quality of evidence, high risk of bias). The average validity checklist score was 3.8 out of 8 (range 2.8-4.8). For the three case-control studies the average score was 4.6 out of 9 (range 3.5 to 6.0). None of the included studies had a prospective follow-up or reported any form of blinding.

Analyses of cancer incidence and mortality data were identified for a variety of different cancers. The results of the studies considering all-cause cancer incidence and mortality and those that looked at osteosarcoma or bone and joint cancers, and thyroid cancer are presented below. All-cause cancer incidence is presented, as this is the outcome most commonly presented by the studies. The results of bone-cancer studies are also presented because if fluoride is linked to a site-specific cancer incidence, it is biologically plausible that this site would be affected because fluoride is taken up by bones. It has been suggested that fluoride may have an effect on the thyroid gland and for this reason studies which looked at cancer of the thyroid gland were also considered separately.

9.1 Cancer mortality from all causes

Table 9.1 shows the effect of fluoridation on all cause cancer incidence and mortality, a point estimate for this association, the measure used, and a measure of the significance of the association. Where studies presented an adjusted measure this is presented. For ecological or cohort studies that did not present an adjusted relative risk but did provide details on the number of cases and population at risk, an unadjusted relative risk was calculated. For studies that used an ecological or cohort study design that presented standardised mortality or incidence ratios (SMR/SIRs) the mean difference of the SMR/SIR was calculated together with the 95% confidence interval. For studies that used a before-after study design and presented relative risks or rate-ratios for two points in time the ratio of the summary measure comparing the final survey to the baseline survey was calculated. For studies that used a before-after study design and presented SMR/SIRs for both points in time, the difference of the change in SMR/SIRs from baseline to final survey between the fluoridated and control area was calculated. For studies that present a difference measure (e.g. mean difference) a negative result suggests a positive effect of fluoridation, and a positive result suggests a negative effect of fluoridation (i.e. greater cancer incidence in the fluoride group compared with the control group). For ratio measurements a ratio less than 1 suggests a positive effect of fluoridation and a ratio greater than one suggests a negative effect. If the confidence interval for this measure includes 1 or if the p-value is less than 0.05 then this suggests a statistically significant difference. In all calculations made by the review team, the area with the water fluoride level closest to 1.0 ppm was chosen and compared to the area with the lowest water fluoride level reported.

All cause cancer incidence and mortality was considered as an outcome in 10 studies, in which 22 analyses were made. Of these, 11 found the direction of association of water fluoridation and cancer to be positive (fewer cancers) and 9 found the direction of association to be negative (more cancers), 2 studies found no association of water fluoride exposure and cancer. One study (Lynch, 1985) found a statistically significant negative effect in 2 of the 8 sub-groups investigated; this was not confirmed when other sub-groups were considered (Appendix C). One study (Smith, 1980) found a statistically significant positive effect. There does not appear to be any association between validity and the direction of the association of water fluoride exposure and cancer incidence. Of the two studies with the highest validity scores (4.8 and 4.2) one found a statistically significant positive association (Smith, 1980) the other found a mixed effect (Lynch 1985); some analyses showed a statistically significant
negative effect and others showing statistically non-significant associations in both directions. Overall these studies do not appear to show any association between overall cancer incidence and water fluoride exposure.

Table 9.1 Effect of fluoridation on cancer incidence and mortality

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Sex</th>
<th>Summary measure</th>
<th>Results (95% CI)</th>
<th>Validity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith (1980)</td>
<td>All ages</td>
<td>Both</td>
<td>Mean difference of change in SMRs</td>
<td>-4.4 (-7.5, -1.3)</td>
<td>4.8</td>
</tr>
<tr>
<td>Lynch (1985)</td>
<td>All ages</td>
<td>Male</td>
<td>Mean difference in SIRs</td>
<td>9.00 (p<0.001) 2.10 (p=0.592) -6.80 (p=0.057) -1.10 (p=0.050) 5.9 (p<0.001) 2.3 (p=0.565) 0.1 (p=1.000) 2 (p=0.630)</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilvers (1983)</td>
<td>All ages</td>
<td>Both</td>
<td>Mean difference of change in SMRs</td>
<td>-0.1 (-3.8, 3.6)</td>
<td>3.8</td>
</tr>
<tr>
<td>Hoover (1976)</td>
<td>All ages</td>
<td>Male</td>
<td>Mean difference in SMRs</td>
<td>0 (-3.5, 3.5) 0 (-3.8, 3.8)</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilvers (1985)</td>
<td>All ages</td>
<td>Male</td>
<td>Mean difference in SMRs</td>
<td>-0.49 (-5.7, 4.8) -1.56 (-7.4, 4.3)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodall (1980)</td>
<td>Not stated</td>
<td>Male</td>
<td>Ratio of crude rate-ratios</td>
<td>0.85 0.90</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (1977)</td>
<td>All ages</td>
<td>Male</td>
<td>Mean difference of change in SMRs</td>
<td>6.9</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>Cook-Mozaffari</td>
<td>All ages</td>
<td>Male</td>
<td>Ratio of Rate-Ratios</td>
<td>0.99</td>
<td>3.3</td>
</tr>
<tr>
<td>(1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richards (1979)</td>
<td>All ages</td>
<td>Both</td>
<td>Mean difference in SMRs</td>
<td>-3.3 (-18.7, 12.1)</td>
<td>3.1</td>
</tr>
<tr>
<td>Schlesinger (1956)</td>
<td>All ages</td>
<td>Male</td>
<td>Ratio of crude rate ratios</td>
<td>0.6 1.01</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.1.1 Studies of 20 US cities

Several studies presented analyses of data for the same set of cities in the USA, 10 fluoridated and 10 non-fluoridated cities (Table 9.2). These cities were originally selected and analysed by Yiamouyiannis (1977). The other studies present a re-analysis of the data included in this study, although some have selected slightly different years to investigate or have obtained data through different sources. All studies used before-after study designs comparing cancer incidence before and after the introduction of water fluoridation in 10 of the 20 study areas.

In the original study, Yiamouyiannis found a positive association between increased water fluoride and cancer incidence (more cancers). This study has been criticised for not taking into account demographic differences between the two groups of cities at baseline and inadequately accounting for changes in age (e.g. finer age bands) and gender structure between the baseline and final study years. Yiamouyiannis grouped men and women and whites and non-whites together into broad age groups (0-24, 25-44, etc) for the calculation of mortality ratios. The data show that the proportion of the populations that were non-white and over 65 years of age increased more rapidly in the fluoridated than in the non-fluoridated areas (Doll 1977).

The other studies use standardisation to control for age, sex and ethnic group. These studies did not find an association between cancer mortality and water fluoridation in the selected cities. Yiamouyiannis criticised the analysis used by Doll (1977) because the data used, supplied by the National Cancer Institute (NCI) contained a data transcription error which was repeated in the paper (Yiamouyiannis, 1977). Yiamouyiannis also argued that the analysis was inappropriate because 90-95% of the available data were omitted and that the selection of the year 1970 as one of the study years was inappropriate as fluoridation of the control group had already started. This had in fact only been started in two of the cities shortly (months) before the 1970 data were collected. Doll justified the
choice of 1970 as a census year for which more accurate population data were available. Smith (1980) used the corrected NCI figures in a similar analysis and also failed to detect any association between water fluoridation and cancer mortality in the selected cities.

For the analysis presented here, the results of the four studies which analysed data for the same 20 US cities are presented together in Table 9.2. The study which scored the highest on the validity checklist, and did not include the error in the NCI data (Smith, 1980) is included in the main analysis in Table 9.1.

Table 9.2 Studies which present analyses of the same set of data for 20 cities in the USA

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Sex</th>
<th>Summary measure</th>
<th>Results (95% CI)</th>
<th>Validity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doll (1977)</td>
<td>NS</td>
<td>Both</td>
<td>Mean difference of change in SMRs</td>
<td>-7.0 (-10.6, -3.4)</td>
<td>4.8</td>
</tr>
<tr>
<td>Chilvers (1982)</td>
<td>NS</td>
<td>Both</td>
<td>Mean difference of change in SMRs</td>
<td>-1.8 (-7.9, 4.2)</td>
<td>4.8</td>
</tr>
<tr>
<td>Smith (1980)</td>
<td>All ages</td>
<td>Both</td>
<td>Mean difference of change in SMRs</td>
<td>-4.4 (-7.5, -1.3)</td>
<td>4.8</td>
</tr>
<tr>
<td>Yiamouyiannis (1977)</td>
<td>0-24</td>
<td>Both</td>
<td>Ratio of crude rate ratios</td>
<td>1.01</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>25-44</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-64</td>
<td></td>
<td></td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td></td>
<td></td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

9.2 Osteosarcoma and bone cancer

Table 9.3 shows the association of osteosarcoma, bone and joint cancer incidence and mortality with water fluoride level, a point estimate of variance for this association, the measure used, and a measure of the significance of the association. Where studies presented an adjusted measure this is presented. For studies that did not present an adjusted relative risk but did provide details on the number of cases and population at risk, an unadjusted relative risk was calculated.

Table 9.3 Association of osteosarcoma, bone and joint cancer incidence and mortality with water fluoride level

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age</th>
<th>Sex</th>
<th>Cancer</th>
<th>Summary measure</th>
<th>Results (95% CI)</th>
<th>Validity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinlen (1975)</td>
<td>All ages</td>
<td>Both</td>
<td>Bone</td>
<td>Mean difference in SMRs</td>
<td>6 (-50.8, 62.8)</td>
<td>4.0</td>
</tr>
<tr>
<td>Hoover (1976)</td>
<td>All ages</td>
<td>Male</td>
<td>Bone</td>
<td>Mean difference in SMRs</td>
<td>0 (-35.9, 35.9)</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td>20 (-22.6, 62.6)</td>
<td></td>
</tr>
<tr>
<td>Hoover (1991)</td>
<td>All ages</td>
<td>Bone and joint</td>
<td>Mean difference of change in SIRs</td>
<td>1 (-30.2, 32.2)</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Mahoney (1991)</td>
<td><30</td>
<td>Male</td>
<td>Bone</td>
<td>Crude RR</td>
<td>0.93</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td><30</td>
<td>Female</td>
<td></td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>Male</td>
<td></td>
<td></td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>Female</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Moss (1995)</td>
<td>Not stated</td>
<td>Both</td>
<td>Osteosarcoma</td>
<td>OR</td>
<td>1.0 (0.6, 1.5)</td>
<td>6.0</td>
</tr>
<tr>
<td>Gelberg (1995)</td>
<td><24</td>
<td>Osteosarcoma</td>
<td>OR</td>
<td>2.07 (0.5, 8.0)</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td><24</td>
<td>OR</td>
<td></td>
<td>1.84 (0.8, 4.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hrudew (1990)</td>
<td>All ages</td>
<td>Osteosarcoma</td>
<td>Crude RR</td>
<td>0.93 (0.6, 1.6)</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Hoover (1991)</td>
<td>All ages</td>
<td>Osteosarcoma</td>
<td>Mean difference of change in SIRs</td>
<td>-11 (-44.6, 22.6)</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>McGuire (1991)</td>
<td>0-40</td>
<td>Both</td>
<td>Osteosarcoma</td>
<td>OR</td>
<td>0.33 (0.0, 2.5)</td>
<td>3.5</td>
</tr>
<tr>
<td>Mahoney (1991)</td>
<td><30</td>
<td>Male</td>
<td>Osteosarcoma</td>
<td>Crude RR</td>
<td>0.98</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td><30</td>
<td>Female</td>
<td></td>
<td></td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>Male</td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>Female</td>
<td></td>
<td></td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Cohn (1992)</td>
<td>0-20</td>
<td>Male</td>
<td>Osteosarcoma</td>
<td>Crude RR</td>
<td>3.4 (1.4, 8.1)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td>1.0 (0.3, 3.5)</td>
<td></td>
</tr>
</tbody>
</table>
Four studies considered the association of bone related cancer and water fluoride exposure, performing eight analyses. Of these, the direction of association of water fluoridation and bone cancer was found to be positive in three, negative in four and one did not detect a relationship. None of the studies found a statistically significant association, however one study (Mahoney 1991) contributed five of the nine analyses with no variance data.

Seven studies of osteosarcoma, presenting 12 analyses were included. Of these, the direction of association between water fluoridation and osteosarcoma incidence or mortality was found to be positive (fewer cancers) in seven, negative (more cancers) in three and two found no relationship. Of the six studies that presented variance data, one (Cohn 1992) found a statistically significant association between fluoridation and increased prevalence of osteosarcoma in males. This study however, also had the lowest validity score, 2.5 out of 8. One study (Mahoney 1991) contributed four of the 12 analyses but did not provide variance data.

9.3 Cancer of the thyroid gland

Two studies (Kinlen 1975, Hoover 1976) investigated the association of water fluoride level with cancer of the thyroid gland. Both studies used indirect standardisation to control for the effects of age and sex and did not find any association between water fluoride level and thyroid cancer (Appendix C).

9.4 Studies that met the inclusion criteria but were not included in the main analysis

The studies in table 9.4 met the inclusion criteria but were not included in the main analysis for the reasons outlined in the table. Both of these studies appear to confirm the results of the main analysis: a lack of association between water fluoride content and cancer incidence and mortality.

Table 9.4 Studies that met the inclusion criteria but were not included in the main analysis

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Reason</th>
<th>Authors Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoover (1990)</td>
<td>Cancer Mortality</td>
<td>Non-fluoridated areas grouped together with areas fluoridated within the past five years.</td>
<td>The relative risk of death from cancers of the bones and joints was the same after 20-35 years of fluoridation as it was in the years immediately preceding fluoridation. A similar lack of relationship to timing of fluoridation was noted for the incidence of bone and joint cancers and osteosarcomas. The relative risk of developing these cancers 20 or more years after fluoridation was lower than the risk associated with less than five years of fluoridation among both males and females. For no type of malignancy was there consistent evidence of a relationship with patterns of fluoride. In a study of over 2300000 cancer deaths in fluoridated counties across the US, and over 125000 incident cancer cases in fluoridated counties covered by two population based cancer registries, no trends in cancer risk that could be ascribed to the consumption of fluoridated drinking water could be identified.</td>
</tr>
<tr>
<td>Swanberg (1953)</td>
<td>Cancer Mortality</td>
<td>Cancer mortality compared between fluoridated area and the whole of the US - includes areas with fluoride in the water supplies and so not a suitable control area</td>
<td>The death rate from cancer in the study area decreased during the study period whereas the death rate from cancer in the whole of the US (the control area) increased over the same period.</td>
</tr>
</tbody>
</table>

9.5 Possible confounding factors

There is a dramatic increase in cancer with age and a considerable difference in cancer mortality between men and women and among different ethnic groups, thus even small differences in the age, sex and ethnic structure of a population can lead to noticeable differences in cancer incidence. Any study looking at the association of cancer with different exposures should therefore control for these confounding factors in the analysis. There are numerous other factors that may also lead to
differences in cancer incidence between populations if the exposure of populations differ, for example, smoking, social class, diet and environmental factors, including exposure to other sources of fluoride. Of the 26 cancer studies in the main analysis, 12 used standardisation (11 used the indirect and one the direct method) to control for age and sex (some studies presented results separately by sex) and four of these also controlled for ethnic group. One study presented an age adjusted rate, and five studies presented crude data only. Of the three case-control studies, one presented a crude odds ratio matched on age, gender and county of residence, one presented an odds ratio with cases and controls matched on sex and year of birth (age). The third matched cases and controls on age, sex and race and then presented an odds ratio adjusted for population size, age radiation exposure and gender.

9.6 Discussion
The evidence of the effect of water fluoridation on cancer was of the highest quality available under Objective 4 (3.8 out of 8 compared with a mean of 2.7 for other possible negative effects) but was still only low to moderate. Twenty-one of the 26 studies presented are from the lowest level of evidence (level C) with the highest risk of bias. While prospective study designs may be more difficult to conduct in cancer studies due to long incubation periods and rarity of some cancers, they are possible. Blinding of outcome assessment to exposure is certainly possible in such studies, for example outcomes assessed using published sources could blind investigators to fluoride levels in the study areas.

There is no clear picture of association between water fluoridation and overall cancer incidence and mortality (Table 9.1). Whilst there were 11 analyses that found the direction of association of water fluoridation and cancer to be positive (fewer cancers), a further nine analyses found a negative direction of association (more cancers), and two studies found no effect. Only two studies found statistical significance, both suggesting an association in different directions. One of these studies contained eight analyses of which only two found a statistically significant adverse effect of water fluoridation.

While a broad number of cancers were represented in the included studies, osteosarcoma, bone/joint and thyroid cancers were of particular concern due to fluoride uptake by bone and thyroid. Again, no clear association between water fluoridation and increased incidence or mortality was apparent. Of eight analyses from the six studies of osteosarcoma and water fluoridation reporting variance data, none found statistically significant differences. Thyroid cancer was also considered but only two studies examined this and neither found a statistically significant association with water fluoride level.

The findings of cancer studies were mixed, with small variations on either side of no effect. Individual cancers examined were bone cancers and thyroid cancer, where once again no clear pattern of association was seen. Overall, from the research evidence presented no association was detected between water fluoridation and mortality from any cancer, or from bone or thyroid cancers specifically.
Objective 4: Does water fluoridation have negative effects?

10. OTHER POSSIBLE NEGATIVE EFFECTS

A total of 33 studies of the association of water fluoridation with other possible negative effects were included in the review. There were six before and after studies, one retrospective cohort study, 12 ecological studies, five cross sectional, one case control study and eight studies which met inclusion criteria but were not included in the main analysis for reasons outlined below (Table 10.3 and section 10.2). These studies examined a variety of different outcomes including Down’s syndrome, mortality, senile dementia, goitre and IQ. Details of baseline information and results from each study can be found in tables in Appendix C. Two studies (Briner 1966 and Schatz 1976) presented data from the same two cities in Chile from similar time periods. To avoid duplication, only the Schatz study is presented in the tables below, but both studies are included in the data tables in Appendix C. Although some authors (Spittle 1993) have reported cases of hypersensitivity to fluoridated water, no studies meeting the inclusion criteria were found.

The quality of these studies was generally low; all studies were of evidence level C (lowest quality of evidence, high risk of bias). The average validity checklist score was 2.7 out of 8 (range 1.5-4.5). None of the studies had a prospective follow up or incorporated any form of blinding. Whilst the one case control study (Dick, 1999) achieved a validity checklist score of 7 out of 9, it should be noted that this study was also of evidence level C.

Table 10.1 shows the effect of water fluoridation on all potential adverse outcomes (other than fluorosis, bone fracture and cancer) reported in the studies included. A point estimate for this association, the measure used and a measure of the significance of the association is presented. Where studies reported an adjusted measure, this is presented. For studies that did not present an adjusted relative risk but did provide details on the number of people studied and population at risk, an unadjusted relative risk was calculated from these data.

For studies that present a difference measure (e.g. mean difference) a negative result suggests a benefit of fluoridation, and a positive result suggests harm from fluoridation (i.e. greater cancer incidence in the fluoride group compared with the control group). For ratio measurements a ratio less than 1 suggests a benefit of fluoridation and a ratio greater than one suggests harm. If the confidence interval for this measure includes 1 or if the p-value is less than 0.05 then this suggests a statistically significant difference.

Only three studies showed a statistically significant effect at the 5% level. Forbes (1997), found a statistically significant negative effect of water fluoride on Alzheimer’s disease (increased incidence) and a statistically significant positive effect on impaired mental functioning (decreased incidence). Erickson (1976) found a statistically significant positive association with congenital malformations in one of two sets of data but not in the other. Lin (1991) found statistically significant negative association of combined low-iodine/high fluoride with goitre and mental retardation. Age at menarche, anaemia during pregnancy and sudden infant death syndrome (SIDS) did not show statistically significant associations with water fluoride exposure. The direction of association of primary degenerative dementia (Still 1980) and cognitive impairment (Jacqmin-Gadda 1994) with water fluoridation was positive (fewer cases) but no measure of the statistical significance of this effect was provided. Skeletal fluorosis and IQ both found the direction of association with water fluoride to be negative, but again no measure of the statistical significance of this association was presented.

Five studies examined the association between all cause mortality and water fluoride exposure. Three studies found the direction of association of water fluoridation and mortality to be negative (more deaths), one found the direction of association to be positive (fewer deaths) and one found no association. Once again, no measures of the statistical significance of these associations were provided. However, for two of the studies that found a negative direction of association, the point estimate was 1.01, which is unlikely to have reflected a statistically significant effect. Three studies examined the association between infant mortality and water fluoride level. All three studies found a negative direction of association, but again no measure of the statistical significance of this association was presented and so it is difficult to draw conclusions from these results.
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Age</th>
<th>Sex</th>
<th>Summary measure</th>
<th>Results (95% CI)</th>
<th>Validity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes (1997)</td>
<td>Alzheimer's disease</td>
<td>76</td>
<td>Both</td>
<td>Adjusted odds ratio</td>
<td>1.22 (1.0-1.5)</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Impaired mental functioning</td>
<td></td>
<td></td>
<td></td>
<td>0.49 (0.3-0.9)</td>
<td></td>
</tr>
<tr>
<td>Still (1980)</td>
<td>Primary degenerative dementia</td>
<td>55+</td>
<td>Both</td>
<td>Crude RR</td>
<td>0.18</td>
<td>3.0</td>
</tr>
<tr>
<td>Jacqmin-Gadda (1994)</td>
<td>Cognitive impairment</td>
<td>>= 65</td>
<td>Both</td>
<td>Crude RR</td>
<td>0.93</td>
<td>4.5</td>
</tr>
<tr>
<td>Griffith (1963)</td>
<td>Anaemia during pregnancy</td>
<td>Not stated</td>
<td>Women</td>
<td>Rate difference</td>
<td>2.03 (-5.0-9.0)</td>
<td>2.3</td>
</tr>
<tr>
<td>Farkas (1983)</td>
<td>Age at menarche</td>
<td>7-18</td>
<td>Girls</td>
<td>Mean difference</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Erickson (1976)</td>
<td>Congenital malformations</td>
<td>Both</td>
<td>Crude RR</td>
<td>1.08 (p>0.05)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Down's syndrome</td>
<td></td>
<td></td>
<td>0.95 (p<0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erickson (1980)</td>
<td>Congenital malformations</td>
<td>Both</td>
<td>Crude RR</td>
<td>0.93 (0.7-1.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Down's syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berry (1958)</td>
<td>Down's syndrome</td>
<td>Both</td>
<td>Crude RR</td>
<td>0.84-1.48</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Needleman (1974)</td>
<td>Down's syndrome</td>
<td>Both</td>
<td>Crude RR</td>
<td>1.14</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Rapaport (1957)**</td>
<td>Down's syndrome</td>
<td>Both</td>
<td>Crude RR</td>
<td>1.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapaport (1963)</td>
<td>Down's syndrome</td>
<td>Both</td>
<td>Crude RR</td>
<td>1.01</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infant mortality</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dick (1999)</td>
<td>Sudden Infant Death Syndrome</td>
<td>Not stated</td>
<td>Both</td>
<td>Odds ratio</td>
<td>1.19 (0.8, 1.7)</td>
<td>7 (of 9)</td>
</tr>
<tr>
<td>Overton (1954)</td>
<td>Infant mortality</td>
<td>Both</td>
<td>Difference in RR</td>
<td>0.06</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Erickson (1978)</td>
<td>Mortality</td>
<td>All</td>
<td>Both</td>
<td>Adjusted rate-ratio</td>
<td>1.01</td>
<td>3.5</td>
</tr>
<tr>
<td>Hagans (1954)</td>
<td>Mortality</td>
<td>Not stated</td>
<td>Both</td>
<td>Difference in RR</td>
<td>0</td>
<td>4.1</td>
</tr>
<tr>
<td>Rogot (1978)</td>
<td>Mortality</td>
<td>Not stated</td>
<td>Both</td>
<td>Difference in RR</td>
<td>-0.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Schatz (1976)*</td>
<td>Mortality</td>
<td>Not stated</td>
<td>Both</td>
<td>Difference in RR</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infant mortality</td>
<td>Not stated</td>
<td>Both</td>
<td>Difference in RR</td>
<td>0</td>
<td>1.8</td>
</tr>
<tr>
<td>Weaver (1944)</td>
<td>Mortality</td>
<td>Not stated</td>
<td>Both</td>
<td>Difference in RR</td>
<td>-7.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Zhao (1996)</td>
<td>IQ</td>
<td>7-14</td>
<td>Both</td>
<td>Mean difference</td>
<td>-6</td>
<td>1.5</td>
</tr>
<tr>
<td>Lin (1991)</td>
<td>IQ</td>
<td>7-14</td>
<td>Not stated</td>
<td>Mean difference</td>
<td>1.6 (1.15, 2.34)</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Mental retardation</td>
<td>7-14</td>
<td>Not stated</td>
<td>Crude RR</td>
<td>1.11 (1.04, 1.20)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Briner (1966) reported data from the same areas and some of the same years but is not presented here because Schatz reported more years and included infant mortality.

** Multiple areas studied, for details on see Appendix C

Six studies looked at the association between Down's syndrome and water fluoride level. Three studies found a negative direction of association (Needleman 1974, Rapaport 1957, Rapaport 1963), one found a positive direction of association, one found no association (Berry 1958) and the other found a positive direction of association for one set of data and a negative direction of association for the other. None of the three studies that found a negative direction of association presented any measure of statistical significance. The one study that found a positive direction of association...
(Erickson 1980) did present variance data and failed to find a statistically significant association. The study that found a positive direction of association in one set of data and a negative direction of association in the other did not find a statistically significant association in either direction (Erickson 1976).

10.1 Possible confounding factors

All the studies looking at other possible negative effects used study designs that measured population rather than individual exposures to fluoridated water, and because of this they are susceptible to confounding by exposure. If the populations being studied differed in respect to other factors that are associated with the outcome under investigation, then the outcome may differ between these populations leading to an apparent association with water fluoride level. Which factors may act as confounding factors depends on the outcome under investigation and will thus differ for all the different outcomes discussed above. Nineteen analyses looking at other possible negative effects discussed potential confounding factors (Table 10.2). Twelve of these analyses did not control for any of these confounding factors in the results presented.

Table 10.2 Other possible negative effects associated with water fluoride and the confounding factors controlled for in the analysis.

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Confounding factors discussed in study</th>
<th>Controlled for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes (1997)</td>
<td>Alzheimer's disease</td>
<td>Water quality variables</td>
<td>Yes</td>
</tr>
<tr>
<td>Still (1980)</td>
<td>Impaired mental functioning</td>
<td>Chloride, magnesium and calcium content of water</td>
<td>No</td>
</tr>
<tr>
<td>Griffith (1963)</td>
<td>Primary degenerative dementia</td>
<td>Parity and stage of pregnancy</td>
<td>No</td>
</tr>
<tr>
<td>Dick (1999)</td>
<td>Sudden Infant Death Syndrome</td>
<td>Age, region, sex, time, season, gestation, ethnicity, etc</td>
<td>Yes</td>
</tr>
<tr>
<td>Erickson (1976)</td>
<td>Down's syndrome</td>
<td>Maternal age, white births only</td>
<td>Yes</td>
</tr>
<tr>
<td>Erickson (1980)</td>
<td>Congenital malformations</td>
<td>Maternal age, white births only</td>
<td>No</td>
</tr>
<tr>
<td>Needleman (1974)</td>
<td>Down's syndrome</td>
<td>Maternal age</td>
<td>No</td>
</tr>
<tr>
<td>Rapaport (1957)</td>
<td>Down's syndrome</td>
<td>Maternal age</td>
<td>No</td>
</tr>
<tr>
<td>Rapaport (1963)</td>
<td>Down's syndrome</td>
<td>Maternal age effect of other minerals in water, iron, magnesium, manganese calcium</td>
<td>No</td>
</tr>
<tr>
<td>Overton (1954)</td>
<td>Infant mortality</td>
<td>Ethnicity, social and economic conditions</td>
<td>No</td>
</tr>
<tr>
<td>Erickson (1978)</td>
<td>Mortality</td>
<td>Age, sex and ethnicity</td>
<td>Yes</td>
</tr>
<tr>
<td>Hagan (1954)</td>
<td>Mortality</td>
<td>Age, sex and ethnicity</td>
<td>Yes</td>
</tr>
<tr>
<td>Rogot (1978)</td>
<td>Mortality</td>
<td>Age, sex and ethnicity</td>
<td>Yes</td>
</tr>
<tr>
<td>Schatz (1976)</td>
<td>Mortality</td>
<td>Soil and climate</td>
<td>No</td>
</tr>
<tr>
<td>Weaver (1944)</td>
<td>Mortality</td>
<td>Age, sex and area compatibility</td>
<td>No</td>
</tr>
<tr>
<td>Zhao (1996)</td>
<td>IQ</td>
<td>Educational level of parents</td>
<td>No</td>
</tr>
<tr>
<td>Jolly (1971)</td>
<td>Skeletal fluorosis</td>
<td>Sex</td>
<td>Yes</td>
</tr>
<tr>
<td>Jooste (1999)</td>
<td>Goitre</td>
<td>Use of iodised salt, height, weight, urinary, water, & salt levels</td>
<td>No</td>
</tr>
<tr>
<td>Gedalia (1963)</td>
<td>Goitre</td>
<td>Iodine water level</td>
<td>No</td>
</tr>
</tbody>
</table>

For Down's syndrome, maternal age is of particular importance as a possible confounding factor because the incidence of Down's syndrome is associated with maternal age. This means that if the average maternal age of the fluoridated population is higher than that of the non fluoridated population, an association with water fluoridation would most likely be found. All but one of the six Down's syndrome studies considered the effects of maternal age, however only two of these studies attempted to control for this possible confounding factor. The two studies by Erickson (1976, 1980) included white births only and presented results separately for five-year maternal age groups and one of these studies (1976) presented age-adjusted rates. Both of these studies found a non-significant association of water fluoride level with Down's syndrome at the 5% significance level.

Rapaport (1957) did not control for the effects of confounding factors but did look at the difference in maternal age between the two study areas. He found that maternal age was higher in the low fluoride areas than the high fluoride areas, this would be expected to lead to a higher rate of Down's syndrome.
in these areas when in fact the reverse was found. Rapaport (1963) also considered maternal age and found that the number of Down’s syndrome births to mothers over the age of 40 was greater in the fluoride areas than the low-fluoride areas, however no measures of the significance of this association was presented. Needleman (1974) compared the mean age of mothers in the two study areas and found that maternal age was 34.0 in the high fluoride group and 33.2 in the low fluoride group. The author suggested this was enough to account for the observed differences in the incidence of Down’s syndrome found in this study.

Three of the five studies looking at the association between mortality and water fluoridation used standardisation to control for the influence of age, sex and ethnicity (Erickson 1978, Hagan 1954, Rogot 1978). Two of these studies found a negative direction of association; no association was found in the other. None of these studies presented variance data.

Table 10.3 Studies that met inclusion criteria but were not included in the main analysis

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Outcome</th>
<th>Reason</th>
<th>Authors Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gupta (1995)</td>
<td>Congenital malformation</td>
<td>No adequate control area - the control area contains <1.5ppm which would be considered a high fluoride area in most studies</td>
<td>There was an increased incidence of spina bifida occulta in children expose to high fluoride (4.5 or 8.5ppm) compared to those expose to low fluoride (<1.5ppm)</td>
</tr>
<tr>
<td>Karthikeyan (1996)</td>
<td>Skeletal fluorosis</td>
<td>Areas selected because they were known to have a high incidence of fluorosis and then water fluoride level investigated. Reasons other than the fluoride content of the water are also investigated for the incidence of fluorosis</td>
<td>Skeletal fluorosis was only present in one of the fluorosis regions, the area which had the highest water fluoride content (3.8-8.0)</td>
</tr>
<tr>
<td>Latham (1967)</td>
<td>Nail mottling and prevalence of goitre</td>
<td>The results are not broken down as much as the water fluoride levels, giving very wide ranges of fluoride levels in some of the areas for which results are presented. All the areas are fluoridated at above 1ppm and some with fluoride levels as high as 45.5ppm.</td>
<td>Author does not specifically relate results to water fluoride content of the area - he comments generally on the results seen in the whole sample studies, as all areas are exposed to comparatively high levels of fluoride. The percentage of people with mottled nails was high in all areas (>26%) as the prevalence of goitre (12-41%). As these results are not specifically related to the water fluoride level and there was no control area it is difficult to link these findings to the water fluoride levels.</td>
</tr>
<tr>
<td>Freni (1994)</td>
<td>Birth rates</td>
<td>The way fluoride exposure is classified is unclear and misleading; the mean fluoride level in the control areas is sometimes higher than the mean fluoride level in the exposed areas.</td>
<td>A negative association was found between high fluoride levels in drinking water and lower birth rates.</td>
</tr>
<tr>
<td>Heasman (1962)</td>
<td>Mortality</td>
<td>The range of water fluoride levels in some of the areas classified as exposed overlaps with the fluoride range in the areas classified as control areas.</td>
<td>The results indicate that the overall mortality was the same in the fluoride and control areas, specific causes of death differences reaching significance at the 5% level. These were conflicting and it was considered very unlikely that fluoride was the cause.</td>
</tr>
<tr>
<td>Morgan (1998)</td>
<td>Dental fluorosis and childhood behaviour problems</td>
<td>Children classified according to Dean’s classification for fluorosis and then fluoride exposure examined. Childhood behaviour problems classified according to dental fluorosis levels not water fluoride levels</td>
<td>the use of supplemental fluoride prior to age 3 was found to be a risk factor for dental fluorosis. No significant association was found between fluoride history variables in aggregate (including water fluoride level) and dental fluorosis. Dental fluorosis was not significantly associated with behaviour problems in the children studied</td>
</tr>
<tr>
<td>Packington (2000)</td>
<td>Fetal, perinatal and infant mortality, congenital malformations and Down’s syndrome</td>
<td>Years of data used not the same. No description of methods, unclear exactly how data presented were calculated. Graphs unclear</td>
<td>Fetal, perinatal and infant mortality, congenital malformations and Down’s syndrome are higher in fluoridated areas of England than in non-fluoridated areas.</td>
</tr>
<tr>
<td>Mitchell (1991)</td>
<td>Sudden Infant Death Syndrome</td>
<td>Data presented graphically. No figures presented in the text. Data could not be read accurately from the graph.</td>
<td>There is no indication of a relationship between fluoridation of the water supply and SIDS in New Zealand.</td>
</tr>
</tbody>
</table>
10.2 Studies that met inclusion criteria but were not included in the main analysis

The eight studies in Table 10.3 were not included in the main analysis of other possible negative effects of water fluoridation for the reasons listed. In three of these studies (Gupta 1995; Freni 1994; Heasman 1962) the control areas included areas that would be considered fluoridated, making interpretation of the results impossible. Data from the other studies were not extracted because of the way the data were presented. Four of these studies conclude that they found a negative relationship with the outcome studied and water fluoridation, two found no association and two did not present clear conclusions.

10.3 Discussion

Interpreting the results of the other possible negative effects is very difficult because of the small number of studies that met inclusion criteria on each specific outcome, the study designs used and the low study quality.

The quality of the research on these topics was generally low, evidence level C (mean of 2.7 out of 8 on validity assessment). Given that all the studies are from lowest the level of evidence with the highest risk of bias, the conclusions should be treated with caution.

A major weakness of these studies generally was the lack of control for any possible confounding factors, many of which were highlighted by the study authors. If the populations being studied differed in respect to other factors that are associated with the outcome under investigation then the outcome may differ between these populations leading to an apparent association with water fluoride level. What is clear is that any further research in these areas needs to be of a much higher quality and should address and use appropriate methods to control for confounding factors.

Overall, the studies examining other possible negative effects provide insufficient evidence on any particular outcome to reach conclusions.
11. OBJECTIVE 5

Are there differences in the effects of natural and artificial water fluoridation?

In order to investigate whether there are differences in the effects of artificially and naturally fluoridated water on positive (caries) and negative (e.g. cancer) outcomes, each of these outcomes will be considered separately. Unfortunately studies of artificially fluoridated areas rarely report what form of fluoride had been used (e.g. sodium fluoride or silicated fluoride). Consequently, identifying the effects of the various forms of fluoride used in artificial fluoridation schemes separately was not possible.

11.1 Caries studies

Only one study compared a naturally fluoridated area, an artificially fluoridated area and a control area using a before and after study design. This was the Brantford-Sarnia-Stratford study (Brown, 1965) in which Brantford was artificially fluoridated, Stratford was naturally fluoridated and Sarnia was the control area. The proportion of caries-free children and the DMFT was measured at baseline (3 years after fluoridation was introduced in Brantford) and then again seven years later, in children aged 9-11 and 12-14 years. Table 11.1 shows the results of this study.

Table 11.1 Caries experience in naturally, artificially and non-fluoridated areas.

<table>
<thead>
<tr>
<th>Age</th>
<th>Outcome</th>
<th>Brantford (artificial F)</th>
<th>Stratford (natural F)</th>
<th>Sarnia (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
</tr>
<tr>
<td>9-11</td>
<td>% caries-free</td>
<td>5.7</td>
<td>43.8</td>
<td>52.1</td>
</tr>
<tr>
<td>12-14</td>
<td>% caries-free</td>
<td>1.2</td>
<td>18.7</td>
<td>27.2</td>
</tr>
<tr>
<td>9-11</td>
<td>DMFT</td>
<td>4.1</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>12-14</td>
<td>DMFT</td>
<td>7.7</td>
<td>3.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

At the baseline survey, caries experience, as measured by the proportion of caries-free children and the DMFT score in both age groups, was relatively high in the control area and the area that had recently started to receive fluoridated water. In the survey conducted seven years later, caries experience remained high in the control area and low in the naturally fluoridated area. In the artificially fluoridated area, decay had declined to levels approaching those seen in the naturally fluoridated area. This suggests that naturally and artificially fluoridated water have similar effects on dental decay.

11.2 Possible negative effect studies

11.2.1 Dental fluorosis

A total of 88 studies investigating the association of dental fluorosis and water fluoridation were identified. Of these, 14 did not state whether the water was artificially or naturally fluoridated, 20 compared an area artificially fluoridated (0.6-1.2ppm) with areas of low (<0.3ppm) or very high (4-7ppm) natural fluoride content. The remaining studies only considered naturally fluoridated areas. There were no studies in which an area with water naturally fluoridated to around 1ppm was compared with an area artificially fluoridated to this level. It was therefore not possible to make a direct comparison of the difference in the effect of the naturally fluoridated water compared with artificially fluoridated water.

A term for type of fluoridation (artificial or natural) was included in the regression analysis. This variable did not show an association with fluorosis incidence, suggesting that there is no difference in the effects of artificially and naturally fluoridated water on the incidence of dental fluorosis.

11.2.2 Bone fracture and bone development problems

A total of 29 studies were identified which looked at fracture incidence. Nine compared areas naturally fluoridated at 1ppm with areas of a low natural fluoride level. Eight studies compared areas with different levels of naturally occurring fluoride in the water. Five studies compared areas with mixed (artificial and natural) water fluoride exposure (for example, considering the number of years or proportion of the population exposed to fluoridated water). Seven studies did not state whether the water was artificially or naturally fluoridated. There were no studies in which an area with water
naturally fluoridated to around 1ppm was compared with an area artificially fluoridated to this level. It was therefore not possible to make a direct comparison of the effects of naturally fluoridated compared with artificially fluoridated water.

11.2.3 Cancer studies

A total of 26 studies looking at the association of cancer incidence with water fluoridation were found. Twelve studies compared areas with artificially fluoridated water with areas with a low natural fluoride content. Three compared areas with different natural water fluoride levels; one compared areas with mixed (both artificially and naturally fluoridated) water fluoridation; and eight studies did not state whether the water was artificially or naturally fluoridated. There were no studies in which an area with natural fluoride levels around 1ppm was compared with an area artificially fluoridated at this level. It was therefore not possible to make a direct comparison of the difference in effects of naturally fluoridated compared with artificially fluoridated water.

Table 11.2 shows the direction of the association of the water fluoride level with osteosarcoma or bone, joint and overall cancer incidence and mortality for each of these studies, and whether the study compares areas with artificial, natural or mixed water supplies.

There were only two studies that considered areas containing only naturally fluoridated water and so it is difficult to draw conclusions from these results. However, the data suggest that there is no statistically significant association between water fluoridation and cancer incidence, irrespective of whether the fluoridated area is artificially or naturally fluoridated.

<table>
<thead>
<tr>
<th>Artificially or Naturally fluoridated</th>
<th>Author (Year)</th>
<th>Cancer</th>
<th>Statistically significant association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial</td>
<td>Chilvers (1983)</td>
<td>All cause</td>
<td>No</td>
</tr>
<tr>
<td>Artificial</td>
<td>Cook-Mozaffari (1981)</td>
<td>All cause</td>
<td>Not stated</td>
</tr>
<tr>
<td>Artificial</td>
<td>Smith (1980)</td>
<td>All cause</td>
<td>Yes (positive effect)</td>
</tr>
<tr>
<td>Artificial</td>
<td>Goodall (1980)</td>
<td>All cause</td>
<td>Not stated</td>
</tr>
<tr>
<td>Artificial</td>
<td>Richards (1979)</td>
<td>All cause</td>
<td>No</td>
</tr>
<tr>
<td>Artificial</td>
<td>Schlesinger (1956)</td>
<td>All cause</td>
<td>Not stated</td>
</tr>
<tr>
<td>Artificial</td>
<td>Raman (1977)</td>
<td>All cause</td>
<td>Not stated</td>
</tr>
<tr>
<td>Artificial</td>
<td>Mahoney (1991)</td>
<td>Bone</td>
<td>Not stated</td>
</tr>
<tr>
<td>Artificial</td>
<td>Hoover (1991)</td>
<td>Bone and joint</td>
<td>No</td>
</tr>
<tr>
<td>Artificial</td>
<td>Hrudey (1990)</td>
<td>Osteosarcoma</td>
<td>No</td>
</tr>
<tr>
<td>Artificial</td>
<td>Mahoney (1991)</td>
<td>Osteosarcoma</td>
<td>No</td>
</tr>
<tr>
<td>Natural</td>
<td>Chilvers (1985)</td>
<td>All cause</td>
<td>No</td>
</tr>
<tr>
<td>Natural</td>
<td>Hoover (1976)</td>
<td>All cause</td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>Lynch (1985)</td>
<td>All cause</td>
<td>Yes (negative effect) in 2 of 6 analyses</td>
</tr>
<tr>
<td>Other</td>
<td>Kinlen (1975)</td>
<td>Bone</td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>Gelberg (1995)</td>
<td>Osteosarcoma</td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>McGuire (1991)</td>
<td>Osteosarcoma</td>
<td>No</td>
</tr>
<tr>
<td>Other</td>
<td>Moss (1995)</td>
<td>Osteosarcoma</td>
<td>No</td>
</tr>
</tbody>
</table>

11.2.4 Other possible negative effects studies

A total of 31 studies were included in the main analysis assessing the association of other possible adverse effects of water fluoride concentration. Of these, five studies compared areas artificially fluoridated to the 1ppm level with areas with a low natural fluoride level, 11 studies compared areas with different levels of naturally occurring water fluoride levels, and 13 studies did not state whether the areas were artificially or naturally fluoridated. There were two studies in which an area with water naturally fluoridated at around 1ppm was compared with an area artificially fluoridated to this level (Schatz 1976, Rogot 1978). Both studies looked at mortality using a before-after study design, with the baseline survey carried out before water fluoridation was introduced into one of the three study areas. If water fluoride level had a statistically significant effect on mortality, then at the baseline examination mortality would be expected to be higher in the naturally fluoridated area than in the two
other, low fluoride study areas. At the final survey, after fluoridation had been artificially introduced into one of these areas, the mortality rate in the artificially fluoridated area would be expected to show an increase in mortality rate to a level approaching (or surpassing) that seen in the naturally fluoridated area. Neither of these studies showed such an association, and neither study showed a statistically significant difference in mortality rates between the study areas. These data have thus not found any association.

A wide range of outcomes was considered with many outcomes only discussed in one or two studies. There is thus insufficient evidence for any of these outcomes to compare the effects of artificially and naturally fluoridated water.

11.3 Discussion

The assessment of natural versus artificial water fluoridation effects is greatly limited due to the lack of studies making this comparison. Very few studies included both areas with low natural fluoride and areas with high natural or artificial fluoride in their studies. In addressing the question of Objective Five for caries studies there was only one study that could be included. The validity assessment (4.5) of this evidence level B study was slightly below the average (5.0) for the caries studies overall. This study was done in Canada and did not control for potential confounding factors in the analysis. The confidence with which the question can be answered by a single study of moderate validity is low.

The ability to address the question of Objective Five with respect to the effect of natural versus artificial fluoridation on negative effects is also low, as there were no direct comparisons of artificial versus natural water fluoride presented.

As the measure of effect estimates reported in all of the bone fracture studies were similar, no difference in the effect based on artificial or natural fluoridation was expected.

There were not enough studies on cancer incidence and mortality reporting the use of only a natural source of fluoride to adequately compare to those reporting only artificial sources (Table 11.2). There were also no studies using mixed (artificial/natural) water supplies that stratified on this basis. From the data presented, no differences are apparent.

For other potential adverse effects, it was not possible to determine the effects of natural versus artificial sources of water fluoridation. In addition to the overall low quality of studies, there were not enough studies on any particular outcome with subjects exposed to different sources of water fluoride to make adequate comparisons.
12. CONCLUSIONS

The conclusions of this systematic review of water fluoridation are as follows:

12.1 Objective 1: What are the effects of fluoridation of drinking water supplies on the incidence of caries?

The best available evidence (level B) from studies on the initiation and discontinuation of water fluoridation suggests that fluoridation does reduce caries prevalence, both as measured by the proportion of children who are caries-free and by the mean dmft/DMFT score. The degree to which caries is reduced, however, is not clear from the data available. The range of the mean difference in the proportion (%) of caries-free children is -5.0 to 64%, with a median of 14.6% (interquartile range 5.05, 22.1%). The range of mean change in dmft/DMFT score was from 0.5 to 4.4, median 2.25 teeth (interquartile range 1.28, 3.63 teeth). It is estimated that a median of six people need to receive fluoridated water for one extra person to be caries-free (interquartile range of study NNTs 4, 9). The best available evidence on stopping water fluoridation indicates that when fluoridation is discontinued caries prevalence appears to increase in the area that had been fluoridated compared with the control area. Interpreting from this data the degree to which water fluoridation works to reduce caries is more difficult. The studies included for Objective 1 were of moderate quality (level B), and limited quantity.

12.2 Objective 2: If fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

An effect of water fluoridation was still evident in studies completed after 1974 in spite of the assumed exposure to fluoride from other sources by the populations studied. The meta-regression conducted for Objective 1 confirmed this finding. The studies included for Objective 2 were also of moderate quality (level B), but of limited quantity.

12.3 Objective 3: Does fluoridation result in a reduction of caries across social groups and between geographical locations?

The available evidence on social class effects of water fluoridation in reducing caries appears to suggest a benefit in reducing the differences in severity of tooth decay (as measured by dmft/DMFT) between classes among five and 12 year-old children. No effect on the overall measure of proportion of caries-free children was detected. However, the quality of the evidence is low (level C), and based on a small number of studies. The association between water fluoridation, caries and social class needs further clarification.

12.4 Objective 4: Does fluoridation have negative effects?

The possible negative effects of water fluoridation were examined as broadly as possible. The effects on dental fluorosis are the clearest. There is a dose-response relationship between water fluoride level and the prevalence of fluorosis. Fluorosis appears to occur frequently (predicted 48%, 95% CI 40 to 57) at fluoride levels typically used in artificial fluoridation schemes (1 ppm). The proportion of fluorosis that is aesthetically concerning is lower (predicted 12.5%, 95% CI 7.0 to 21.5). Although 88 studies of fluorosis were included, they were of low quality (level C). The best available evidence on the association of water fluoridation and bone fractures (27 of 29 studies evidence level C) show no association. Similarly, the best available evidence on the association of water fluoridation and cancers (21 of 26 studies evidence level C) show no association. The miscellaneous other adverse effects studied did not provide enough good quality evidence on any particular outcome to reach conclusions. The outcomes related to infant mortality, congenital defects and IQ indicate a need for further high quality research, using appropriate analytical methods to control for confounding factors. While fluorosis can occur within a few years of exposure during tooth development, other potential adverse effects may require long-term exposure to occur. It is possible that this long-term exposure has not been captured by these studies.
12.5 Objective 5: Are there differential effects of natural and artificial fluoridation?

The evidence on natural versus artificial fluoride sources was extremely limited, and direct comparisons were not possible for most outcomes. While no major differences were apparent in this review, the evidence is not adequate to reach a conclusion regarding this objective.

12.6 Limitations of this systematic review

In conducting a large systematic review that extends back to the late 1930’s, limitations are inevitable. The primary limitation of the review is the quality of the research included.

The first limitations revolve around the search strategies. More non-English language databases (particularly Russian and Chinese) could have been searched. The impact of failing to search such databases is unknown and the logistic and financial impact of trying to do so would be significant. Some reports were difficult to obtain. However, out of over 730 articles, only 14 were not retrieved. Attempts were made to contact authors to assist in locating further reports, but due to the age of the research were not successful. Additional difficulties were encountered in obtaining some theses and dissertations. Given the comprehensive nature of the search, the completeness of retrieval, and the openness of the review process to the public, the review team feels that it is unlikely that a key study of sufficient size and quality to change any of the findings was missed.

Even comprehensive searches such as that used here may result in a biased collection of studies. Since studies showing a statistically significant result are more likely to be published, the set of published studies located may represent a biased sample and over-estimate an effect (positive or negative).

The validity assessment of the included studies (Appendix D) used a checklist scoring system. This approach can be criticised for lack of sensitivity, in that studies are assessed for having done the items on the list, but not necessarily how well they were conducted. For example, a study could receive points for controlling for confounding factors, but the analysis may not have been performed correctly.

The lack of variance data in some studies, particularly for Objectives 1 and 2, limited the amount of data that could be included in the analyses. Insufficient data prevented statistical pooling of data on social class effects, cancer, other adverse effects, and natural versus artificial fluoride effects. Generally, low to moderate study qualities limit the strength of the possible inferences that can be made.

Some of the studies included in the meta-regression analyses contribute more than one observation to the meta-analysis. It has been assumed in the meta-regression analyses that these observations are independent, and hence each estimate has been treated as though it came from a separate study. For example for studies that report results stratified by age but present no summary measure, results for all strata are included separately in the analysis. However, this approach may introduce bias in the results. Any confounding factors not controlled for, or bias in the study design is likely to be similar for all estimates coming from the same study. Including these estimates as separate estimates in the regression analyses could have the effect of compounding these sources of bias. Study level variables, such as study length and validity score, will also be the same for all the estimates that come from a single study. The direction or degree of any effect of this potential bias is unknown.

12.7 Other factors to be considered

The scope of this review is not broad enough to answer independently the question ‘should fluoridation be undertaken on a broad scale in the UK’? Important considerations outside the bounds of this review include the cost-effectiveness of a fluoridation program, total fluoride exposure from environmental and non-environmental sources other than water, environmental and ecological effects of artificial fluoridation and the ethical and legal debates. This review did not include animal or laboratory studies because studies on humans were available and would give more reliable estimates of any potential benefits and harms.
12.7.1 Economic analysis

If a benefit of water fluoridation on caries occurrence was demonstrated, the cost-effectiveness of such an intervention relative to other strategies would need to be carefully considered. The search strategies used in this review did not specifically identify research related to the cost-effectiveness of water fluoridation. A search of the NHS Economic Evaluation Database did not identify any recent studies meeting the criteria for a full economic evaluation.

This review is presenting new information on the effectiveness of water fluoridation in preventing caries and the effects on fluorosis, which previous economic analyses would not have had.

12.7.2 Total fluoride exposure

There is some suggestion that total fluoride exposure has increased over recent years, particularly in industrialised nations. Exposure to fluoride from sources other than water may alter the amount required in water for optimum caries reduction and is thus a potential confounding factor in studies of the association between water fluoridation and negative effects. Because sources of fluoride exposure vary, this may be a difficult issue to examine, in that exposure would need to be measured at the person level, rather than at the population level. However, if two study areas are comparable, in all respects, the fluoride exposure from non-water sources (e.g. tea) should also be similar. There are studies that have measured total fluoride exposure in people exposed to fluoridated and non-fluoridated water, but these did not meet inclusion criteria for this review (Guha-Chowdhury, 1996, Mansfield, 1999). Because of potential toxicity of very high doses of fluoride, it would seem sensible that any future studies should attempt to measure total fluoride exposure in areas being researched.

12.8 Information to guide practice

The available evidence shows that water fluoridation reduces the prevalence of caries. The median difference between fluoridated and non-fluoridated areas in the proportion of children who are caries-free is 14.6%, while the reduction in the number of teeth affected (dmft/DMFT score) is 2.3. The available evidence shows that fluorosis occurs in approximately 48% of the population at water fluoridation levels of 1.0ppm. The proportion who have teeth that are affected enough to cause aesthetic concern is approximately 12.5%. The quality of these data on benefit and harm is in general only low to moderate, and should be interpreted with caution, especially considering the significant heterogeneity between studies. The benefit and harm data need to be considered in conjunction when making decisions about water fluoridation.

12.9 Implications for research

Although there has been considerable research in this area, the quality is generally low. The research needs that have been identified through this systematic review are described below.

12.9.1 Caries studies

The two most important factors missing from the current set of studies are adjusting for confounding factors using standard analytic techniques, and reporting variance data. In addition to the potential confounding factors noted in section 4.2.2, frequency of sugar consumption, measurement of total exposure to all sources of fluoride, the number of erupted teeth per child, and the level of spending on dental health in intervention and control areas should be included. Blinding of observers should be attempted and at least standardisation of the assessment would be essential to reduce the potential impact of observer bias. Studies should also consider changes in social class structure over time. Only one included study addressed the positive effects of fluoridation in the adult population. Assessment of the long-term benefits of water fluoridation is needed.

It would be logical to include an assessment of adverse effects alongside any future study of caries. While fluorosis may be evident in young populations within a few years of starting fluoridation, other potential adverse effects may take longer to occur, or may occur largely in an adult population.

Most of the evidence on social class effects of fluoridation was from cross-sectional studies of low quality. If further studies are considered, social class effects could be incorporated into a study of fluoridation efficacy. More research into the most appropriate tool to measure social class in relation to dental health is also needed.
12.9.2 Adverse effects studies

The results of this review suggest that a dose-response relationship exists between water fluoride level and the prevalence of fluorosis. Future studies should address the impact of using lower levels of water fluoride content, such as 0.8ppm in a formal way in conjunction with an efficacy study. The potential confounding factors and causes of between study heterogeneity identified in this review should be controlled for in the analysis.

With bone fracture and cancer studies, the evidence is very balanced around the ‘no effect’ mark. If any further research is considered, controlling for confounding factors and ensuring adequate blinding should be a priority.

The other possible adverse effect studies suffered greatly by not sufficiently controlling for important confounding factors, many of which were discussed by authors in the study reports, but not controlled for. Very few of the possible adverse effects studied appeared to show a possible effect. High quality research that takes confounding factors into account is needed.

12.9.3 Economic evaluations

When evaluating the cost-effectiveness of an intervention such as water fluoridation, there are key factors to be considered. The costs of the intervention are weighed against the benefits. A full economic evaluation of water fluoridation should include a complete accounting of the potential costs of the intervention (cost of fluoridating, administration costs, and quality assurance costs) and the benefits. Examples of the benefits that should be included are the reduction in caries that is assumed, any changes in the number of dental visits, procedures, and long-term effects such as changes in the need for dentures. The quality of life (QOL) of those who receive the intervention should be measured, in comparison to those not receiving the intervention (such as the effect of not losing teeth to caries, the effect of having fluorosed teeth, anxiety associated with dental visits, and dental pain). Indirect costs of travel time and time off work for parents to take children to the dentists could also be included. Such an economic evaluation could be done alongside an intervention study measuring actual resource use and costs, or as a modelling exercise using the most accurate efficacy data (e.g. from this systematic review). Differences in dental resource use among social classes should also be investigated.
13. BIBLIOGRAPHY

The conduct of the fluoridation studies in the UK and the results achieved after five years. Report to the Ministry of Health 1965.

Azcurra AI, Battellino LJ, Calamari SE, de Cattoni ST, Kremer M, Lamberghini FC. [Dental health status of students living in places supplied with drinking water of very high and very low levels of fluorides]. Rev Saude Publica 1995;29(5):364-75.

Bransby E, Forrest J. The dental condition of children in seven areas in England and Wales as shown by the base-line dental examinations made in connection with the fluoridation demonstration studies. Mon Bull Min Health, Great Britain 1958;17:26-34.

de Crousaz P. Observations on enamel opacities in Switzerland in relation to water or salt fluoridation. SSO Schweiz Monatsschr Zahnheilkd 1982;92(4):332-44.

Dean HT. Studies on mass control of dental caries through fluoridation of the public water supply. Public Health Reports 1950;65:1403-1408.

Ellwood RP, O'Mullane DM. Dental enamel opacities in three groups with varying levels of fluoride in their drinking water. Caries Res 1995;29(2):137-42.

Forbes WF. Geochemical risk factors for mental functioning, based on the Ontario Longitudinal Study of Aging (LSA) .6. The effects of iron on the associations of aluminum and fluoride water concentrations and of pH with mental functioning, based on results obtained from the LSA and from death certificates mentioning dementia. *Canadian Journal On Aging-Revue Canadienne Du Vieillissement* 1997;16(1):142-159.

Forrest J. Caries incidence and enamel defects in areas with different levels of fluoride in drinking water. *Br Dent J* 1956;100:195-200.

Gaspar MC, Armbruster LM, Pereira AnC, Moreira BHW. Opacidades de origem n,o-fluorotica e fluorose dent ria em reas com baixa (0, 2ppm F) e otima (0, 7 ppm F) concentra”es de fluor na gua de abastecimento Non-fluorosis and dental fluorosis opacities in aeres with lower (0, 2 ppm F0 and good (0, 7 ppm F) fluoride concentration in drinking water. *Rev Bras Odontol* 1995;52(2):13-8.

Hill I, Blayney, Wolf N. Evanston dental caries study; caries experience rates of 6, 7 and 8 year old children with progressively increasing periods of exposure to artificially fluoridated water. *J Dent Research* 1952;31:346-353.

Hobbs D. Annual report of the Director of Dental Public Health to Powys Health Authority. Powys; 1994.

Klein H. Dental caries (DMF) experience in relocated children exposed to water containing fluorine II. *J Am Dent Assoc* 1946;33:1136-1141.

Kunzel W, Fischer T. Rise and fall of caries prevalence in German towns with different F concentrations in drinking water. *Caries Res* 1997;31(3):166-73.

Mazzotti L, Gonzalez Rivera M. Dental fluorosis in Mexico. Rev Inst salub y enferm trop 1939;1:105-121.

McClure. FLuoride domestic waters and systemic effects 1. Relation to bone fracture experience height and weight of high school boys and young selectees of the armed forces of the united states. Public Health Reports 1944;59:1543-1558.

NHS Centre for Reviews and Dissemination. Undertaking systematic reviews of research on effectiveness. 1996 CRD Report Number 4

Rugg-Gunn A, Carmicheal C, Ferrell R. Relation between fluoridation social class and caries in 5-year-old children. 67th General Session Of The International Association For Dental Research (IADR), 6th meeting of the IADR Irish division, 72nd annual meeting of the Scandinavian association for dental research and the 26th annual meeting of the continental European division of the IADR, Dublin, Ireland, June 28-july 1, 1989. 1989;68(spec. issue june):941.

Rwenyonyi CM, Bjorvatn K, Birkeland JM, Haugejordan O. Altitude as a risk indicator of dental fluorosis in children residing in areas with 0.5 and 2.5 mg fluoride per litre in drinking water. *Caries Res* 1999;33(4):267-274.

Schatz A. Increased Death Rates in Chile with Artificial Fluoridation of Drinking Water, with Implications for other Countries. *Journal of Arts Humanities and Science* 1976:1-17.

Selwitz RH, Nowjack Raymer RE, Kingman A, Driscoll WS. Dental caries and dental fluorosis among schoolchildren who were lifelong residents of communities having either low or optimal levels of fluoride in drinking water. *J Pub Health Dent* 1998;58(1):28-35.

Vignarajah S. Dental caries experience and enamel opacities in children residing in urban and rural areas of Antigua with different levels of natural fluoride in drinking water. *Comm Dent Health* 1993;10(2):159-66.

Glossary

Specialised terms and abbreviations are used throughout this report. The meaning is usually clear from the context but a glossary is provided for the non-specialist reader. In some cases usage differs from that found in the literature, but the term has a constant meaning throughout the report. Some glossary entries adapted from the Glossary in The Cochrane Library, Issue 4, 1998. Oxford: Update Software. Updated quarterly.

Abstracts
A very brief summary or digest of the study and its results. The abstract describes the study purpose, methods, results and conclusions. Abstracts are often included in database records located by searching bibliographic databases.

Adverse effect
Any undesirable or unwanted consequence of a preventive, diagnostic or therapeutic procedure (Last, 1988)

AGRICOLA (AGRICultural OnLine Access)
An extensive bibliographic database which provides selective worldwide coverage of primary information sources in agriculture and related fields. AGRICOLA consists of records for literature citations of journal articles, monographs, theses, patents, translations, microforms, audiovisuals, software, and technical reports. Coverage: 1970 to date. AGRICOLA is produced by the National Agricultural Library (NAL) of the U.S. Department of Agriculture (USDA).

Al-Alousi’s Index
One of the indices used to measure dental fluorosis, please refer to Appendix I.

AMED (Allied and Complementary Medicine Database)
AMED is a bibliographic database produced which covers a selection of journals in complementary medicine, palliative care, and several professions allied to medicine. Coverage: 1985 to date. Produced by the Health Care Information Service of the British Library, UK.

Anterior teeth
Refers to the front teeth, either incisor or canine.

Apatite
An inorganic mineral substance, a calcium phosphate found in teeth and bone (Harty, 1994).

Approximal surface
Term describing the adjoining surfaces of the teeth.

Artificially fluoridated water
Water supplies to which soluble fluoride has been added to adjust the level to a defined ‘optimum’ level.

Baseline examination
The initial measurement done at the beginning of the study to establish the starting point.

Before-and-after studies
Such studies compare the prevalence of a disease at two points in time in one or more study areas. The aim of these studies is to provide an estimate of how much an outcome has changed over a period of time. Often the baseline survey is conducted before a change in a risk factor for the outcome, and then the final survey is conducted after the change in the risk factor is expected to have had an effect on the occurrence of the outcome. The baseline and final surveys are usually conducted in different subjects; for example the baseline survey may examine all 8 year olds in the study areas and then the final survey several years later will also look at 8 year olds. Such studies have an advantage over cross sectional studies in that the baseline values for the prevalence of the outcome...
are known. If the only factor to have changed between the baseline and final surveys is the risk factor under investigation then it is likely that this risk factor is responsible for the observed change in the outcome.

Bias
Bias is a deviation of a measurement from the 'true' value. Bias can originate from many different sources, such as allocation of patients, diagnosis, analysis, interpretation, publication and review of data. In the worst circumstances it may lead to the wrong conclusions being drawn.

BIOSIS Previews
BIOSIS Previews is the major English-language service providing comprehensive worldwide coverage of research in the biological and biomedical sciences. The database contains citations from Biological Abstracts, Biological Abstracts/Reports, Reviews, and Meetings (formerly BioResearch Index). BIOSIS includes journal citations, meeting abstracts, reviews, books, book chapters, notes, letters, U.S. patents, selected institutional and government reports, and research communications. Coverage: 1969 to date. Produced by BIOSIS, Philadelphia, PA, USA.

Biting surface
That surface of the teeth on which food is chewed also the occlusal surface.

Blinding (Synonym: masking)
Keeping confidential group assignment (e.g. to intervention or control) from the study participants or investigators. Blinding is used to protect against the possibility that knowledge of assignment may affect participant response to intervention, provider behaviours (performance bias) or outcome assessment (detection bias).

Buccal surface
Term denoting the tooth surface adjacent to the cheeks.

CAB Health
CAB Health is a bibliographic database of information relating to human health and communicable diseases, including non-English-language journals, developing country information, books, research reports, patents and standards, dissertations, conference proceedings, annual reports, and other difficult to obtain material. CAB Health combines the resources of two international databases - the human health and diseases-related information extracted from CAB Abstracts and the complete file from the Public Health and Tropical Medicine Database (previously produced by the Bureau of Hygiene and Tropical Diseases). Coverage: 1973 to date. substantially deeper subject coverage. Produced by CAB INTERNATIONAL, Oxfordshire, UK.

Calibration exercises
Exercises used to standardise the diagnostic criteria and to assess any variation between examiners.

Canine tooth
A single pointed tooth intended for tearing and cutting food. Canines are situated towards the front of the dental arch, and appear in both the deciduous and permanent dentition.

Carcinogenicity studies
Studies which investigate the possible relationship between potential causal factors and cancers.

Caries
Disease resulting in the demineralisation, cavitation and breakdown of calcified dental tissue by microbial activity.

% Caries-free children
The percentage of children in a group who show no evidence of dental caries.

Cases
Person in the population or study group identified as having the particular disease under investigation.
Case control study
A population with the outcome of interest (cases) is selected and compared with another group in which the outcome is absent (controls), differences in exposures between the groups are assumed to be responsible for the occurrence of the disease. One of the advantages of this design is that multiple exposures can be examined for one particular outcome. This type of study design has many methodological weaknesses and is particularly susceptible to bias. The most important methodological issues relate to the way in which the cases and controls are selected and the comparability of the exposure data obtained; controls should be a representative sample of the population from which the cases were drawn. As data is collected retrospectively it is difficult to demonstrate whether or not an observed correlation is causal.

Categorical variable
Refers to a particular type of variable, which may be nominal (unordered) e.g. male / female, or ordinal (ordered) e.g. grade of fluorosis (Swinscow, 1996).

Causal agents
Those factors which are supposed to cause a disease or condition.

Causal relationship
Observed changes (the 'effect') in one variable are owing to earlier changes in another (Bowling, 1997).

Cavitation
Process in which the hard tissues of a tooth crown are undermined by caries, causing them to cave in and form a cavity (Harty, 1994).

Chemical Abstracts
This database includes citations to worldwide literature of chemistry and its applications. The Chemical Abstracts database corresponds to the bibliographic information and complete indexing found in the print Chemical Abstracts. Coverage: 1967 to date. Produced by Chemical Abstracts Service, Columbus, OH, USA.

Cohort study (Synonyms: follow-up study)
Individuals are recruited into the study and are allocated to one of two or more study groups depending on whether they have or have not been exposed to the agent under investigation. The selected study groups are followed-up for a period of time that may extend to many years in order to measure the frequency of occurrence of the outcome of interest in those exposed compared to those not exposed. The group that is not subjected to the exposure of interest must be drawn from a population that is similar to the exposed group in all respects other than the exposure under investigation. Cohort studies have the advantage that the exposure and confounding factors are measured before the outcome of interest has developed and so are unbiased in terms of disease development, time-order relationships are known as subjects are classified by risk factors before the outcome becomes manifest, and multiple outcomes can be examined for one exposure. Potential weaknesses of this type of design include loss to follow-up, changes in subject characteristics, and surveillance bias where one population is observed in more detail than the other is.

Community Fluorosis Index (CFI)
The CFI enables a community based score to be calculated for fluorosed teeth, (see Appendix I).

Conference Papers Index
This database covers the life sciences, chemistry, physical sciences, geosciences, and engineering. Conference Papers Index consists of reports of current research and development from papers presented at conferences and meetings; providing titles of the papers and contact details of authors. The database also includes announcements of publications issued from the meetings, in addition to available preprints, reprints, abstract booklets, and proceedings volumes, including dates of availability, costs and ordering information. Coverage: 1973 to date. Produced by Cambridge Scientific Abstracts, Bethesda, MD, USA.
Confidence interval (CI)
The range within which the ‘true’ value (e.g. size of effect of an intervention) is expected to lie with a given degree of certainty (e.g. 95%). This is the interval that includes the true value in 95% of cases. Note: Confidence intervals represent the probability of random errors, but not systematic errors (bias).

Confounding factors
Another factor or effect that confuses the picture. A confounder distorts the ability to attribute the cause of something to the treatment, because something else could be influencing the result.

Controlled trial
Refers to a study that compares one or more intervention groups to one or more comparison (control) groups.

Controls
The people in the 'control' group or 'arm' in a controlled trial or a case-control study (also called the comparison group). In a trial, people who are the 'controls' represent the status quo, against which the effectiveness of a treatment is tested. These could receive no treatment, a placebo treatment, or the standard or conventional treatment. The people in the other arm of a trial are the 'experimental' group. In a case-control study, the controls are the people who don't have the condition being studied: the 'cases' are the people who have the condition.

Correlation
The degree to which variables change together (Last, 1988).

Cost-effectiveness
The cost-effectiveness of a particular form of health care depends upon the ratio of the costs of health care to its health outcomes.

Cross-sectional studies
These are used to investigate the prevalence of a defined condition. Data is collected in a planned way from a defined population. The aim of such studies is to describe individuals in the population at a particular point in time in terms of their personal attributes and their history of exposure to suspected causal agents. These data are then investigated in relation to the presence or absence of the disease under investigation or its severity with a view to developing or testing hypotheses. These studies are relatively simple to conduct, take only a short time and are relatively cheap. However, these studies are often difficult to interpret, as it is not possible to assess whether the outcome followed the exposure or the exposure resulted from the outcome.

Current Contents Search (Social Science Citation Index and Science Citation Index)
This database reproduces the tables of contents from current issues of leading journals in the sciences and social sciences. Current Contents search also includes complete bibliographic records for articles, reviews, letters, notes, and editorials. Coverage: 1990 to date. Produced by Institute for Scientific Information, Philadelphia, PA, USA.

Crystal lattice
A homogeneous and angular solid, having a definite form characterized by geometric plane surfaces and a symmetrical internal structure, whereby atoms, ions or molecules are arranged in a definite pattern known as the space lattice (Jablonski, 1982).

Dean's Index
One of the principal indices used to measure dental fluorosis (see Appendix I).

Deciduous dentition (Synonym: Primary dentition)
Primary dentition which starts to erupt about the age of 6 months and is complete at about 2½ years, when complete it consists of 20 teeth. Deciduous teeth are gradually replaced by the permanent dentition (Harty, 1994).

deft index
A method of measuring caries experience in the deciduous dentition
Demarcated defect
An area of well-circumscribed enamel of altered colour or appearance.

Deminerlisation
Reduction of the mineral content of a tissue.

Dental caries (Synonym: Tooth decay)
Disease resulting in the demineralisation, cavitation and breakdown of calcified dental tissue by microbial activity.

Dental decay (Synonym: Dental caries)
Disease resulting in the demineralisation, cavitation and breakdown of calcified dental tissue by microbial activity.

Dental fluorosis
Enamel hypoplasia (defective development of tissue) caused by the ingestion of water containing excess fluoride during the time of enamel formation.

Dentine
Sensitive calcified tissue forming the bulk of a tooth and surrounding the pulp (Harty, 1994).

Developmental Defects of Enamel Index (DDE Index)
One of the principal indices used to measure defects of enamel development (see Appendix I).

Diffuse defect
An indefinitely defined area of enamel altered in colour or appearance.

dmfs index
A method of measuring carious tooth surfaces in the deciduous dentition

DMFS index
A method of measuring carious tooth surfaces in the permanent dentition

dmft index
A method of measuring caries experience in the deciduous dentition.

DMFT index
A method of measuring caries experience in the permanent dentition.

Dose-response relationship
A change in dose is associated with a correlated change in effect. An example is when an increase in dose of a pain-relieving drug leads to an increased effect (reduction of pain). In the context of observational studies, a change in the ‘dose’ of exposure is associated with a change (increase or a decrease) in risk of a specified outcome (Last, 1988).

Ecological studies
Such studies provide a relatively simple and inexpensive method of looking at disease occurrence, especially with regard to an environmental exposure determined by geography. The average exposure of the population is plotted against the rate of the outcome for that population to investigate any possible association between the two. These studies are considered to provide weak evidence because of concern about compatibility of information from different areas, data is often unavailable on many risk factors and because of uncertainties in extrapolating results of analyses at population level to the individual.

Effectiveness
Extent to which an intervention does people more good than harm. An effective treatment or intervention is effective in real life circumstances, not just an ideal situation. It answers the question does it work?
Efficacy
The extent to which an intervention improves the outcome for people under ideal circumstances. Testing efficacy means finding out whether something is capable of causing an effect at all. It answers the question can it work?

EI Compendex
This database is the electronic version of the print Engineering Index. EI Compendex covers worldwide civil, energy, environmental, geological, and biological engineering; electrical, electronics, and control engineering; chemical, mining, metals, and fuel engineering; mechanical, automotive, nuclear, and aerospace engineering; and computers, robotics, and industrial robots literature. The database includes abstracted citations from journals, selected government reports, books and published proceedings of engineering and technical conferences. Coverage: 1970 to date. Produced by Engineering Information, Inc., Hoboken, NJ, USA.

EMBASE
This is a major bibliographic database which covers worldwide biomedical journals, with emphasis in the areas of drugs and toxicology. Inclusion of European material is particularly strong. Coverage: 1974 to date. Produced by Elsevier Science B.V., Amsterdam, The Netherlands.

EMTREE
EMTREE is a highly developed classification system and controlled vocabulary, used to index articles on EMBASE.

Enamel
The hard outer covering of the anatomical crown of a tooth (Harty, 1994).

Envirole
This database corresponds to the print Environment Abstracts. Envirole provides indexing and abstracting coverage of worldwide environmental related information, including such fields as management, technology, planning, law, political science, economics, geology, biology, and chemistry as they relate to environmental issues. Coverage: 1975 to date. Produced by Congressional Information Service, Inc., Bethesda, MD, USA.

Epidemiologic studies
Studies of the distribution and determinants of health-related states or events in specified populations, and the application of this study to control of health problems (Last, 1988).

Exposed group
A group whose members have been subject to possess, or possess a characteristic that is a determinant of the health outcome of interest.

Exposure
The amount of a factor to which a group or individual was exposed; sometimes contrasted with dose, the amount that enters or interacts with the organism (Last, 1988).

Fermentable carbohydrates
Sugars or starch which can be broken down by micro-organisms.

Final survey
The end survey or data collection on subjects in a particular study.

Fissure
A small grove or trough in the enamel of the tooth

Fluorapatite
The compound formed when fluoride is incorporated into hydroxyapatite.

Fluoride
Naturally occurring inorganic ion of fluorine, a non-metallic gaseous element (Harty, 1994).
Fluoridation
In this review, indicates water fluoridation.

Fluorosed
Teeth or other hard tissue affected by fluorosis.

FSTA (Food Science and Technology Abstracts)
This database corresponds to the printed publication Food Science and Technology Abstracts. FSTA provides comprehensive coverage of research and new development literature in the areas related to food science and technology, and includes evaluated abstracts, patents, reviews, poster presentations, abstracts of theses, technical sessions, reports, symposia, books, conference proceedings, legislation, standards, lectures, yearbooks, and special workshops. Coverage: 1969 to date. Produced by IFIS Publishing, Reading, UK.

Forest plot
A graphical representation of a number of studies showing the mean result with associated confidence intervals.

Free smooth surfaces
Tooth surfaces adjacent to the tongue, palate, cheek, or lips.

Funnel plots
A graphical display of sample size plotted against measure of effect for the studies included in a systematic review, which can be used to investigate publication bias.

Generalisability (Synonyms: applicability, external validity, relevance, transferability)
Generalisability is the degree to which the results of a study or systematic review can be extrapolated to other circumstances, in particular to routine health care situations.

Grey Literature
Grey literature refers to research findings and results which may have been published in reports, booklets, conference proceedings, technical reports, unpublished theses, discussion papers or other formats which are not indexed on the main databases.

Handsearching
Handsearching involves systematically looking through journals by hand, to identify any appropriate articles which may have been overlooked, or which might have been missed by an electronic literature search due to inaccurate or incomplete indexing of the record. Handsearching is also a vital way of identifying very recent publications which have yet to be cited or entered and indexed on the electronic databases.

HealthStar (Health Services Technology, Administration, and Research)
This bibliographic database contains citations to journal articles, monographs, technical reports, meeting abstracts and papers, book chapters, government documents, and newspaper articles. HealthStar incorporates all records from the former Health Planning and Administration database, the HSTAR database, and the printed index Hospital and Health Administration Index. Coverage: 1975 to date. Produced co-operatively by the U.S. National Library of Medicine and the American Hospital Association, USA.

Heterogeneity
In systematic reviews, heterogeneity refers to variability or differences between studies in the estimates of effects. A distinction is sometimes made between "statistical heterogeneity" (differences in the reported effects), "methodological heterogeneity" (differences in study design) and "clinical heterogeneity" (differences between studies in key characteristics of the participants, interventions or outcome measures). Statistical tests of heterogeneity are used to assess whether the observed variability in study results (measures of effect) is greater than that expected to occur by chance.

Histological changes
Changes seen in tissues at a microscopic level.
Homogeneity
Homogeneity refers to 'similarity'. Studies are said to be homogeneous if their results vary no more than might be expected due to chance. The opposite of homogeneity is heterogeneity.

HSRProj (Health Services Research Projects in Progress)
HSRProj is a database of descriptions of ongoing research projects, in the field of health services research including health technology assessment and the development and use of clinical practice guidelines. HSRProj includes monographs, journal articles, publications from symposia and congresses. Coverage: not known. Produced by the National Information Center on Health Services Research and Health Care Technology (NICHSR), Bethesda, MD, USA. Accessible free via the internet: http://igm.nlm.nih.gov/

Hydroxyapatite crystal
Mineral compound of the general form hydroxyapatite: $\text{Ca}_{10}(\text{PO}_4)_{6}(\text{OH})_2$, which is the principal inorganic component of bone, teeth and dental calculus (Zipkin, 1970).

Hypersensitivity
An excess response to a stimulus. Often used to denote an allergic response.

Hypoplasia
A defect of enamel structure arising from disturbance of matrix formation.

Hypomutation
A defect of enamel structure resulting from disturbance of mineralisation during tooth formation.

Hypothesis (Plural: hypotheses)
A theory or suggestion to be tested.

ICD-9
International Classification of Diseases 9th Edition. The classification of specific conditions and groups of conditions determined by an internationally representative group of experts who advise the World Health Organization (publishers of the ICD) which is revised periodically.

Incisor
Single-rooted tooth with a cutting or shearing edge. Incisor teeth occur in both the primary and secondary dentition, and are situated at the front of the dental arch.

Inclusion criteria
The criteria used by authors of a review to decide whether to include studies.

Increment
A change in value of a variable. In this review, denotes the amount of new disease occurring between two defined points in time.

Index Medicus
A printed index of journal articles, reports, books and theses, relating to biomedicine. This cumulative publication was published as Index Medicus (19879-1915), Quarterly Cumulative Index to Current Medical Literature (1916-1926), Quarterly Cumulative Index Medicus (1927-1959), and Cumulated Index Medicus (1960-present). From 1966, the contents of Index Medicus can be searched electronically via the MEDLINE database. Records from 1960-1965 can be searched electronically via the OLDMEDLINE database. Each record in Index Medicus is indexed using NLM’s controlled vocabulary, MeSH (Medical Subject Heading). Coverage: 1879 to date. Produced by the National Library of Medicine (NLM), Bethesda, MD, USA.

Intervention
Anything meant to change the course of events for someone: surgery, a drug, a test, a treatment, change in environment, counselling, giving someone a pamphlet - all of these are interventions.
JICST-EPlus (Japanese Science and Technology)
This is a comprehensive bibliographic database covering literature published in Japan from all fields of science, technology, and medicine. JICST-E contains bibliographic data, abstracts (when available), and indexing from 1985 to the present. Coverage: 1985 to date. Produced by Japan Science and Technology Corporation (JST), Tokyo, Japan.

Labial surface
Term denoting the tooth surface adjacent to the lip.

LILACS (Latin American and Caribbean Literature on the Health Sciences)
This is a bibliographic database, which contains literature related to the health sciences published in Latin America and the Caribbean. Publication types indexed by LILACS include journal articles, theses, chapters of theses, books, chapters of books, congress and conference annals, technical and scientific reports and governmental publications. Coverage: 1982 to date. Produced by BIREME (Biblioteca Regional de Medicina), Sao Paulo, Brazil. Accessible free via the internet: http://www.bireme.br/iah2/homepagei.htm

Lingual surface
Term describing the tooth surface adjacent to the tongue.

Logistic regression (See also regression)
Logistic regression is used to investigate the relationship between an event rate or proportion and a set of independent variables. In systematic reviews it can be used to explore the relationship between key characteristics of included studies and the results (observed effects) for each study.

Longitudinal designs
A method of epidemiologic study in which subsets of a population are followed up over time, retrospectively or prospectively, to observe changes occurring over time.

Median
Is the value on the scale that divides the distribution into two equal parts. Half of the observations have a value less than or equal to the median, and half have a value greater than or equal to the median.

MEDLINE
This database corresponds to three print indexes: Index Medicus, Index to Dental Literature, and International Nursing Index. Additional materials not published in Index Medicus are included on MEDLINE in the areas of communication disorders, and population and reproductive biology. Medline is the NLM’s premier bibliographic database covering the fields of medicine, nursing, dentistry, veterinary medicine, and the preclinical sciences. Each record is indexed using NLM’s controlled vocabulary, MeSH (Medical Subject Heading). Coverage: 1966 to date. Produced by the National Library of Medicine (NLM), Bethesda, MD, USA.

MeSH (Medical Subject Heading)
MeSH is a highly developed classification system and controlled vocabulary produced by the National Library of Medicine (NLM), used to index articles on Medline. Records are also indexed using MeSH on other NLM databases, such as AIDSLINE, AIDSTRIALS, AVLINE, BIOETHICSLINE, CATLINE, DIRLINE, HealthStar and POPLINE.

Meta-analysis
A statistical technique which summarises the results of several studies into a single estimate of their combined result.

Meta-regression
Meta-regression is a form of meta-analysis which investigates the importance and nature of relationships between study results and study characteristics, and can be used to explore reasons for heterogeneity.
Methodological Filter Search Strategy
An electronic search strategy which has been designed to identify records of studies with specific methodologies, e.g. systematic reviews or meta-analyses.

Methodological quality
The extent to which the design and methodology of a trial are likely to have prevented systematic errors (bias). Variation in quality can explain variation in results of trials included in systematic reviews. More rigorously designed (better 'quality') trials are more likely to yield results that are closer to the 'truth'.

Methodological weakness
Inherent flaws in a particular study design.

Methodology
The methods and principles used in a study. For example authors of a systematic review will explain its methodology in terms of their search strategy, criteria for including trials, statistical methods used, etc.

Micro-organisms
Very small unicellular organism such as bacteria, fungi, viruses or spores.

Mixed dentition
Dentition consisting of deciduous and permanent teeth during the period when the deciduous teeth are being shed.

Modified Developmental Defects of Enamel
Modification of DDE index (see Appendix I).

Mottled teeth (synonym Dental Fluorosis)
Enamel hypoplasia (defective development of tissue) caused by the ingestion of water containing excess fluoride during the time of enamel formation.

Mottled enamel (synonym Dental Fluorosis)
Enamel hypoplasia (defective development of tissue) caused by the ingestion of water containing excess fluoride during the time of enamel formation.

Multiple regression
Multiple regression is used to investigate the joint influences of several variables, taking account of possible correlations among them.

Multivariate analysis
Measuring the impact of more than one variable at a time while analysing a set of data, e.g. looking at the impact of age, gender, and occupation on a particular outcome.

Naturally fluoridated water
Water supplies that have fluoride occurring naturally in the water source.

Negative effects
Undesired impacts upon an individual's or population's health resulting from exposure to a factor.

NNH
Number Needed to Harm. NNH is the number of patient who need to be treated to cause one bad outcome (e.g. side effect). In a trial where side effects are one of the outcomes, if NNH = 10, for every 10 people treated one extra person will suffer the side effect.

Non-milk extrinsic sugars
Sugars arising outside the cellular matrix of food, not of milk origin.
NTIS (National Technical Information Service)
The database consists of summaries of U.S. government-sponsored research, development, and engineering, plus analyses prepared by federal agencies, their contractors, or grantees. NTIS enables the sale of unclassified, publicly available, unlimited distribution reports from agencies such as NASA, DOD, DOE, HUD, DOT, Department of Commerce, and some 240 other agencies. Coverage: 1964 to date. Produced by National Technical Information Service (Office of Product Management), U.S. Department of Commerce, Springfield, VA, USA.

Occlusal surface
Term describing the surfaces of the teeth that make contact with those of the opposing jaw.

Odds ratio (OR)
The ratio of the odds of an event in the experimental (intervention) group to the odds of an event in the control group.

OLDMEDLINE

Outcome
Result of an intervention.

Outliers
Observations differing so widely from the rest of the data as to lead one to suspect that a gross error may have been committed, or suggesting that these values come from a different population.

P-value
The probability (ranging from zero to one) that the observed results in a study could have occurred by chance.

PAIS
This database covers the full range of the social sciences, with emphasis on contemporary public issues and the making and evaluating of public policy. The database is the online version of the print publications PAIS Bulletin (1976-1990), PAIS Foreign Language Index (1972-1990), and PAIS International in Print (1991-present). Coverage: 1972 to date. Produced by Public Affairs Information Service, Inc. (PAIS), New York, USA.

Parts per million (ppm)
A measurement of the concentration of a solid dissolved into a liquid. In the context of fluoridation of water, it is the concentration of fluoride in water supplies, and is equivalent to milligrams per litre (mg/L).

Pascal
This bibliographic database contains references to scientific and technical literature. PASCAL corresponds to the print publication Bibliographie internationale (previously Bulletin signaletique). Coverage: 1973 to date. Produced by INIST, the Scientific and Technical Information Institute of the Centre National de la Recherche Scientifique (CNRS), Vandoeuvre-les-Nancy CEDEX, France.

Permanent dentition (Synonym: Secondary dentition)
The 32 teeth present in an adult mouth.

Pit
A small depression in the enamel of a tooth

Plaque
A highly variable and tenacious film composed of 70% micro-organisms and 30%.
Pooled effect estimate
Grouping together of statistical estimates.

Population
This describes the people that are being investigated.

Posterior teeth
Teeth situated at the back of the mouth including molars and premolars.

Positive effects
Beneficial or desired impact on an individual's or a population's health resulting from exposure to an intervention or agent.

Prevalence
The number of cases of the disease (or other outcome of interest) in a defined population at a specified point in time, taken as a proportion of the total numbers of people in that population during that time.

Primary dentition (Synonym: Deciduous dentition)
Primary dentition which starts to erupt about the age of 6 months and is complete at about 2½ years, when complete it consists of 20 teeth. Deciduous teeth are gradually replaced by the permanent dentition.

Primary studies
A study of other studies is called a review, or secondary study. A primary study is one of the individual studies within that review.

Proportion caries-free
The proportion, or percentage, of individuals who have experienced no caries.

Prospective study design / retrospective study design
In a retrospective study, the outcomes are examined in hindsight, using existing records. In a prospective study, the study is designed ahead of time, and people are then recruited and studied according to the study's criteria.

Protocol
The methods and procedures to be followed in the conduct of a study.

Proximal surfaces
Adjacent surfaces of teeth in the same dental arch.

PsycLit
This database provides access to the international literature in psychology and related behavioral and social sciences, including psychiatry, sociology, anthropology, education, pharmacology, and linguistics. PsycLit contains all records from the printed Psychological Abstracts, plus material from Dissertation Abstracts International and other sources. Publication types indexed include journal articles, dissertations, reports, books and book chapters. Coverage: 1887 to date. Produced by American Psychological Association, Washington, DC, USA.

Q Statistic
Statistic used to measure heterogeneity.

Random Effects
A method of meta-analysis (and general statistical modelling) which estimates the effect of an intervention, assuming that variation in the meta-analysis is a combination of random sampling error within studies and variation between studies. Random effects models are more conservative than fixed effects models, giving estimates with wider confidence intervals.
Randomised Controlled Trial (RCT) (Synonym: randomised clinical trial)
These are designed to measure the efficacy and safety of particular types of health care interventions, by randomly assigning people to one of two or more treatment groups and, where possible, blinding them and the investigators to the treatment that they are receiving. The outcome of interest is then compared between the treatment groups. Such studies are designed to minimise the possibility of an association due to confounding and remove many sources of bias present in other study designs. However, such studies are not infallible and there are areas of methodological concern: selection bias (bias in the way subjects are assigned to experimental groups), issues relating to reproducibility of results, bias introduced by co-interventions and bias in assessing the outcomes.

Range
The difference between the largest and smallest values in a distribution.

Regression (Synonym: Regression analysis)
A statistical modelling technique. Regression analysis is used to estimate or predict the relative influence of more than one variable on something e.g., the effect of age, gender, and educational level on the prevalence of a disease. There are different types of these models, including 'linear' and 'logistic' regression.

Regression models
Examples include the Linear regression model. A statistical model in which the value of the parameter for a given value of a factor, \(x \), is assumed to be equal to \(a + bx \), where \(a \) and \(b \) are constants (Last, 1988).

Relative Risk (RR) (Synonym: risk ratio)
Risk of an adverse effect with exposure to a treatment relative to risks for those who do not receive the treatment. A ratio of 1.0 indicates no increased risk over receiving no treatment. A ratio greater than 1.0 indicates the risk is higher in the group that did receive the treatment. A ratio less than 1.0 indicates the risk of the adverse effect is higher in the group that did not receive treatment.

Relevance criteria
Pre-determined yardsticks by which the papers were assessed for inclusion in the primary stage of the review.

Remineralisation
Restoration of mineral salts to a tissue, such as calcium salts to enamel or bone.

Representative sample
The sample resembles the population, particularly on key variables (e.g. age, gender, ethnic origin)

Retrospective study design
A study looking back in time.

Risk
Risk is used to describe the chances of something happening. Researchers often use the work risk to state the proportion of people in a group in whom an event is observed.

Risk Difference
The absolute difference in the event rate between two comparison groups. A risk difference of zero indicates no difference between the comparison groups.

Risk factor
An aspect of a person’s condition, lifestyle or environment that increase the probability of occurrence of a disease. For example, cigarette smoking is a risk factor for lung cancer.

Sampling
The process of selecting participants for research.
Search strategy
A combination of queries or commands designed to retrieve relevant records on a specific topic from an electronic database.

Secondary dentition (Synonym: Permanent dentition)
The 32 teeth present in an adult mouth.

Selection bias
Selection bias occurs when individual subjects are assigned to experimental groups in a biased or non-randomised way.

SIGLE (System for Information on Grey Literature in Europe)
This is a bibliographic database covering European non-conventional (so-called grey) literature in the fields of pure and applied natural sciences and technology, economics, social sciences, and humanities. SIGLE also includes the FTN database for German grey literature, published in the printed abstract journal Forschungsberichte aus Naturwissenschaft und Technik/Reports in the Fields of Science and Technology.
Coverage: 1976 to date. Produced by EAGLE (European Association for Grey Literature Exploitation).

Skeletal fluorosis
Characterised by an increase in the X-ray density of trabecular bone in the lumbar spine, pelvis and elsewhere, and an increase in the thickness of long bone cortices due to endosteal and periosteal apposition. In more advanced cases, calcification of ligaments occurs, especially in the spine (Murray, 1991).

Standard Deviation (SD) / Standard Error (SE)
The standard deviation measures the amount of scatter in results. Approximately two-thirds of values will fall within one standard deviation of the mean and 95% will fall within two standard deviations of the mean.

Statistical significance
An estimate (usually expressed as a p-value or 95% confidence interval) of the probability of an association (effect) as large or larger than what is observed in a study occurring by chance. At the 95% certainty level, a p-value < 0.05 is statistically significant. When considering the 95% CI of a ratio (e.g. relative risk) the estimate of effect is statistically significant if the 95% CI does NOT include 1.0. When considering risk difference, the estimate of effect is statistically significant when the 95% CI does NOT include zero.

Surveillance bias
Surveillance bias is said to exist where one of the groups being studied is observed in greater detail than the other groups in the study.

Systematic review
A review of studies in which evidence has been systematically searched for, studied, assessed and summarised according to pre-determined criteria.

Systemic
Acting throughout the whole body (generally after being absorbed into the system).

Thylstrup and Fejerskov Index [TFI]
One of the principal indices used to measure dental fluorosis (see Appendix I).

Tooth pulp
Soft tissue lying within the dentine of a tooth, containing fibres, cells and structures such as blood vessels, sensory nerves and lymphatic system (Harty, 1994).

Tooth Surface Index of Fluorosis [TSIF]
One of the principal indices used to measure dental fluorosis (see Appendix I).
Topical
Pertaining to the surface. In the context of fluoride, topical refers to the application of a substance containing fluoride to the surface of the teeth.

TOXLINE
This bibliographic database covers the toxicological, pharmacological, biochemical, and physiological effects of drugs and other chemicals. Coverage: c. 1940 to date. Produced by National Library of Medicine, Bethesda, MD, USA. Accessible free of charge from: http://toxnet.nlm.nih.gov

Validity
The degree to which a result is likely to be 'true' and free of bias.

Variance
A measure of the variation shown by a set of observations defined by the sum of the squares of deviations from the mean, divided by the degrees of freedom in the set of observations.

WATERNET
This bibliographic database provides a comprehensive index of the publications of the American Water Works Association and the AWWA Research Foundation. Included are books and proceedings, journals, technical reports, newsletters, standards, manuals, handbooks, and water quality standard test methods. The database is the online counterpart to the index to the Journal AWWA from 1971 to the present, and all AWWA and AWWARF publications from 1973 to the present, with non-AWWA materials included on a selective basis. Coverage: 1971 to date. Produced by American Water Works Association, Denver, CO, USA.

Water Resources Abstracts
This database offers a comprehensive range of water-related topics in the life and physical sciences, as well as the engineering and legal aspects of the conservation, control, use, and management of water. Coverage: 1968 to date. Produced by Cambridge Scientific Abstracts, Bethesda, MD, USA.

Weighted mean difference
The mean difference between experimental groups, adjusted for the variance of the observations in the groups sampled, such that those with less variance are given more weight.

Weighting
The importance of a measure in relation to a set of measures to which it belongs; a numerical coefficient attached to an observation, frequently by multiplication, in order that it shall assume a desired degree of importance in a function of all the observations of the set (Kendall, 1982).

ABBREVIATIONS
BMI Body Mass Index
CFI Community Fluorosis Index
CI Confidence interval
IP Internet Protocol Address
Fl Fluoride
MMWR Morbidity and Mortality Weekly Review
NNH Numbers Needed to Harm
Non-Fi non-fluoridated
NTIS National Technical Information Service
OR Odds ratio
PAIS Public Airs Information Service
QOL Quality of life
OPCS Office for Population Census and Statistics
(now called ONS = Office of National Statistics)
RCT Randomised controlled trial
RR Relative risk or risk ratio
SD Standard deviation
SE Standard error
SEER Surveillance, Epidemiology and End Results
SIDS Sudden Infant Death Syndrome
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGLE</td>
<td>System for Information in Grey Literature in Europe</td>
</tr>
<tr>
<td>SIR</td>
<td>Standardised Incidence Ratio</td>
</tr>
<tr>
<td>SMR</td>
<td>Standardised Mortality Ratio</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TFI</td>
<td>Thylstrup and Fejerskov Index</td>
</tr>
<tr>
<td>TSIF</td>
<td>Tooth Surface Index of Fluorosis</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
APPENDIX B

Search Strategy

Initial WWW browse. This was not intended to be a systematic examination of web-based information resources on the topic, but the main dental websites were visited. As a result of the preliminary web search 41 reports and journal references were identified and obtained.

A rapid appraisal of the literature was carried out in order to identify the scope and scale of existing review literature surrounding this topic. The rapid appraisal search process involves searching a checklist of the following resources in order to gauge the amount of literature surrounding this topic. Scoping searches were also carried out on the DataStar and Dialog services in order to identify other databases for inclusion for future searching.

The next level of searching involved an initial literature search of the Medline database. The date period covered was 1966 – 03/1999, and foreign language papers were not excluded. This level of searching focussed on retrieval of systematic reviews and meta-analyses only; therefore the literature search used a quality filter component to identify such material. The filter strategy was included to identify systematic reviews, overviews and meta-analysis literature, and to exclude editorials, case studies and other irrelevant publication types. The final stage of searching involved the retrieval of primary studies looking at fluoridation. Medline and Embase were both searched using a strategy designed to retrieve primary studies including cohort studies, clinical trials, RCTs, longitudinal studies, prospective studies etc. The Medline search covered the date range 1966 - 05/1999 and found 295 studies. The Embase search covered the date range 1980 – 05/1999 (07/1999-12/1999 was excluded due to technical reasons) and found 107 studies. Overall a total of 394 studies were found (402 including duplicates).

WWW Resources searched
- American Dietetic Association
 http://www.eatright.org/fluoride.html
- British Dental Association
 http://www.dba-dentistry.org.uk
- British Fluoridation Society
 http://www.derweb.ac.uk/bfs/
- International Society for Fluoride Research
 http://www.fluoride-journal.com/
- OMNI (Organising Medical Networked Information)
 http://www.omni.ac.uk
- National Institute of Dental and Craniofacial Research
- World Health Organization
 http://www.who.org
- Fluoride Issues
 http://www.sonic.net/~kryptox/fluoride.htm
- Dangers of fluoridated water
 http://www.nofluoride.com/
- Preventive Dental Health Association
 http://emporium.turnpike.net/P/PDHA/health.htm
Rapid appraisal checklist and results

<table>
<thead>
<tr>
<th>Completed and ongoing reviews</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochrane Library: Cochrane Database of Systematic Reviews</td>
<td>1 protocol</td>
</tr>
<tr>
<td>Cochrane Library: DARE</td>
<td>6</td>
</tr>
<tr>
<td>National Research Register</td>
<td>0</td>
</tr>
<tr>
<td>SHPIC Reports</td>
<td>0</td>
</tr>
<tr>
<td>SIGN Guidelines</td>
<td>0</td>
</tr>
<tr>
<td>Agency for Health Care Policy and Research (AHCPR)</td>
<td>Not available</td>
</tr>
<tr>
<td>Guide to Clinical Preventive Guidelines</td>
<td>Not available</td>
</tr>
<tr>
<td>Development and Evaluation (DEC) Reports</td>
<td>0</td>
</tr>
<tr>
<td>INAHTA Published Reports</td>
<td>0</td>
</tr>
<tr>
<td>INAHTA Ongoing Reviews</td>
<td>0</td>
</tr>
<tr>
<td>National Co-ordinating Centre for Health Technology Assessment</td>
<td>0</td>
</tr>
<tr>
<td>Indexes to clinical effectiveness sources including reviews, appraisal of reviews, and evidence-based guidelines</td>
<td></td>
</tr>
<tr>
<td>TRiP (Turning Research into Practice)</td>
<td>2</td>
</tr>
<tr>
<td>ScHARR-Lock’s Guide to the Evidence</td>
<td>0</td>
</tr>
<tr>
<td>IDEA Topic List</td>
<td>0</td>
</tr>
</tbody>
</table>

Preliminary Search strategy to retrieve systematic reviews & meta-analyses

MEDLINE SEARCH STRATEGY (using Silverplatter software)

<table>
<thead>
<tr>
<th>No.</th>
<th>Records</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>The searches below are from: A:\FLUOR_1.HIS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5535</td>
<td>"meta" in ab</td>
</tr>
<tr>
<td>2</td>
<td>180395</td>
<td>"synthesis" in ab</td>
</tr>
<tr>
<td>3</td>
<td>116144</td>
<td>"literature" in ab</td>
</tr>
<tr>
<td>4</td>
<td>12311</td>
<td>"randomized" in mesh</td>
</tr>
<tr>
<td>5</td>
<td>47782</td>
<td>"published" in ab</td>
</tr>
<tr>
<td>6</td>
<td>3678</td>
<td>"meta-analysis" in PT</td>
</tr>
<tr>
<td>7</td>
<td>42067</td>
<td>"extraction" in ab</td>
</tr>
<tr>
<td>8</td>
<td>72637</td>
<td>"trials" in mesh</td>
</tr>
<tr>
<td>9</td>
<td>17655</td>
<td>"controlled" in mesh</td>
</tr>
<tr>
<td>10</td>
<td>3337</td>
<td>"medline" in ab</td>
</tr>
<tr>
<td>11</td>
<td>57034</td>
<td>"selection" in ab</td>
</tr>
<tr>
<td>12</td>
<td>42176</td>
<td>"sources" in ab</td>
</tr>
<tr>
<td>13</td>
<td>56714</td>
<td>"trials" in ab</td>
</tr>
<tr>
<td>14</td>
<td>119760</td>
<td>"review" in ab</td>
</tr>
<tr>
<td>15</td>
<td>659244</td>
<td>"review" in pt</td>
</tr>
<tr>
<td>16</td>
<td>7117</td>
<td>"articles" in ab</td>
</tr>
<tr>
<td>17</td>
<td>109815</td>
<td>"reviewed" in ab</td>
</tr>
<tr>
<td>18</td>
<td>8280</td>
<td>"english" in ab</td>
</tr>
<tr>
<td>19</td>
<td>14415</td>
<td>"language" in ab</td>
</tr>
<tr>
<td>20</td>
<td>132637</td>
<td>"comment" in pt</td>
</tr>
<tr>
<td>21</td>
<td>370229</td>
<td>"letter" in pt</td>
</tr>
<tr>
<td>22</td>
<td>100035</td>
<td>"editorial" in pt</td>
</tr>
<tr>
<td>23</td>
<td>2847541</td>
<td>"ANIMAL" in TG</td>
</tr>
<tr>
<td>24</td>
<td>6061664</td>
<td>"human" in TG</td>
</tr>
<tr>
<td>25</td>
<td>2272460</td>
<td>#23 not (#23 and #24)</td>
</tr>
<tr>
<td>26</td>
<td>3887</td>
<td>explode "Fluoridation"/ all subheadings</td>
</tr>
<tr>
<td>27</td>
<td>17134</td>
<td>explode "Fluorides"/ all subheadings</td>
</tr>
<tr>
<td>28</td>
<td>4031</td>
<td>explode "Fluorine"/ all subheadings</td>
</tr>
<tr>
<td>29</td>
<td>18170</td>
<td>fluorid* in ti,ab</td>
</tr>
<tr>
<td>30</td>
<td>4298</td>
<td>fluorin* in ti,ab</td>
</tr>
<tr>
<td>31</td>
<td>17</td>
<td>flurid* in ti,ab</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>flurin* in ti,ab</td>
</tr>
<tr>
<td>33</td>
<td>31788</td>
<td>#27 or #28 or #29 or #30 or #31 or #32</td>
</tr>
<tr>
<td>34</td>
<td>137426</td>
<td>water in ti,ab</td>
</tr>
<tr>
<td>35</td>
<td>65384</td>
<td>supplement* in ti,ab</td>
</tr>
<tr>
<td>36</td>
<td>23350</td>
<td>additive* in ti,ab</td>
</tr>
</tbody>
</table>
Preliminary search strategy to retrieve clinical trials and primary studies

MEDLINE SEARCH STRATEGY (using Silverplatter software)

<table>
<thead>
<tr>
<th>No.</th>
<th>Records Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12637 explode "Randomized-Controlled-Trials"/ all subheadings</td>
</tr>
<tr>
<td>2</td>
<td>114299 randomized controlled trial in pt</td>
</tr>
<tr>
<td>3</td>
<td>38507 explode "Random-Allocation"/ all subheadings</td>
</tr>
<tr>
<td>4</td>
<td>55024 explode "Double-Blind-Method"/ all subheadings</td>
</tr>
<tr>
<td>5</td>
<td>4228 explode "Single-Blind-Method"/ all subheadings</td>
</tr>
<tr>
<td>6</td>
<td>250395 clinical trial in pt</td>
</tr>
<tr>
<td>7</td>
<td>76287 explode "Clinical-Trials"/ all subheadings</td>
</tr>
<tr>
<td>8</td>
<td>942 explode "Controlled-Clinical-Trials"/ all subheadings</td>
</tr>
<tr>
<td>9</td>
<td>18935 explode "Placebos"/ all subheadings</td>
</tr>
<tr>
<td>10</td>
<td>115141 explode "Research-Design"/ all subheadings</td>
</tr>
<tr>
<td>11</td>
<td>274521 explode "Evaluation-Studies"/ all subheadings</td>
</tr>
<tr>
<td>12</td>
<td>205276 explode "Follow-Up-Studies"/ all subheadings</td>
</tr>
<tr>
<td>13</td>
<td>105337 explode "Prospective-Studies"/ all subheadings</td>
</tr>
<tr>
<td>14</td>
<td>840525 tg = "comparative-study"</td>
</tr>
<tr>
<td>15</td>
<td>192487 random*</td>
</tr>
<tr>
<td>16</td>
<td>65866 placebo*</td>
</tr>
<tr>
<td>17</td>
<td>315081 explode "Longitudinal-Studies"/ all subheadings</td>
</tr>
<tr>
<td>18</td>
<td>329552 explode "Cohort-Studies"/ all subheadings</td>
</tr>
<tr>
<td>19</td>
<td>2108820 control* or clinical or cohort or longitudinal or follow-up or prospective</td>
</tr>
<tr>
<td>20</td>
<td>496408 single or double or treble or triple</td>
</tr>
<tr>
<td>21</td>
<td>2925329 project or projects or stud* or trial* or evaluation* or blind or mask*</td>
</tr>
<tr>
<td>22</td>
<td>101885 comparative* or evaluative*</td>
</tr>
<tr>
<td>23</td>
<td>2567541 #15 or #16 or #20 or #19 or #22</td>
</tr>
<tr>
<td>24</td>
<td>669325 #23 near #21</td>
</tr>
<tr>
<td>25</td>
<td>299862 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8</td>
</tr>
<tr>
<td>26</td>
<td>1357038 #9 or #10 or #11 or #12 or #13 or #14 or #17 or #18</td>
</tr>
</tbody>
</table>

Searches and records above from: Selected Databases

27	1438620 #26 or #25 or #26
28	101529 editorial in pt
29	133486 comment in pt
30	374004 letter in pt
31	2867966 tg = "animal"
32	6114154 tg = "human"
33	2285948 #31 not (#31 and #32)
34	1139912 #27 not (#33 or #28 or #29 or #30)
35	3894 explode "Fluoridation"/ all subheadings
36	17189 explode "Fluorides"/ all subheadings
37	4036 explode "Fluorine"/ all subheadings
38	18253 fluorid* in ti,ab
39	4338 fluorin* in ti,ab
40	2 flurr* in ti,ab
41	17 flurid* in ti,ab
42	32668 #35 or #36 or #37 or #38 or #39 or #40 or #41
43	138770 water in ti,ab
44	66214 supplement* in ti,ab
45	23650 additive* in ti,ab
46	920 "Dietary-Supplements"/ all subheadings
47	13117 explode "Water-Supply"/ all subheadings
48	229711 #43 or #44 or #45 or #46 or #47
49	6600 #48 and #42
50	6600 #49 or #35
51	1281 "Dental-Caries-Susceptibility"/ all subheadings
52	70979 explode "Treatment-Outcome"/ all subheadings
53	329913 effective* in ti,ab
EMBASE SEARCH STRATEGY (using Silverplatter software)
(due to technical difficulties, the 07/1999 – 12/1999 section of Embase was omitted from the search).

<table>
<thead>
<tr>
<th>No.</th>
<th>Records</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>868857</td>
<td>explode "controlled-study"/ all subheadings</td>
</tr>
<tr>
<td>2</td>
<td>2292</td>
<td>"randomization"/ all subheadings</td>
</tr>
</tbody>
</table>
preventing in ti,ab

#58 or #59 or #60 or #61 or #62 or #63

tooth in ti,ab
teeth in ti,ab
dental in ti,ab
(dentition or enamel) in ti,ab

#66 or #67 or #68 or #69
decay* in ti,ab
erode* in ti,ab
caries in ti,ab
mottle* in ti,ab
discolor* in ti,ab
discolour* in ti,ab
"cosmetic effect" in ti,ab
appearance in ti,ab
"dental-caries"/ all subheadings
"fluorosis"/ all subheadings
"tooth-color"/ all subheadings
(fluorosis or flurosis) in ti,ab
#64 near (#82 or #85)
#83 or #84 or #86
explode "toxicity"/ all subheadings
toxicity in ti,ab
toxic* in ti,ab
"allergic-reaction"/ all subheadings
allerg* in ti,ab
side in ti,ab
undesirable in ti,ab
unpleasant in ti,ab
unattractive in ti,ab
"rat-" in DE
APPENDIX C
Included Studies Data Tables

Table C1 = Caries studies: baseline data
Table C2 = Caries studies: Individual study results

Table C3 = Social Class studies: baseline data
Table C4 = Social Class studies: Individual study results

Table C5 = Fluorosis studies: baseline data
Table C6 = Fluorosis studies: Individual study results

Table C7 = Bone studies: baseline data
Table C8 = Bone studies: Individual study results

Table C9 = Cancer studies: baseline data
Table C10 = Cancer studies: Individual study results

Table C11 = Other adverse effects studies: baseline data
Table C12 = Other adverse effects studies: Individual study results
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Children aged 3-15</td>
<td>Not stated</td>
<td>Group 1: Low (Natural)</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td>Children from 2 primary</td>
<td>Social class:</td>
<td>Control: Low (Natural)</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td>schools in the study areas</td>
<td>Not stated</td>
<td>Age: 5, 8, and 12</td>
<td>Age: 5, 8, and 12</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None stated</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% caries free subjects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Alvarez-Ubilla (1959))</td>
<td>Children aged 3 to 15</td>
<td>Not stated</td>
<td>Group 1: Low (Natural)</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>Social class:</td>
<td>Control: low (Natural)</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td>Chile</td>
<td>None stated</td>
<td>Not stated</td>
<td>Age: 5</td>
<td>Age: 5</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Fernando (low-F), Curico (F)</td>
<td></td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td></td>
<td>None stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td></td>
<td>Dmft score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td></td>
<td>% caries free subjects«Outcome2»</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Arnold (1956)</td>
<td>Children aged 4-16 years</td>
<td>Not stated</td>
<td>Group 1: low (Natural)</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td>Country of study</td>
<td>Used city water supplies</td>
<td>Social class:</td>
<td>Control: low (Natural)</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td>USA</td>
<td>since birth</td>
<td>Not stated</td>
<td>Age: 5, 8, 12 and 15</td>
<td>Age: 5, 8, 12 and 15</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Children who lived outside</td>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Rapids (F), Muskegon (non-F)</td>
<td>study areas for</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>more than 3 months of</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td>any one year</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td></td>
<td>Dmft score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td></td>
<td>DMFT score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Study Details</td>
<td>Criteria</td>
<td>Factors</td>
<td>Characteristics</td>
</tr>
<tr>
<td>Ast (1951)</td>
<td>Inclusion criteria</td>
<td>All 5-12 year old children present at school on days of examination</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Continuous residents of study areas</td>
<td>Not stated</td>
<td>Group 1: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td>Social class:</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Age: 5, 8 and 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMFT rate per 100 erupted permanent teeth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% caries free subjects (primary teeth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of erupted permanent teeth per child</td>
<td></td>
</tr>
<tr>
<td>Attwood (1988)</td>
<td>Inclusion criteria</td>
<td>Children aged 10 years attending non-denominational primary schools</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Lifetime residents of study areas</td>
<td>Not stated</td>
<td>Group 1: high (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td>Social class:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Age: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Areas similar small towns in south-west Scotland with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>approximately equal dentist/population ratios and clinical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>care provided by general and community dental services</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMFT score</td>
<td></td>
</tr>
<tr>
<td>Backer Dirks (1961)</td>
<td>Inclusion criteria</td>
<td>Children aged 11-15 lifelong residents of the study areas</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Used the piped water supply</td>
<td>Not stated</td>
<td>Group 1: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 children of each age examined</td>
<td>Social class:</td>
<td>Control: 0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td>Areas similar in social class structure and proportional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>numbers of subjects selected from each school type</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average number of all approximal lesions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average number of approximal dental lesions</td>
<td></td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Country of study</td>
<td>Geographic location</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Beal (1981)</td>
<td>England</td>
<td>Corby (non-F) and Scunthorpe (F)</td>
<td>Continuous residents in study areas; Children aged 5, 8, and 12</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td>Social class: Both areas have iron/steel as main industry - socio-economic composition of 2 areas similar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teeth extracted for orthodontic purposes</td>
<td>Ethnicity: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome(s): dmft score</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% caries free subjects (permanent teeth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% caries free subjects (primary teeth)</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Country of study</td>
<td>Geographic location</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Beal (1971)</td>
<td>England</td>
<td>Balsall Heath and Northfield, Birmingham (F) and Dudley (non-F)</td>
<td>Children aged 5 attending schools that participated in each year of the study</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td>Social class: Balsall Heath is poor area of city with high prop of immigrants, Northfield and Dudley are both industrial areas with comparable pops., but more immigrants in Dudley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ethnicity: All areas have some proportion of immigrants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome(s): dfmt score</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% caries free subjects</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Country of study</td>
<td>Geographic location</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Blayney (1960)</td>
<td>USA</td>
<td>Evanston (F), Oak Park (non-F), Illinois</td>
<td>None stated</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Social class: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ethnicity: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors: Detailed questionnaire completed by parents before baseline examination, collected: length of residency, water supply, mother's pregnancy, diet, school behaviour - no results provided</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome(s): DMFT score</td>
</tr>
</tbody>
</table>
Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Brown (1965)</td>
<td>Inclusion criteria</td>
<td>Children aged 9-14</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Canada</td>
<td>Continuous residents</td>
<td>Not stated</td>
<td>Group 1: low (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Brantford (F), Stratford (Natural F), Sarnia (non-F), Ontario</td>
<td>absence of <6 weeks since birth</td>
<td>Social class:</td>
<td>Group 3: high (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1948</td>
<td>All primary and secondary schools in study areas</td>
<td>Ethnicity:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td>Year study ended</td>
<td>1959</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Age:</td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1945</td>
<td>None stated</td>
<td>Other confounding factors:</td>
<td>9-11 and 12-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>DHSS (1969)</th>
<th>Inclusion criteria</th>
<th>Continuous residents of study areas</th>
<th>Other sources of fluoride:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of study</td>
<td>England</td>
<td>Consumed piped water at home and at school</td>
<td>Not stated</td>
<td>Social class:</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Watford (F), Sutton (non-F)</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1956</td>
<td>None stated</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
</tr>
<tr>
<td>Year study ended</td>
<td>1967</td>
<td></td>
<td>Not stated</td>
<td>Outcome(s):</td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1956</td>
<td></td>
<td></td>
<td>% caries free subjects (permanent teeth)</td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Group 1: low (Natural)</td>
<td>Control:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Group 1: high (Artificial)</td>
</tr>
<tr>
<td>Age:</td>
<td>5, 8, 12 and 14</td>
<td>low (Natural)</td>
<td>Group 3: high (Natural)</td>
<td>Control:</td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Group 2:</td>
<td>low (Natural)</td>
<td>low (Natural)</td>
<td>Age:</td>
</tr>
<tr>
<td>Age:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>5, 8, 12 and 14</td>
<td>5, 8, 12 and 14</td>
<td>5, 8, 12 and 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>DHSS (1969)</th>
<th>Inclusion criteria</th>
<th>Continuous residents of study areas</th>
<th>Other sources of fluoride:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of study</td>
<td>Wales</td>
<td>Consumed piped water at home and at school</td>
<td>Not stated</td>
<td>Social class:</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Holyhead (mainly F - gets most of water from Gwalchmai, but occasionally also receives water from Bodafon) and Gwalchmai zone (F) and Bodafon zone (Non-F), Anglesey</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1956</td>
<td>None stated</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
</tr>
<tr>
<td>Year study ended</td>
<td>1965</td>
<td></td>
<td>Not stated</td>
<td>Outcome(s):</td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1955</td>
<td></td>
<td></td>
<td>% caries free subjects</td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>DHSS (1969)</td>
<td>Continuous residents of study areas</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>Scotland</td>
<td>Consumed piped water at home and at school</td>
<td>Not stated</td>
<td>Group 1: low (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Ayr (non-F), Kilmarnock (F)</td>
<td>Exclusion criteria:</td>
<td>Social class:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1956</td>
<td>None stated</td>
<td>Not stated</td>
<td>Age: 5, 9, 12 and 14</td>
</tr>
<tr>
<td>Year study ended</td>
<td>1968</td>
<td>Other sources of fluoride:</td>
<td>Social class:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1956</td>
<td>Group 1: low (Natural)</td>
<td>Not stated (social class data available only for 1967 survey - see objective 3)</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td>Outcome(s):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Group 1: 1 (Artificial)</td>
<td>Ethnicity:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Other confounding factors:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Other confounding factors:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Outcome(s):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>dmft score</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>% caries free subjects</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>DMFT score</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Other confounding factors:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Ethnicity:</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Other confounding factors:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Not stated</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>Outcome(s):</td>
<td>Control: low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 1 (Artificial)</td>
<td>% caries free subjects (primary teeth)</td>
<td>Age: 5</td>
</tr>
</tbody>
</table>

Other Study Details

Author (year): DHSS (1969)
Country of study: Scotland
Geographic location: Ayr (non-F), Kilmarnock (F)
Year study started: 1956
Year study ended: 1968
Year of change in fluoridation status: 1956
Inclusion criteria: Continuous residents of study areas
Exclusion criteria: None stated
Other sources of fluoride: Not stated
Social class: Not stated
Ethnicity: Not stated
Outcome(s): % caries free subjects, dmft score, DMFT score
Fluoride level (artificially or naturally fluoridated): Group 1: low (Natural) Control: low (Natural)
Age: 5, 9, 12 and 14
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Guo (1984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Chung-Hsing New Village (F), Tsao-Tun (non-F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td>1984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Continuous residents of study areas</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Group 1: 0.07 (Natural)</td>
<td>Group 1: 0.6 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children who migrated from other areas during study period</td>
<td>Social class:</td>
<td>Control: 0.08 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicty:</td>
<td></td>
<td>Age:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
<td>5, 8, 12, and 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar climate - mean daily air temp = 24°C</td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% caries free subjects</td>
<td>dmft score</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMT score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Hardwick (1982)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Alsager, Middlewich, Nantwich (F), Northwich (not F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td>1978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>12 year old children living in study area</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Consent from relevant country authorities and teachers at schools included in the study</td>
<td>152 fluoride group: 142(94%) used only fluoride dentrifices</td>
<td>Group 1: <0.1 (Natural)</td>
<td>Group 1: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>& 125 (83%) used at least once a day.</td>
<td>Social class:</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td>none stated</td>
<td></td>
<td></td>
<td>Age:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>194 control group, 185 (95%) used only fluoride dentrifices, 147 (76%) used at least once per day. Two children in fluoride group and 4 children in control had ever used fluoride tablets.</td>
<td>Ethnicity:</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar climate - mean daily air temp = 24°C</td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control and experimental groups matched on urban and rural characteristics</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social class:</td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMFS score</td>
<td>DMFT score</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Hobbs (1994)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Wales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Powys (non-F) and Llandrindod (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td>1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Children aged 5 years</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Group 1: 1 (Artificial)</td>
<td>Group 1: <0.2 (Natural)</td>
</tr>
<tr>
<td></td>
<td>none stated</td>
<td>Social class:</td>
<td>Control: <0.2 (Natural)</td>
<td>Control: <0.2 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Age:</td>
<td>Age:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Kalsbeek (1993)</td>
<td>Inclusion criteria: 15 year old children born and still resident in study areas.</td>
<td>Other sources of fluoride: No difference between 2 study areas in fluoride tablet use, use of fluoridated toothpaste, frequency of toothbrushing and % of children that visited dentist more than twice a year. Fluoride applied more frequently by dentists in Culemborg than in Tiel. Social class: Not stated. Ethnicity: Not stated. Other confounding factors:</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 1ppm (Artificial) Control: Low (Natural) Age: 15</td>
</tr>
<tr>
<td>Country of study</td>
<td>Holland</td>
<td>Exclusion criteria: None stated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Tiel (F), Culemborg (non-F) Year study started 1968 Year study ended 1987 Year of change in fluoridation status 1973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Kunzel (1997)</td>
<td>Inclusion criteria: Children born in study areas.</td>
<td>Other sources of fluoride: Number of topical applications of fluoride toothpastes, solutions and gel was low - water fluoridation was the only preventive measure. Social class: Not stated. Ethnicity: Not stated. Other confounding factors: Increasing annual sugar consumption in both areas.</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.2 (Natural) Control: 0.2 (Natural) Age: 5, 8, 12 and 15</td>
</tr>
<tr>
<td>Country of study</td>
<td>Germany</td>
<td>Exclusion criteria: Children who had moved into the 2 study areas. Disabled children.</td>
<td>Outcome(s): DMFT score DMFS score.</td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Chemnitz(F), Plauen (non-F) Year study started 1959 Year study ended 1971 Year of change in fluoridation status 1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Germany</td>
<td>Exclusion criteria: Children who had moved into the 2 study areas. Disabled children.</td>
<td>Outcome(s): DMFT score % caries free subjects.</td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Chemnitz(F), Plauen (non-F) Year study started 1991 Year study ended 1995 Year of change in fluoridation status 1990</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year) Loh (1996)</td>
<td>Inclusion criteria Chinese and Malay children aged 7-9 years</td>
<td>Other sources of fluoride: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: low (Natural) Control: low (Natural) Age: 7-9</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.7 (Artificial) Control: low (Natural) Age: 7-9</td>
</tr>
<tr>
<td>Country of study Singapore and West Malaysia</td>
<td>Exclusion criteria None stated</td>
<td>Social class: Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location Malacca (non-F), Singapore (F)</td>
<td></td>
<td>Ethnicity: Chinese and Malay children - results presented separately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1957</td>
<td></td>
<td>Other confounding factors: Hot & humid climate - mean daily temp 26.6°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended 1966</td>
<td></td>
<td>Outcome(s): DMFT score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status 1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year) Pot (1974)</td>
<td>Inclusion criteria Residents of study areas born between 1896 and 1945 Lifelong residents of study areas</td>
<td>Other sources of fluoride: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: low (Natural) Control: 0.1 (Natural) Age: 5-55</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 1 (Artificial) Control: 0.1 (Natural) Age: 25-75</td>
</tr>
<tr>
<td>Country of study Holland</td>
<td>Exclusion criteria Subjects who left the study areas for more than 3 months after fluoridation was introduced</td>
<td>Social class: Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location Tiel (F), Culemborg (non-F)</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1950</td>
<td></td>
<td>Other confounding factors: Age - results for final survey presented in 5 year age groups - shows that higher proportion of younger subjects have prosthetic teeth in Culemborg compared to Tiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended 1970</td>
<td></td>
<td>Outcome(s): % with false teeth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status 1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year) Seppa (1998)</td>
<td>Inclusion criteria Return of signed parental consent form Children aged 3-15 Did not show up for examination</td>
<td>Other sources of fluoride: Use of F toothpaste & F tablets, consumption of xylitol chewing gum - info obtained from questionnaire Info on sealants & fluoride varnish use obtained from dental records Similar distribution of demographic and socioeconomic characteristics</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 1 (Artificial) Control: 0.1 (Natural) Age: 6, 9, 12 and 15</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: low (Natural) Control: low (Natural) Age: 6, 9, 12 and 15</td>
</tr>
<tr>
<td>Country of study Finland</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location Kuopio (F), Jyvaskyla (non-F)</td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1992</td>
<td></td>
<td>Outcome(s): DMFS score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended 1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoridation status 1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C1: Caries Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Survey Characteristics</th>
<th>Final Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Wragg (1999)</td>
<td>Other sources of fluoride:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td>Social class:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Swadlincote (non-F), Ilkeston and Alfreton (F)</td>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1985</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td>1995</td>
<td>Outcome(s):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of change in fluoride status</td>
<td>1984</td>
<td>dmft score</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% caries free subjects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fluoride level (artificially or naturally fluoridated):
 - Group 1: 1 (Artificial)
 - Group 2: 1 (Artificial)
 - Control: 0.2 (Natural)
 - Age: 5

- Fluoride level (artificially or naturally fluoridated):
 - Group 1: low (Natural)
 - Group 2: low (Natural)
 - Control: 0.2 (Natural)
 - Age: 5

- Fluoride level (artificially or naturally fluoridated):
 - Group 1: low (Natural)
 - Group 2: low (Natural)
 - Control: 0.2 (Natural)
 - Age: 5

- Fluoride level (artificially or naturally fluoridated):
 - Group 1: low (Natural)
 - Group 2: low (Natural)
 - Control: 0.2 (Natural)
 - Age: 5

- Fluoride level (artificially or naturally fluoridated):
 - Group 1: low (Natural)
 - Group 2: low (Natural)
 - Control: 0.2 (Natural)
 - Age: 5
C2: Caries studies: Individual study results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Baseline</th>
<th>Outcome 1</th>
<th>Baseline</th>
<th>Outcome 2</th>
<th>Baseline</th>
<th>Outcome 3</th>
<th>Baseline</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No.</td>
<td>Results</td>
<td>No.</td>
<td>Results</td>
<td>No.</td>
<td>Results</td>
<td>No.</td>
<td>Results</td>
</tr>
<tr>
<td>Adriasisola (1959)</td>
<td>Group 1 Control</td>
<td>Low</td>
<td>Low</td>
<td>2.2</td>
<td>186</td>
<td>13.3</td>
<td>340</td>
<td>4.2</td>
<td>493</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td>174</td>
<td>10.0</td>
<td>140</td>
<td>7.6</td>
<td>234</td>
<td>0.8</td>
</tr>
<tr>
<td>Alvarez-Ubilla (1959)</td>
<td>Group 1 Control</td>
<td>low</td>
<td>low</td>
<td>8.9</td>
<td>186</td>
<td>6.4</td>
<td>340</td>
<td>2.2</td>
<td>186</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.1</td>
<td>174</td>
<td>7.8</td>
<td>140</td>
<td>14.1</td>
<td>174</td>
<td>10</td>
</tr>
<tr>
<td>Arnold (1956)</td>
<td>Group 1 Control</td>
<td>Low</td>
<td><0.2</td>
<td>5.4</td>
<td>1633</td>
<td>2.3</td>
<td>853</td>
<td>8.1</td>
<td>1685</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
<td>402</td>
<td>5.3</td>
<td>351</td>
<td>8.7</td>
<td>328</td>
<td>7.7</td>
</tr>
<tr>
<td>Ast (1951)</td>
<td>Group 1 Control</td>
<td><0.1</td>
<td>1-1.2</td>
<td>17.1</td>
<td>355</td>
<td>9.9</td>
<td>356</td>
<td>25.4</td>
<td>412</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.3</td>
<td>393</td>
<td>17.2</td>
<td>360</td>
<td>25.4</td>
<td>357</td>
<td>27.0</td>
</tr>
<tr>
<td>Attwood (1988)</td>
<td>Group 1 Control</td>
<td>high</td>
<td>low</td>
<td>1.7</td>
<td>147</td>
<td>1.7</td>
<td>127</td>
<td>3.4</td>
<td>141</td>
<td>2.8</td>
</tr>
<tr>
<td>Backer Dirks (1961)</td>
<td>Group 1 Control</td>
<td>0.1</td>
<td>0.1</td>
<td>13.1</td>
<td>0.8</td>
<td>13.8</td>
<td>3.8</td>
<td>4.1</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Beal (1981)</td>
<td>Group 1 Control</td>
<td>low</td>
<td>0.35</td>
<td>5.0</td>
<td>189</td>
<td>3.4</td>
<td>167</td>
<td>1.5</td>
<td>189</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
<td>163</td>
<td>5.0</td>
<td>186</td>
<td>1.6</td>
<td>163</td>
<td>1.3</td>
</tr>
<tr>
<td>Beal (1971)</td>
<td>Group 1 Control</td>
<td>low</td>
<td>0.35</td>
<td>4.3</td>
<td>196</td>
<td>1.8</td>
<td>170</td>
<td>21</td>
<td>196</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>205</td>
<td>5.5</td>
<td>180</td>
<td>21</td>
<td>205</td>
<td>30</td>
</tr>
<tr>
<td>Blayney (1960)</td>
<td>Group 1 Control</td>
<td>low</td>
<td>low</td>
<td>2.5</td>
<td>1.9</td>
<td>0.9</td>
<td>7.6</td>
<td>3.6</td>
<td>7.7</td>
<td>7.1</td>
</tr>
</tbody>
</table>
C2: Caries studies: Individual study results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Control</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome 1</td>
<td>% caries free subjects</td>
</tr>
<tr>
<td>Outcome 2</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
</tr>
<tr>
<td>Outcome 3</td>
<td>% caries free subjects</td>
</tr>
<tr>
<td>Outcome 4</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
<td>DMFT score</td>
</tr>
</tbody>
</table>

DHSS (1969) England

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td>Group 1</td>
<td>low</td>
<td>5.7</td>
<td>959</td>
<td>52.1</td>
<td>432</td>
</tr>
<tr>
<td>Group 2</td>
<td>high</td>
<td>4.1</td>
<td>955</td>
<td>1.1</td>
<td>432</td>
</tr>
<tr>
<td>Control</td>
<td>low</td>
<td>1.2</td>
<td>959</td>
<td>0.6</td>
<td>486</td>
</tr>
</tbody>
</table>

DHSS (1969) Wales

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td>Group 1</td>
<td>low</td>
<td>10</td>
<td>367</td>
<td>10</td>
<td>249</td>
</tr>
<tr>
<td>Group 2</td>
<td>low</td>
<td>23</td>
<td>320</td>
<td>24</td>
<td>287</td>
</tr>
<tr>
<td>Group 3</td>
<td>low</td>
<td>8</td>
<td>186</td>
<td>3</td>
<td>114</td>
</tr>
</tbody>
</table>

DHSS (1969) Scotland

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td>Group 1</td>
<td>low</td>
<td>6.44</td>
<td>5.81</td>
<td>3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Group 2</td>
<td>low</td>
<td>4.0</td>
<td>5.8</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Group 3</td>
<td>low</td>
<td>49</td>
<td>552</td>
<td>70.5</td>
<td>594</td>
</tr>
<tr>
<td>Group 4</td>
<td>low</td>
<td>57</td>
<td>537</td>
<td>79.8</td>
<td>475</td>
</tr>
<tr>
<td>Group 5</td>
<td>low</td>
<td>69</td>
<td>547</td>
<td>80.0</td>
<td>564</td>
</tr>
<tr>
<td>Group 6</td>
<td>low</td>
<td>62</td>
<td>826</td>
<td>74.1</td>
<td>891</td>
</tr>
<tr>
<td>Group 7</td>
<td>low</td>
<td>74</td>
<td>466</td>
<td>64.2</td>
<td>419</td>
</tr>
</tbody>
</table>

Gray (2000)

<table>
<thead>
<tr>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td>Group 1</td>
<td>low</td>
<td>1.2</td>
<td>953</td>
<td>7.7</td>
<td>593</td>
</tr>
<tr>
<td>Group 2</td>
<td>high</td>
<td>1.2</td>
<td>953</td>
<td>7.7</td>
<td>593</td>
</tr>
<tr>
<td>Group 3</td>
<td>high</td>
<td>27.2</td>
<td>371</td>
<td>2.6</td>
<td>371</td>
</tr>
<tr>
<td>Group 4</td>
<td>high</td>
<td>52.1</td>
<td>432</td>
<td>6.1</td>
<td>571</td>
</tr>
</tbody>
</table>
C2: Caries studies: Individual study results

<table>
<thead>
<tr>
<th>Study</th>
<th>Details</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.</td>
<td>Results</td>
<td>No.</td>
<td>Results</td>
</tr>
<tr>
<td>Guo</td>
<td>(1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Control</td>
<td>0.07</td>
<td>0.6</td>
<td>10.4</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Control</td>
<td>0.07</td>
<td>0.6</td>
<td>4.2</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Control</td>
<td>0.07</td>
<td>0.6</td>
<td>6.5</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardwick</td>
<td>(1982)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Control</td>
<td><0.1</td>
<td><0.1</td>
<td>7.4</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Control</td>
<td><0.2</td>
<td><0.2</td>
<td>4.2</td>
<td>2419</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>0.2</td>
<td>1</td>
<td>43.0</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>0.2</td>
<td>1</td>
<td>33.6</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>0.2</td>
<td>0.2</td>
<td>2.5</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>0.2</td>
<td>0.2</td>
<td>35.8</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>0.2</td>
<td>0.2</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C2: Caries studies: Individual study results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Results</td>
<td>No.</td>
<td>Results</td>
<td>No.</td>
</tr>
<tr>
<td>Pot (1974)</td>
<td>Control</td>
<td>low</td>
<td>1.1</td>
<td>14.4</td>
<td>521</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td>Group 1</td>
<td>low</td>
<td>0.1</td>
<td>16.2</td>
<td>507</td>
<td>63.5</td>
</tr>
<tr>
<td>Seppa (1998)</td>
<td>Control</td>
<td>low</td>
<td>0.1</td>
<td>0.1</td>
<td>68</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Group 1</td>
<td>low</td>
<td>0.0</td>
<td>0.0</td>
<td>66</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Group 2</td>
<td>low</td>
<td>1.7(2.8)</td>
<td>112</td>
<td>1.0</td>
<td>123</td>
</tr>
<tr>
<td>Wragg (1999)</td>
<td>Control</td>
<td>low</td>
<td>0.2</td>
<td>1.7(2.8)</td>
<td>112</td>
<td>1.0</td>
</tr>
</tbody>
</table>
C3: Social Class Studies: Baseline Data

1. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Beal (1971)</td>
<td>Inclusion criteria</td>
<td>Children aged 5 attending schools that participated in each year of the study</td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td>Exclusion criteria</td>
<td>None stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Balsall Heath and Northfield, Birmingham (F) and Dudley (non-F)</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Year study started</td>
<td>1967</td>
<td>Social class:</td>
<td>Balsall Heath is poor area of city with high prop of immigrants, Northfield and Dudley are both industrial areas with comparable pops., but more immigrants in Dudley</td>
</tr>
<tr>
<td>Year study ended</td>
<td>1970</td>
<td>Ethnicity:</td>
<td>All areas have some proportion of immigrants</td>
</tr>
<tr>
<td>Year of change in fluoridation status</td>
<td>1965</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

Author (year)	Gray (2000)	**Inclusion criteria:**	Not stated	**Fluoride level (artificially or naturally fluoridated):**
Country of study	England	**Exclusion criteria:**	Not stated	Group 1: 1 (Artificial)
Geographic location	South East Staffordshire, Sandwell, Walsall, Dudley and North Birmingham (F), North Staffordshire, Herefordshire, Shropshire and Kidderminster (non-F)	**Social class:**	Jarman scores presented	Group 2: 1 (Artificial)
Year study started	1987-1997	**Ethnicity:**	Not stated	Control: Low (Natural)
Year fluoridation started	1969	**Other confounding factors:**	Not stated	**Age:**
Year fluoridation started	1969	**Outcomes:**	% caries free subjects	5

Author (year)	Holdcroft (1999)	**Inclusion criteria:**	Not stated	**Fluoride level (artificially or naturally fluoridated):**
Country of study	England	**Exclusion criteria:**	Not stated	Not stated
Geographic location	North Birmingham and Sandwell (F), North Staffordshire, Herefordshire and Shropshire (Non-F)	**Social class:**	Measured using Jarman scores	**Age:**
Year study started	1985/6	**Ethnicity:**	Not stated	Not stated
Year fluoridation started	1969	**Other confounding factors:**	Not stated	**Outcome(s):**
Year fluoridation started	1969	**dmft**	Not stated	dmft
C3: Social Class Studies: Baseline Data

2. Cross Sectional Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Bradnock (1984)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>4 West Midlands conurbations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td>1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>Indigenous children resident in West Midlands. Children aged 5 Wards of mainly caucasian residents</td>
<td>Other sources of fluoride: None stated Social class: Reg Gen: I & II [High Seg], and IV & V [Low Seg] Ethnicity: Mainly caucasian Other confounding factors: Not stated Outcomes: dmft score and % caries free subjects</td>
<td></td>
</tr>
</tbody>
</table>

Author (year)	Carmichael (1980)		
Country of study	England		
Geographic location	Newcastle (F) and Northumberland (non-F)		
Year study started	1975		
Year fluoridation started	1969		
Inclusion criteria:	Children aged 5 Lifelong residents Completed parental questionnaire	Other sources of fluoride: Not stated Social class: Registrar General: I & II, III, IV & V & 'other' Ethnicity: Not stated Other confounding factors: Not stated Outcomes: % caries free subjects & deft score	

Author (year)	Carmichael (1984)		
Country of study	England		
Geographic location	Newcastle (F) and Northumberland (non-F)		
Year study started	1987		
Year fluoridation started	1969		
Inclusion criteria:	Children aged 5 Lifelong residents	Other sources of fluoride: Not stated Social class: I-V and unclassified [unemployed] using Registrar General classification Ethnicity: Not stated Other confounding factors: Not stated Outcomes: dmft score, % Caries free and dmfs score	

| Fluoride level (artificially or naturally fluoridated): | Group 1: High (Artificial) Control: Low (Natural) |
| Age: | 5 |

| Fluoride level (artificially or naturally fluoridated): | Group 1: 1 (Artificial) Control: <0.1 (Natural) |
| Age: | 5 |

| Fluoride level (artificially or naturally fluoridated): | Group 1: 1 (Artificial) Control: <0.1 (Natural) |
| Age: | 5 |
C3: Social Class Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Carmichael (1989)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Newcastle (F) and Northumberland (non-F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td>1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>Children aged 5</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Lifelong residents</td>
<td>Fluoride toothpaste</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria:</td>
<td>Social class:</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td>None stated</td>
<td>I-V and unclassified [unemployed] using Registrar General classification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcomes:</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>DHSS (1969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Watford (F), Sutton (non-F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td>1967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td>1956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Lifelong residents</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Consumed piped water at home and at school</td>
<td>Social class:</td>
<td>Group 1: 0.89-0.99 (Artificial)</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Registrar General: I & II, III, IV & V, stratified by number of children</td>
<td>Control: Low (Natural)</td>
</tr>
<tr>
<td></td>
<td>None stated</td>
<td>under 15 in family</td>
<td>Age: 5, 8, 12 and 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dmft score</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Evans (1996)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Newcastle (F) and SE Northumberland (non-F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td>1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td>Children aged 5</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td>Parental consent</td>
<td>Not stated</td>
<td>Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td>Completed parental questionnaire</td>
<td>Social class:</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td></td>
<td>Agreement from school</td>
<td>Registrar General: I & II, III, IV & V, 'other'</td>
<td>Age: 5</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria:</td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-white children</td>
<td>Non-white children excluded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-co-operative children during examination</td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcomes:</td>
<td></td>
</tr>
</tbody>
</table>
C3: Social Class Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Survey Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td>Jones (1997)</td>
<td>Children aged 5 and 12</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>Social class:</td>
<td>Group 1: 1 (artificial</td>
</tr>
<tr>
<td>England</td>
<td>None stated</td>
<td>Jarman score</td>
<td>Control: low natural</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Ethnicity:</td>
<td>Age: 5 and 12</td>
</tr>
<tr>
<td>Salford and Trafford and Liverpool (non-F), Newcastle and North Tyneside (F)</td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td>1991/2, 1992/3 and 1993/94</td>
<td></td>
<td>dmft and DMFT score</td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td>Jones (2000)</td>
<td>Children aged 12</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>Social class:</td>
<td>Group 1: 1 (artificial</td>
</tr>
<tr>
<td>England</td>
<td>None stated</td>
<td>Townsend score</td>
<td>Control: low natural</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Ethnicity:</td>
<td>Age: 12</td>
</tr>
<tr>
<td>Salford and Trafford and Liverpool (non-F), Newcastle and North Tyneside (F)</td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td>1991/2, 1992/3 and 1993/94</td>
<td></td>
<td>dmft and DMFT score</td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Continuous residence in their schools' locality</td>
<td>Social class: I & II, III & IIIm, IV & V</td>
<td>Group 1: 1 (Artificial</td>
</tr>
<tr>
<td>England</td>
<td>Parental consent</td>
<td>Ethnicity: Caucasian</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td>Newcastle (F) and Ashington, Blyth & Morpeth (non-F)</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td>DMFT score and % caries free subjects</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td>Murray (1991)</td>
<td>Children aged 15-16</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>Parental consent</td>
<td>Social class: I + II, III; IV + V; Unclassified</td>
<td>Group 1: 1 (Artificial</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td>Ethnicity: Anglo-Saxon</td>
<td>Control: 0.2 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td>Newcastle (F), Middlesbrough (non F) and Hartlepool (Natural F)</td>
<td></td>
<td>Outcome(s):</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td>DMFT score and % caries free subjects</td>
<td></td>
</tr>
<tr>
<td>1989-1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fluoridation started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C3: Social Class Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Survey Characteristics</th>
</tr>
</thead>
</table>
| **Author (year)**: Provart (1995) | **Inclusion criteria:** Children aged 5
Children resident in electoral wards in the upper & lower quartiles of material deprivation
Exclusion criteria: None stated | **Other sources of fluoride:** Not stated
Social class: Children resident in high 7.85 and low material deprivation -6.69 wards studied [Townsend material deprivation scores]
Ethnicity: Not stated
Other confounding factors: Not stated
Outcomes: dmft score | **Fluoride level (artificially or naturally fluoridated):** Group 1: 1 (Artificial)
Control: 0.1-0.4 (Natural)
Age: 5 |
| **Country of study**: England | | | |
| **Geographic location**: County Durham | | | |
| **Year study started**: 1991-92 | | | |
| **Year fluoridation started**: 1969 | | | |
| **Author (year)**: Riley (1999) | **Inclusion criteria** District included if carried out full population survey of 5 year old children
Fluoridated districts had at least 90% of pop. receiving fluoridated water, F level >=0.7ppm and supply had been fluoridated continuously for last 5 years.
Non-fluoridated areas had <0.3ppm continuously for last 5 years
Exclusion criteria: None stated | **Other sources of fluoride:** Not stated
Social class: Townsend score
Ethnicity: Not stated
Other confounding factors: Not stated
Outcome(s): dmft score | **Fluoride level (artificially or naturally fluoridated):** Group 1: >=0.7 (not stated)
Control: <0.3 (Natural)
Age: 5 |
| **Country of study**: England | | | |
| **Geographic location**: 7 fluoridated and 7 non-fluoridated areas | | | |
| **Year study started**: 1993-94 | | | |
| **Year fluoridation started**: Not stated | | | |
| **Author (year)**: Rugg-Gunn (1977) | **Inclusion criteria**: 5 Year old children
Lifelong residents
Parental consent
Completion of questionnaire
Consenting schools with ordinary, social priority & rural status
Exclusion criteria: Non-caucasian children | **Other sources of fluoride:** Use of fluoride toothpaste: 80% in F areas & 85% in non-F areas
Social class: Urban industrial areas & rural areas included in study. Social class similar in rural communities except for 1 non-F school where records were not available
Ethnicity: Caucasian
Other confounding factors: Tea drinking: F 72% regular tea drinkers, NF 73% regular tea drinkers. Differential dental attendance patterns
Outcomes: % caries free subjects and deft score | **Fluoride level (artificially or naturally fluoridated):** Newcastle: 1.0ppm.(artificial)
Ashington: <0.1ppm.
Prudhoe, Ovingham, & Corbridge: 1.0ppm.
Alnwick, Amble & Rothbury: <0.1ppm.
Age: 5 |
| **Country of study**: England | | | |
| **Geographic location**: Newcastle, Prudhoe, Ovingham, & Corbridge (F) and Alnwick, Amble & Rothbury Ashington (non-F) | | | |
| **Year study started**: 1975 | | | |
| **Year fluoridation started**: 1968 | | | |
C4: Social Class Studies: Individual Study Results

1. Studies which present results by Registrar General’s social class groupings

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Age</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Social class I & II</th>
<th>Social class III</th>
<th>Social class IV and V</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>High</td>
<td>Results (SD)</td>
<td>Number</td>
<td>Results (SD)</td>
<td>Number</td>
</tr>
<tr>
<td>Bradnock (1984)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Low</td>
<td>0.47 (0.14)</td>
<td>76</td>
<td>1.56 (0.24)</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>High</td>
<td>0.9 (0.2)</td>
<td>81</td>
<td>2.74 (0.34)</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>% Caries free</td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>81.6</td>
<td>57.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Caries free</td>
<td></td>
<td>Control</td>
<td>High</td>
<td>71.6</td>
<td>35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmichael (1980)</td>
<td>deft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>2.5 (3.33)</td>
<td>62</td>
<td>2.4 (2.71)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>3.4 (3.85)</td>
<td>18</td>
<td>6.0 (4.03)</td>
<td>61</td>
</tr>
<tr>
<td>Carmichael (1984)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>0.98</td>
<td>119</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>2.15</td>
<td>93</td>
<td>3.55</td>
<td>253</td>
</tr>
<tr>
<td>Carmichael (1984)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>Low</td>
<td>67.2</td>
<td>48.4</td>
<td>52.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>High</td>
<td>52.2</td>
<td>30.8</td>
<td>51.4</td>
<td>110</td>
</tr>
<tr>
<td>Carmichael (1989)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>1.2 (2.66)</td>
<td>56</td>
<td>1.7 (4.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>2.2 (2.66)</td>
<td>117</td>
<td>3.7 (4.05)</td>
<td>64</td>
</tr>
<tr>
<td>Carmichael (1989)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>1.6</td>
<td>54</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>3.4</td>
<td>54</td>
<td>9.8</td>
<td>23</td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>0.4</td>
<td>5</td>
<td>1.36</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>2.2</td>
<td>27</td>
<td>2.09</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>8</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>0.5</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.8</td>
<td>20</td>
<td>1.89</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>12</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>3.4</td>
<td>12</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>5.11</td>
<td>9</td>
<td>6.69</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>14</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>6.67</td>
<td>6</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>7.18</td>
<td>11</td>
<td>7.24</td>
<td>21</td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>1.6</td>
<td>5</td>
<td>1.74</td>
</tr>
<tr>
<td>Wales</td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.31</td>
<td>13</td>
<td>2.71</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>8</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>0.6</td>
<td>5</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.5</td>
<td>4</td>
<td>0.85</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>12</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>4.33</td>
<td>3</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>5.67</td>
<td>6</td>
<td>4.09</td>
<td>11</td>
</tr>
<tr>
<td>DHSS (1969)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>2.00</td>
<td>2</td>
<td>4.37</td>
</tr>
<tr>
<td>Wales</td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>5.00</td>
<td>2</td>
<td>9.13</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>8</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>2.08</td>
<td>25</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>4.45</td>
<td>22</td>
<td>4.96</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>12</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>1.19</td>
<td>21</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.75</td>
<td>13</td>
<td>2.48</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>8</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>3.04</td>
<td>23</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>3.64</td>
<td>14</td>
<td>4.48</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>DMFT</td>
<td>8</td>
<td>Group 1</td>
<td>Control</td>
<td>High</td>
<td>0.91</td>
<td>11</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>0.75</td>
<td>12</td>
<td>2.29</td>
<td>34</td>
</tr>
</tbody>
</table>

129
C4: Social Class Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Age</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Social class I & II</th>
<th>Social class III</th>
<th>Social class IV and V</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results (SD)</td>
<td>Results (SD)</td>
<td>Results (SD)</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evans (1996)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>High</td>
<td>0.59 (1.37)</td>
<td>1.21 (2.36)</td>
<td>1.17 (2.73)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.46 (2.61)</td>
<td>2.04 (3.42)</td>
<td>2.74 (3.05)</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td>77</td>
<td>61</td>
<td>69</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td>62</td>
<td>53</td>
<td>53</td>
<td>38</td>
</tr>
<tr>
<td>Murray (1984)</td>
<td>DMFT</td>
<td>10</td>
<td>Group 1</td>
<td>High</td>
<td>1.45 (1.82)</td>
<td>1.71 (2.04)</td>
<td>1.62 (2.02)</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>67</td>
<td>29</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td>80</td>
<td>26</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td>43</td>
<td>29</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>Murray (1991)</td>
<td>DMFT</td>
<td>15-16</td>
<td>Group 1</td>
<td>High (n)</td>
<td>1.9 (2.2)</td>
<td>1.8 (2.7)</td>
<td>2.0 (3.0)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2</td>
<td>Low</td>
<td>68</td>
<td>2.7 (3.4)</td>
<td>3.3 (3.9)</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td>High (s)</td>
<td>2.9</td>
<td>3.4 (3.4)</td>
<td>3.9 (3.9)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2</td>
<td>Low</td>
<td>80</td>
<td>2.6 (3.6)</td>
<td>3.4 (3.9)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>32</td>
<td>27</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2</td>
<td>Low</td>
<td>31</td>
<td>27</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td>Low</td>
<td>23</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Studies which present results by other social class groupings

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Age</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Social grouping 1</th>
<th>Social grouping 1</th>
<th>Social grouping 2</th>
<th>Social grouping 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results (SD)</td>
<td>Results (SD)</td>
<td>Results (SD)</td>
<td>Results (SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provart (1995)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>High</td>
<td>Low deprivation</td>
<td>0.8 (1.8)</td>
<td>325</td>
<td>High deprivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>1.2 (2.3)</td>
<td>820</td>
<td>1.2 (2.1)</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td>1.1 (1.8)</td>
<td>60</td>
<td>2.1 (2.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td>1.2 (2.3)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Rugg-Gunn (1977)</td>
<td>dmft</td>
<td>5</td>
<td>Group 1</td>
<td>High</td>
<td>Urban ordinary</td>
<td>2.4 (2.7)</td>
<td>323</td>
<td>Social priority</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Low</td>
<td>6.1 (4.03)</td>
<td>132</td>
<td>2.0 (2.47)</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
<td></td>
<td></td>
<td>36.3</td>
<td>34.4</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td>10.6</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
C4: Social Class Studies: Individual Study Results

3. Studies which use a regression analysis to investigate the association of decay with social class stratified by water fluoride level

Study Details

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Age</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Number of subjects per ward (SD)</th>
<th>Mean outcome score (sd)</th>
<th>Social class measure</th>
<th>Mean social class score</th>
<th>Slope of regression line (β) (SE)</th>
<th>Intercept of line (α) (SE)</th>
<th>r² (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riley (1999)</td>
<td>dmft</td>
<td>5</td>
<td>Solihull</td>
<td><0.7</td>
<td>118.5 (36.3)</td>
<td>0.7 (0.4)</td>
<td>Townsend score</td>
<td>-0.9 (4.3)</td>
<td>0.08 (0.01)</td>
<td>0.77 (0.03)</td>
<td>0.91 (<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bromsgrove & Redditch</td>
<td>64.8 (26.2)</td>
<td>0.6 (0.2)</td>
<td></td>
<td></td>
<td>-1.1 (3.2)</td>
<td>0.05 (0.01)</td>
<td>0.65 (0.04)</td>
<td>0.33 (0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>West Birmingham</td>
<td>362.9 (82.3)</td>
<td>1.3 (0.2)</td>
<td></td>
<td></td>
<td>6.2 (4.2)</td>
<td>0.04 (0.02)</td>
<td>1.02 (0.12)</td>
<td>0.50 (~0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>North Birmingham</td>
<td>293.5 (77.6)</td>
<td>0.8 (0.3)</td>
<td></td>
<td></td>
<td>2.6 (3.7)</td>
<td>0.05 (0.03)</td>
<td>0.60 (0.10)</td>
<td>0.49 (0.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>North Warwickshire</td>
<td>66.2 (34.6)</td>
<td>0.9 (0.3)</td>
<td></td>
<td></td>
<td>-0.2 (2.6)</td>
<td>0.05 (0.02)</td>
<td>0.90 (0.05)</td>
<td>0.24 (~0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sandwell</td>
<td>142.0 (22.6)</td>
<td>1.1 (0.3)</td>
<td></td>
<td></td>
<td>4.5 (2.5)</td>
<td>0.08 (0.02)</td>
<td>0.68 (0.10)</td>
<td>0.45 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>East Birmingham</td>
<td>383.1 (157.0)</td>
<td>1.3 (0.4)</td>
<td></td>
<td></td>
<td>5.0 (2.3)</td>
<td>0.17 (0.05)</td>
<td>0.44 (0.29)</td>
<td>0.71 (0.02)</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td>Shropshire</td>
<td><0.3</td>
<td>30.1 (25.7)</td>
<td>1.1 (0.7)</td>
<td></td>
<td>-0.7 (2.3)</td>
<td>0.09 (0.02)</td>
<td>1.20 (0.04)</td>
<td>0.18 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chester</td>
<td>62.7 (26.6)</td>
<td>1.8 (0.8)</td>
<td></td>
<td></td>
<td>0.7 (4.3)</td>
<td>0.12 (0.02)</td>
<td>1.72 (0.10)</td>
<td>0.48 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liverpool</td>
<td>155.5 (76.1)</td>
<td>2.5 (0.8)</td>
<td></td>
<td></td>
<td>6.5 (3.9)</td>
<td>0.14 (0.02)</td>
<td>1.71 (0.16)</td>
<td>0.55 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trafford</td>
<td>105 (19.5)</td>
<td>2.0 (0.8)</td>
<td></td>
<td></td>
<td>0.0 (3.4)</td>
<td>0.19 (0.02)</td>
<td>1.99 (0.08)</td>
<td>0.76 (~0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warrington</td>
<td>88.3 (44.3)</td>
<td>1.7 (0.7)</td>
<td></td>
<td></td>
<td>-0.5 (3.9)</td>
<td>0.13 (0.03)</td>
<td>1.74 (0.10)</td>
<td>0.53 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sheffield</td>
<td>188.7 (57.9)</td>
<td>2.3 (0.8)</td>
<td></td>
<td></td>
<td>3.4 (4.0)</td>
<td>0.17 (0.02)</td>
<td>1.69 (0.09)</td>
<td>0.76 (~0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St Helens and Knowsley</td>
<td>108.3 (50.4)</td>
<td>3.3 (1.0)</td>
<td></td>
<td></td>
<td>4.3 (4.3)</td>
<td>0.18 (0.02)</td>
<td>2.53 (0.14)</td>
<td>0.58 (~0.001)</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td>Shropshire</td>
<td><0.3</td>
<td>30.1 (25.7)</td>
<td>1.1 (0.7)</td>
<td></td>
<td>-0.7 (2.3)</td>
<td>0.09 (0.02)</td>
<td>1.20 (0.04)</td>
<td>0.18 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chester</td>
<td>62.7 (26.6)</td>
<td>1.8 (0.8)</td>
<td></td>
<td></td>
<td>0.7 (4.3)</td>
<td>0.12 (0.02)</td>
<td>1.72 (0.10)</td>
<td>0.48 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liverpool</td>
<td>155.5 (76.1)</td>
<td>2.5 (0.8)</td>
<td></td>
<td></td>
<td>6.5 (3.9)</td>
<td>0.14 (0.02)</td>
<td>1.71 (0.16)</td>
<td>0.55 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trafford</td>
<td>105 (19.5)</td>
<td>2.0 (0.8)</td>
<td></td>
<td></td>
<td>0.0 (3.4)</td>
<td>0.19 (0.02)</td>
<td>1.99 (0.08)</td>
<td>0.76 (~0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warrington</td>
<td>88.3 (44.3)</td>
<td>1.7 (0.7)</td>
<td></td>
<td></td>
<td>-0.5 (3.9)</td>
<td>0.13 (0.03)</td>
<td>1.74 (0.10)</td>
<td>0.53 (~0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sheffield</td>
<td>188.7 (57.9)</td>
<td>2.3 (0.8)</td>
<td></td>
<td></td>
<td>3.4 (4.0)</td>
<td>0.17 (0.02)</td>
<td>1.69 (0.09)</td>
<td>0.76 (~0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St Helens and Knowsley</td>
<td>108.3 (50.4)</td>
<td>3.3 (1.0)</td>
<td></td>
<td></td>
<td>4.3 (4.3)</td>
<td>0.18 (0.02)</td>
<td>2.53 (0.14)</td>
<td>0.58 (~0.001)</td>
</tr>
</tbody>
</table>

4. Studies which used a multiple-regression analysis to investigate the association of decay, social class and water fluoride levels

Study Details

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Age</th>
<th>Water fluoridation</th>
<th>Social deprivation (measured by Jarman score)</th>
<th>Social deprivation (measured by Townsend score)</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope of regression line (β)</td>
<td>F statistic (p)</td>
<td>Slope of regression line (β)</td>
<td>F statistic (p)</td>
</tr>
<tr>
<td>Jones (1997)</td>
<td>dmft</td>
<td>5</td>
<td>-0.46</td>
<td>42.26 (~<0.001)</td>
<td>0.89</td>
<td>146.9 (~<0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.21</td>
<td>29.47 (<0.001)</td>
<td>0.27</td>
<td>15.45 (~<0.001)</td>
</tr>
<tr>
<td>Jones (2000)</td>
<td>DMFT</td>
<td>12</td>
<td>-0.45</td>
<td><0.001</td>
<td>0.11</td>
<td><0.001</td>
</tr>
</tbody>
</table>
5. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Age</th>
<th>Group</th>
<th>Measure of social class</th>
<th>Social class</th>
<th>Baseline</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluoride level (%F)</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>Beal (1971)</td>
<td>5</td>
<td>Balsall health</td>
<td>Descriptive</td>
<td>Poor area</td>
<td>Low</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northfield Dudley</td>
<td>low</td>
<td>Industrial area</td>
<td>Low</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dudley</td>
<td><0.1</td>
<td>Industrial area</td>
<td>Low</td>
<td>217</td>
</tr>
<tr>
<td>Grey (2000)</td>
<td>5</td>
<td>SE staffs</td>
<td>Jarman score</td>
<td>Descriptive</td>
<td>Low</td>
<td>3435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandwell</td>
<td>18.10</td>
<td>Descriptive</td>
<td>Low</td>
<td>3950</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walsall</td>
<td>1.67</td>
<td>Descriptive</td>
<td>Low</td>
<td>3120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dudley</td>
<td>-13.68</td>
<td>Descriptive</td>
<td>Low</td>
<td>3657</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. Birmingham</td>
<td>-21.57</td>
<td>Descriptive</td>
<td>Low</td>
<td>1965</td>
</tr>
<tr>
<td>N. Staffs</td>
<td>5</td>
<td>Shropshire</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Low</td>
<td>464</td>
</tr>
<tr>
<td>Herefordshire</td>
<td></td>
<td>Kidderminster</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Low</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12.34</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Low</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-13.13</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Low</td>
<td>904</td>
</tr>
<tr>
<td>Holdcroft (1999)</td>
<td>Not stated</td>
<td>N Birmingham Sandwell</td>
<td>Jarman score</td>
<td>Not stated</td>
<td>Low</td>
<td>7.85</td>
</tr>
<tr>
<td>Shropshire</td>
<td></td>
<td>Herefordshire</td>
<td>Not stated</td>
<td>Not stated</td>
<td>High</td>
<td>2.55</td>
</tr>
<tr>
<td>Shropshire</td>
<td></td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>High</td>
<td>1.48</td>
</tr>
<tr>
<td>Herefordshire</td>
<td></td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>High</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>High</td>
<td>1.53</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

1. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
</table>
| **Author (year)** | **Chen (1993)** | **Children aged 8-12 for dental fluorosis** | **Inclusion criteria** | **Fluoride level (ppm):**
Group 1: 3 (Natural)
Group 2: 6 (Natural)
No of subjects:
Group 1: 211
Group 2: 101
Age: 8-12 | **Fluoride level (ppm):**
Group 1: 3.1 (Natural)
Group 2: 0.4 (Natural)
No of subjects:
Group 1: 153
Group 2: 135
Age: 8-12 |
| **Country of study** | China | **Exclusion criteria** | **Social class:** Author states that economic and living habits are similar in all study areas
Ethnicity: Not stated
Other confounding factors: Not stated | **Final Group Characteristics** | **Baseline Group Characteristics** |
| **Geographic location** | Anquan (low F) and Hubei (high F) villages, Fenshun county, Guangdong Provinces | **Baseline Group Characteristics** | **Final Group Characteristics** | **Baseline Group Characteristics** |
| **Year study started** | 1984 | **Country of study** | USA | **Geographic location** 7 rural towns within 75 miles of each other in Illinois | **Baseline Group Characteristics** | **Baseline Group Characteristics** |
| **Year study ended** | 1991 | **Inclusion criteria** | Children aged 8-10 and 13-15
Continuous residence in study community | **Social class:** Not stated
Ethnicity: Not stated
Other confounding factors: Not stated | **Final Group Characteristics** | **Baseline Group Characteristics** |
| **Author (year)** | Heifetz (1988) | **Exclusion criteria** | None stated | **Fluoride level (ppm):**
Group 1: 3.8-4.1 (Natural)
Group 2: 2.8-3.8 (Natural)
Group 3: 2.1 (Natural)
Control: 1.1 (Natural)
No of subjects:
Group 1: 34
Group 2: 50
Group 3: 39
Control: 111
Age: 13-15 | **Fluoride level (ppm):**
Group 1: 3.8-4.1 (Natural)
Group 2: 2.8-3.8 (Natural)
Group 3: 2.1 (Natural)
Control: 1.1 (Natural)
No of subjects:
Group 1: 29
Group 2: 47
Group 3: 23
Control: 94
Age: 13-15 | **Baseline Group Characteristics** |
| **Country of study** | USA | **Inclusion criteria** | Children aged 7-14
Lifetime residents of study areas | **Social class:** Not stated
Ethnicity: No difference in odds of fluorosis in African-Americans compared to white and other races
Other confounding factors: Not stated | **Final Group Characteristics** | **Baseline Group Characteristics** |
| **Geographic location** | Newburgh City (F), Newburgh Town (F 1984), New Windsor (non-F), Kingston (non-F) | **Exclusion criteria** | Not stated | **Fluoride level (ppm):**
Group 1: 1.1 (Artificial)
Group 2: Low (Natural)
Group 3: Low (Natural)
Control: Low (Natural)
No of subjects:
Group 1: 459
Group 2: 289
Group 3: 134
Control: 425
Age: 7-14 | **Fluoride level (ppm):**
Group 1: 1.1 (Artificial)
Group 2: Low (Natural)
Group 3: Low (Natural)
Control: Low (Natural)
No of subjects:
Group 1: 847
Group 2: 289
Group 3: 237
Control: 646
Age: 7-14 | **Baseline Group Characteristics** |
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year): Selwitz (1995)</td>
<td>Country of study: USA</td>
<td>Geographic location: Kewanee (optimal), Monmouth (2x optimal), Abingdon, Elmwood (3x optimal), Bushnell, Ipava, Table Grove (4x optimal), Illinois</td>
<td>Year study started: 1980</td>
<td>Year study ended: 1990</td>
</tr>
<tr>
<td>Inclusion criteria: Children aged 8-10 & 14-16 years</td>
<td>Written parental consent: Lifetime residents of study areas</td>
<td>Continuous use of community water supply:</td>
<td>Fluoride level (ppm): Group 1: 4 (Natural)</td>
<td>Fluoride level (ppm): Group 1: 4 (Natural)</td>
</tr>
<tr>
<td>Exclusion criteria: None stated</td>
<td></td>
<td>Social class: Not stated</td>
<td>Group 2: 3 (Natural)</td>
<td>Group 2: 3 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity: Not stated</td>
<td>Group 3: 2 (Natural)</td>
<td>Group 3: 2 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td>Control: 1 (Natural)</td>
<td>Control: 1 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age: 8-10 and 13-15</td>
<td>Age: 8-10 and 13-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No of subjects: Group 1: 93</td>
<td>No of subjects: Group 1: 77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 132</td>
<td>Group 2: 117</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3: 100</td>
<td>Group 3: 105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: 224</td>
<td>Control: 258</td>
</tr>
</tbody>
</table>

2. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Case and control selection</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year): Skotowski (1995)</td>
<td>Country of study: USA</td>
<td>Geographic location: Iowa</td>
<td>Year study started: 1991</td>
<td>Year study ended:</td>
</tr>
<tr>
<td>Case-Definition: Dental fluorosis considered present if subject received TSIF score of 1 or more on any surface of criteria teeth - all permanent incisors and first molars. Emphasis placed on selecting cases with the most dental fluorosis to enhance contrast</td>
<td>Exposure: Fluoride exp. from drinking water in first 8 years of life, total ppm</td>
<td></td>
<td>Number of subjects: Cases: 54</td>
<td></td>
</tr>
<tr>
<td>Method of control selection: Subjects undergoing same clinical examination as cases who did not meet the case definition - subjects exhibiting no dental fluorosis (TSIF = 0) on criteria teeth</td>
<td>Age: Cases: 8-17</td>
<td></td>
<td>Controls 1: 54</td>
<td></td>
</tr>
<tr>
<td>Matching: Sex and age within 2 years</td>
<td></td>
<td>Controls1: 8-17</td>
<td></td>
<td>Controls: 8-17</td>
</tr>
<tr>
<td>Ratios of cases to controls: 1:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

3. Cross-sectional studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Adair (1999)</td>
<td>Inclusion criteria</td>
<td>Children attending sole elementary and middle schools in study area</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Exclusion criteria</td>
<td>Children whose homes were served with well water</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Warren County, Georgia</td>
<td>Baseline Characteristics</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Other confounding factors: Not stated</td>
<td></td>
</tr>
</tbody>
</table>

Author (year)	**Al-Alousi (1975)**	**Inclusion criteria**	Lifetime residents of study areas Children aged 12-16	Other sources of fluoride: Not stated	**Fluoride level (artificially or naturally fluoridated):** Group 1: 0.9 (Artificial) Control: <=0.01 (Natural)	**Age:** 12-16
Country of study	**England**	**Exclusion criteria**	Children aged 12-16	Social class: Not stated	**No of subjects:** Group 1: 171 Control: 178	
Geographic location	Leeds (non-F) and Anglesey (F)	**Baseline Characteristics**	Missing, fractured or crowned teeth Refusal to participate (1 school in Leeds)	Ethnicity: Not stated		
Year study started	1973	**Other confounding factors:** Not stated				

Author (year)	**Angelillo (1999)**	**Inclusion criteria**	Lifetime residents of study areas (children only) Children aged 12	Other sources of fluoride: Tooth brushing habits (frequency of tooth brushing), fluoride tablets, fluoride dentrifices	**Fluoride level (artificially or naturally fluoridated):** Group 1: >=2.5 (Natural) Control: <=0.3 (Natural)	**Age:** 12
Country of study	**Italy**	**Exclusion criteria**	Children aged 12 Used community water supply as main sources of drinking water	Social class: Parents employment status	**No of subjects:** Group 1: 553 Control: 461	
Geographic location	Area around Naples (F), area around Catanzaro (non-F)	**Baseline Characteristics**	Partially erupted teeth Orthodontic banding	Ethnicity: Not stated		
Year study started	1997	**Other confounding factors:** Sweet consumption, climate				

Author (year)	**Azcurra (1995)**	**Inclusion criteria**	Children aged 6,7,12 and 13 years at primary school	Other sources of fluoride: Frequency of tooth brushing,	**Fluoride level (artificially or naturally fluoridated):** Group 1: 9.05 (Natural) Group 2: 0.19 (Natural)	**Age:** 6-7 and 12-13
Country of study	**Argentina**	**Exclusion criteria**	None stated	Social class: Classified as high, medium, and low social class	**No of subjects:** Group 1: 100 Group 2: 100	
Geographic location	Sampacho (F) and Portena (non-F) in the Cordoba province	**Baseline Characteristics**		Ethnicity: Not stated		
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Booth (1991)</td>
<td>Country of study</td>
<td>England</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Chen (1989)</td>
<td>Country of study</td>
<td>Taiwan</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year) Clark (1993)</td>
<td>Inclusion criteria Children in selected schools</td>
<td>Other sources of fluoride: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 1.2</td>
</tr>
<tr>
<td>Country of study Canada</td>
<td>Exclusion criteria Children with fixed orthodontic appliances</td>
<td>Social class: Not stated</td>
<td>Control: <0.1 (Natural)</td>
</tr>
<tr>
<td>Geographic location Kelowna (F) and Vernon (non F)</td>
<td>Missing anterior teeth</td>
<td>Ethnicity: Not stated</td>
<td>No of subjects: Group 1: 621</td>
</tr>
<tr>
<td>Year study started Not stated</td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td>Control: 510</td>
</tr>
<tr>
<td>Author (year) Clarkson (1989)</td>
<td>Inclusion criteria Children aged 8 and 15</td>
<td>Other sources of fluoride: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.9-0.95 (Artificial)</td>
</tr>
<tr>
<td>Country of study Ireland and England</td>
<td>Exclusion criteria Not stated</td>
<td>Social class: Not stated</td>
<td>Group 3: low (Natural)</td>
</tr>
<tr>
<td>Geographic location Cork (low and high F) - 2 separate areas and Manchester (low F)</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td>Control: <0.3 (Natural)</td>
</tr>
<tr>
<td>Year study started Not stated</td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td>No of subjects: Group 1: 207</td>
</tr>
<tr>
<td>Author (year) Clarkson (1992)</td>
<td>Inclusion criteria Children aged 8 & 15</td>
<td>Other sources of fluoride: Increase in use of fluoride containing toothpaste and infant formula made with fluoridated water</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: high</td>
</tr>
<tr>
<td>Country of study Ireland</td>
<td>Exclusion criteria None stated</td>
<td>Social class: Not stated</td>
<td>Control: low</td>
</tr>
<tr>
<td>Geographic location Ireland</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td>No of subjects: Group 1: 688</td>
</tr>
<tr>
<td>Year study started 1984</td>
<td></td>
<td>Other confounding factors: Problems of consistent levels in the fluoridated supply during the 1960s and early 1970s</td>
<td>Control: 714</td>
</tr>
<tr>
<td>Author (year) Colquhoun (1984)</td>
<td>Inclusion criteria School children aged 7-12 years</td>
<td>Other sources of fluoride: Fluoride toothpaste use accounted for 76% of toothpaste sales in New Zealand in 1980</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 1 (Artificial)</td>
</tr>
<tr>
<td>Country of study New Zealand</td>
<td>Exclusion criteria Children with mottling who were known to have grown up in areas different in fluoridation status from where they were examined</td>
<td>Social class: Results stratified on social class - incidence of advanced dental fluorosis inversely related to social class but prevalence of dental fluorosis slightly higher in lower social class</td>
<td>Control: Low (Natural)</td>
</tr>
<tr>
<td>Geographic location New Zealand</td>
<td></td>
<td>Ethnicity: Ethnic composition of study areas was similar except for higher proportion of Maori and Pacific Island people in the lower socio-economic areas</td>
<td>No of subjects: Group 1: 1955</td>
</tr>
<tr>
<td>Year study started 1983</td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td>Control: 732</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Correia Sampaio (1999)</td>
<td>Country of study</td>
<td>Brazil</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Rural areas of Paraiba</td>
<td>Year started</td>
<td>1997</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Lifetime residents of study areas</td>
<td>Other sources of fluoride:</td>
<td>No topical or systemic fluoride programme implemented in schools. Children interviewed about oral health habits and use of toothpaste</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Children attending public schools (aged 6-11)</td>
<td>Social class:</td>
<td>All study areas are of low socio-economic status</td>
</tr>
<tr>
<td></td>
<td>Children who refused to be examined</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Those without permanent teeth</td>
<td>Other confounding factors:</td>
<td>Nutritional status</td>
</tr>
<tr>
<td></td>
<td>Undetermined birth place</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>6-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1.0 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.7-1.0 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td><0.7 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: 164</td>
</tr>
<tr>
<td>Inclusion/Exclusion Criteria</td>
<td>Age:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Group 1:</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Group 2:</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3:</td>
<td>1078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control:</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>280</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Cutress (1985)</td>
<td>Country of study</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Auckland, Frankton & Rodney</td>
<td>Year study started</td>
<td>Not stated</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Children returning parental consent forms and completed questionnaires</td>
<td>Other sources of fluoride:</td>
<td>Ingestion of fluoride tablets</td>
</tr>
<tr>
<td></td>
<td>Lifetime residents of study areas</td>
<td>Social class:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Children aged 9</td>
<td>Ethnicity:</td>
<td>European (80% F, 84% non F), Polynesian (16% F, 11% non-F), Asian (2% F, 1% Non-F), Mixed (2% F, 4% non-F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>None stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>6-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: 280</td>
</tr>
<tr>
<td>Author (year)</td>
<td>de Crousaz (1982)</td>
<td>Country of study</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Friburg and Neuchatel (non-F), Bale-Ville (F)</td>
<td>Year study started</td>
<td>1979</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Not stated for control areas, for fluoride area only</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Lifetime residents included</td>
<td>Social class:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Children born outside Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1 (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control: 280</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Downer (1994)</td>
<td>Country of study</td>
<td>England, Scotland and Ireland</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Dublin (F), North London, Edinburgh and Glasgow (non-F)</td>
<td>Year study started</td>
<td>Not stated</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Children aged 12 years</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Lifetime residents of study areas</td>
<td>Social class:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>0.9ppm (Artificial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>Low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>Low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>939</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Drscolll (1983)</td>
<td>Country of study</td>
<td>USA</td>
</tr>
<tr>
<td>Geographic location</td>
<td>7 rural Illinois communities within 75 miles of each other</td>
<td>Year study started</td>
<td>1980</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Lifetime residents of study areas</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Children in grades 3-10 (age 8-16)</td>
<td>Social class:</td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td>Consumed public water</td>
<td>Ethnicity:</td>
<td><5% non white</td>
</tr>
<tr>
<td></td>
<td>Parental consent</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>None stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>3.84-4.07 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>2.84-3.77 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>2.08 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>1.06 (Natural)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 1: 136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>336</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year) Eklund (1987)</td>
<td>Inclusion criteria Resident in study areas for the first 6 years of life Subjects aged approximately 30-60 years old Consumed city water supplies</td>
<td>Other sources of fluoride: Not stated Social class: Areas similar on education and income level - number of years of education similar between areas Ethnicity: 89.6% of Lordsburg subjects Hispanic, 74.2% of Deming Hispanic</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 3.5 (Natural) Control: 0.7 (Natural) No of subjects: Group 1: 164 Control: 151</td>
</tr>
<tr>
<td>Country of study USA</td>
<td>Exclusion criteria None stated</td>
<td>Other confounding factors: Not stated</td>
<td>Age: 27-65</td>
</tr>
<tr>
<td>Geographic location Lordsburg (high-F), Deming (lower-F), New Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year) Ellwood (1995)</td>
<td>Inclusion criteria Lifetime residents of study areas (children only) Agreement to participate</td>
<td>Other sources of fluoride: Tooth brushing behaviour - age started brushing, weekly tooth brushing frequency, Social class: Not stated Ethnicity: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.7 (Artificial) Group 2: 0.9 Control: <0.1 (Natural) No of subjects: Group 1: 196 Group 2: 455 Control: 267</td>
</tr>
<tr>
<td>Country of study Ireland and Wales</td>
<td>Exclusion criteria Fixed orthodontic appliances</td>
<td>Other confounding factors: Not stated</td>
<td>Age: 14</td>
</tr>
<tr>
<td>Geographic location Chester (non-F), Bala (non-F), Anglesey (F), Cork (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year) Ellwood (1996)</td>
<td>Inclusion criteria Children in their 3rd year of secondary education Lifelong residents of study areas</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.7 (Artificial) Group 2: 0.9 Control: <0.1 (Natural) No of subjects: Group 1: 196 Control: 267</td>
</tr>
<tr>
<td>Country of study England and Wales</td>
<td>Exclusion criteria Children with fixed orthodontic appliances</td>
<td>Other confounding factors: Not stated</td>
<td>Age: 14</td>
</tr>
<tr>
<td>Geographic location Chester and Bala (non-F), and Anglesey (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year) Forrest (1956)</td>
<td>Inclusion criteria Lifetime residents of study areas Children aged 12-14</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 5.8ppm (Natural) Group 2: 3.5ppm (Natural) Group 2: 2.0ppm (Natural) Group 4: 0.9ppm (Natural) Group 5: 0.1-0.2ppm (Natural) Control: 0.1ppm No of subjects: Group 1: 51 Group 2: 62 Group 3: 92 Group 4: 119 Group 5: 114 Control: 145</td>
</tr>
<tr>
<td>Country of study England</td>
<td>Exclusion criteria None stated</td>
<td>Other confounding factors: Not stated</td>
<td>Age: 12-14</td>
</tr>
<tr>
<td>Geographic location West Mersey, Burnham-on-Crouch, Harwich (F), Saffron Walden and Malden West (non-F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started 1954</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Forrest (1965)</td>
<td>Country of study</td>
<td>Wales</td>
</tr>
<tr>
<td>Region</td>
<td>Gwalchmai (F) and Bodafon (non-F), Anglesey</td>
<td>Year study started</td>
<td>1963</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Children aged 8 from a selection of schools</td>
<td>Exclusion criteria</td>
<td>Schools in Holyhead</td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>91</td>
<td><0.2 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>8</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>130</td>
<td><0.2 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>130</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Gaspar (1995)</td>
<td>Country of study</td>
<td>Brazil</td>
</tr>
<tr>
<td>Region</td>
<td>Piracicaba (F), Iracemapolis (non-F)</td>
<td>Year study started</td>
<td>Not stated</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Children aged 10-14 years old</td>
<td>Exclusion criteria</td>
<td>Lifetime residents of study areas</td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>211</td>
<td><0.2 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>211</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>200</td>
<td><0.2 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>200</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Goward (1982)</td>
<td>Country of study</td>
<td>England</td>
</tr>
<tr>
<td>Region</td>
<td>Two adjacent districts of Leeds with different fluoride levels</td>
<td>Year study started</td>
<td>1979</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Lifetime residents of study areas (children only)</td>
<td>Exclusion criteria</td>
<td>Children using systemic or topical fluoride supplements excluded from the study</td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>195</td>
<td><0.1 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>195</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>205</td>
<td><0.1 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>205</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Grimaldo (1995)</td>
<td>Country of study</td>
<td>Mexico</td>
</tr>
<tr>
<td>Region</td>
<td>San Luis Potosi</td>
<td>Year study started</td>
<td>Not stated</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Lifetime residents at same address</td>
<td>Exclusion criteria</td>
<td>Children aged 11-13 in selected schools</td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Local diet rich in calcium, reduces fluoride absorption</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>58</td>
<td><0.7 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>58</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Control:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>67</td>
<td><0.7 (Natural)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>67</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Social class:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>Not stated</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Grobler (1986)</td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>South Africa</td>
<td></td>
<td>Group 1: 3.7 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Nourivier (low F), Tweeriviere (high F) in North Western Cape province</td>
<td></td>
<td>Control: 0.62 (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both communities had virtually no dental care or fluoride therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar socio-economic status in two study areas (reported by authors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar ethnicity in two study areas (reported by authors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Areas similar in nutrition and dietary habits (reported by authors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature 27-32 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Haavikko (1974)</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Finland</td>
<td></td>
<td>Group 1: 57</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Espoo (low F), Elimaki (high F), Hanko (optimal F), Lohja (low F)</td>
<td></td>
<td>Group 2: 62</td>
</tr>
<tr>
<td>Year study started</td>
<td>1969</td>
<td></td>
<td>Group 3: 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children who had been resident in study areas for the first 6 years of life</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children aged 10-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food sources of fluoride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Heintze (1998)</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Brazil</td>
<td></td>
<td>Group 1: 430</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Garca (F), Itrapolis (non-F), Sao Paulo state</td>
<td></td>
<td>Group 2: 62</td>
</tr>
<tr>
<td>Year study started</td>
<td>1995</td>
<td></td>
<td>Group 3: 348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects aged 5 - 24 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects from all social strata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects that used tap water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects that used tap water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subjects asked about use of toothpaste or mouthrinses containing fluoride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cities similar in socio-economic and socio-demographic conditions, subjects from all social strata included</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Garca altitude = 526, mean temp = 22°C, pop. = 41351; Itapolis: altitude = 491m, mean temp = 23°C, pop. = 30 111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Heller (1997)</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td></td>
<td>Group 1: >1.2</td>
</tr>
<tr>
<td>Geographic location</td>
<td>National survey of oral health of US school children</td>
<td></td>
<td>Group 2: 0.7-1.2</td>
</tr>
<tr>
<td>Year study started</td>
<td>1986</td>
<td></td>
<td>Group 3: 0.3-0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lifetime residents of study areas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aged 7-17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Completion of survey (parents)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other sources of fluoride:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Written questionnaire included question regarding child's use of fluoride drops, fluoride tablets, professional topical fluoride treatments and school fluoride rinses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results standardised to age and sex distribution of US schoolchildren who participated in survey</td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Confounding Factors</td>
<td>Baseline Characteristics</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Author (year)
Hong (1990)
Country of study
Taiwan
Geographic location
Chung-hsing New village (F) and Tsao-tun (non-F)
Year study started
Not stated</td>
<td>Inclusion criteria
Children aged 6-15
Resident in village since initiation of fluoridation
Exclusion criteria
Children who migrated from other areas during study period</td>
<td>Other sources of fluoride:
Not stated
Social class:
Two communities alike in social and living customs
Ethnicity:
Not stated
Other confounding factors:
Two areas have virtually identical climates, only 3km apart</td>
<td>Fluoride level (artificially or naturally fluoridated):
Group 1: 0.6 (Artificial)
Control: 0.08 (Natural)
No of subjects:
Group 1: 3066
Control: 4087</td>
</tr>
<tr>
<td>Author (year)
Ibrahim (1995)
Country of study
Sudan
Geographic location
Treit El Biga (low F), Abu Gronn (F)
Year study started
1992</td>
<td>Inclusion criteria
At least one erupted permanent maxillary incisor
Lifetime residents of study areas
Age 7-16
Exclusion criteria
Not stated</td>
<td>Other sources of fluoride:
Not stated
Social class:
Author states that areas have more or less the same socio-economic background
Ethnicity:
Author states that areas have more or less the same ethnic background
Other confounding factors:
Altitude = 300m for both areas and mean temp = 25-35 °C. In low-fluoride area boys had significantly more fluorosis than girls</td>
<td>Fluoride level (artificially or naturally fluoridated):
Group 1: 2.56 (Natural)
Control: 0.25 (Natural)
No of subjects:
Group 1: 58
Control: 55</td>
</tr>
<tr>
<td>Author (year)
Ismail (1990)
Country of study
Canada
Geographic location
Public and Private schools in Trois Rivières (F) and Sherbrooke (non-F), Quebec
Year study started
1987</td>
<td>Inclusion criteria
Children randomly selected from private and public schools separately
Children aged 11-17
Resident in study areas for more than 10 years
Exclusion criteria
None stated</td>
<td>Other sources of fluoride:
Fluoride tablet use around 10-15% in F areas and 60-70% in non-F area
Social class:
Stratified on school type: private or public (authors state private school likely to be higher social class)
Ethnicity:
Not stated
Other confounding factors:
Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):
Group 1: 1.0 (Natural)
Control: <0.1 (Natural)
No of subjects:
Group 1: 437
Control: 499</td>
</tr>
<tr>
<td>Author (year)
Jackson (1975)
Country of study
Wales
Geographic location
Anglesey (F), Bangor and Caernarfon (non-F)
Year study started
1974</td>
<td>Inclusion criteria
Lifetime residents of study areas
Continuous use of public water supply
School children aged 15 years
Parental consent
Exclusion criteria
Children who had ever received fluoride tablets</td>
<td>Other sources of fluoride:
Children who had received fluoride tablets excluded
Social class:
Not stated
Ethnicity:
Not stated
Other confounding factors:
Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):
Group 1: 0.9 (Artificial)
Control: <0.1 (Natural)
No of subjects:
Group 1: 88
Control: 97</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Jackson (1999)</td>
<td>Inclusion criteria</td>
<td>Lifetime residents of study areas</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Children aged 7-14</td>
<td>Consumed public water from birth or supply with comparable water level</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Connersville (non-F)m, Brownsburg (optimal-F), Lowell (high-F), Indiana</td>
<td>Exclusion criteria</td>
<td>Parental and personal consent</td>
</tr>
<tr>
<td>Year study started</td>
<td>1992</td>
<td>Factors in medical history that would contraindicate a dental examination</td>
<td>Control: 0.2 (Natural)</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Group 1: 105</td>
<td>Full mouth fixed orthodontic appliance</td>
<td>Group 2: 122</td>
</tr>
<tr>
<td>Age:</td>
<td>7-10 and 11-14</td>
<td>Social class: Not stated</td>
<td>Control: 129</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Jolly (1971)</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
</tr>
<tr>
<td>Country of study</td>
<td>India</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>The Punjab</td>
<td>Social class: Not stated</td>
<td>No of subjects (min-max):</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Ethnicity: Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Fluoride measure:</td>
<td>Fluoride level</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>5-15</td>
</tr>
<tr>
<td>Fluoride level (min-max):</td>
<td>Fluoride level</td>
<td>Group 2: 1.3-1.6 (Natural)</td>
<td>0.7 – 9.4</td>
</tr>
<tr>
<td>Fluoride level (min-max):</td>
<td>Not stated</td>
<td>Group 3: 0.6-0.8 (Natural)</td>
<td>Not stated</td>
</tr>
<tr>
<td>No of subjects (min-max):</td>
<td>Not stated</td>
<td>Control: 0.1 (Natural)</td>
<td>Not stated</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Not stated</td>
<td>No of subjects:</td>
<td>Control: 145</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Kunzel (1976)</td>
<td>Inclusion criteria</td>
<td>Children resident in study areas</td>
</tr>
<tr>
<td>Country of study</td>
<td>Cuba</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>La Salud (low F), Mir (medium F), San Augustin and Blanqizal (high F)</td>
<td>Other sources of fluoride:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Year study started</td>
<td>1973</td>
<td>Social class: Not stated</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Not stated</td>
<td>Ethnicity: Not stated</td>
<td>Control: 564</td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Not stated</td>
<td>Fluoride level (min-max):</td>
<td>12-17</td>
</tr>
<tr>
<td>Fluoride level (min-max):</td>
<td>Not stated</td>
<td>Control: <=0.3</td>
<td>0.7 – 9.4</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Not stated</td>
<td>Ethnicity: Not stated</td>
<td>Not stated</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levine (1989)</td>
<td>Inclusion criteria: Lifetime residents of study areas (children only) Schools with catchment areas inside study areas</td>
<td>Other sources of fluoride: Children who had received fluoride supplements at any time excluded Social class: Schools selected that served similar socio-economic populations (social class groups 3,4,5) Ethnicity: Asian and West Indian children excluded Other confounding factors: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>England</td>
<td>Year study started 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leeds (non-F), Birmingham (F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion/exclusion criteria: School children aged 7 to 14 years</td>
<td>Other sources of fluoride: Not stated Social class: Low socioeconomic status, mean annual income of about 200 yuan Ethnicity: Not stated Other confounding factors: Fluoride in the air - high in Greifenberg</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Lin (1991)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Year study started Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langan and Jiayi (non-F), Xinyuan (F)</td>
<td>Inclusion/exclusion criteria: Children aged 12 years</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Fluoride in the air - high in Greifenberg</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Masztalerz (1990)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>Year study started Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Militsch (non-F), Breslau (F), Neisse (high-F)</td>
<td>Inclusion/exclusion criteria: Children who had not yet changed all their primary dentition</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Fluoride in the air - high in Greifenberg</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Author (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mazzotti (1939)</td>
<td>Inclusion/exclusion criteria: Lifetime residents of study areas Children aged 12 years</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Fluoride in the air - high in Greifenberg</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Year study started 1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All areas in Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mclnnes (1982)</td>
<td>Inclusion/exclusion criteria: Lifetime residents of study area Pre-school children aged 1-5</td>
<td>Other sources of fluoride: Majority of babies were breastfed - would not be exposed to fluoride from water used in preparation of infant formula Social class: Not stated, but experimental and control groups were similar (parents were land or railway labourers) Ethnicity: All children same ethnic origin - European-African-Malay origin Other confounding factors: Same climatic conditions in both areas</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Year study started Not stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenhardt (F), Keimoes (non-F), North western Cape Province</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Mella (1992)</td>
<td>Inclusion criteria</td>
<td>Students at boarding institution, exposure estimated from home fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Chile</td>
<td>Exclusion criteria</td>
<td>Lived for first 6 years in home town</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Students attending 2 boarding institutions in Santiago, who lived in areas throughout Chile</td>
<td>Other confounding factors:</td>
<td>Control: <=0.3 (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Social class:</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Baseline Characteristics</td>
<td></td>
<td>Ethnicity:</td>
<td>Control: 72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author (year)	Mella (1994)	**Inclusion criteria**	4 schools in study areas	**Fluoride level (artificially or naturally fluoridated):**
Country of study	Chile	**Exclusion criteria**	Not stated	Group 1: 2.2 (Natural)
Geographic location	Iquique (F), Santiago (non-F), Valparaíso-Vina (F), Temuco (low-F)			Group 2: 0.0 (Natural)
Year study started	1983			Group 3: 1.0 (Artificial)
			Control: 0.3 (Natural)	
			No of subjects:	Group 1: 171
				Group 2: 203
				Group 3: 125
				Control: 194
				Age: 12

Author (year)	Milsom (1990)	**Inclusion criteria**	Children aged 8 years attending state maintained schools	**Fluoride level (artificially or naturally fluoridated):**
Country of study	England	**Lifetime residents of study areas**	Lifetime residents of study areas	Group 1: 1 (Artificial)
Geographic location	Nantwich (F), Northwich (non-F)	**Parental consent**	Parental consent	Control: -0.3 (Natural)
Year study started	1988	**Exclusion criteria**	Parishes not bounded on all sides by parishes with optimally fluoridated water for fluoride areas	**No of subjects:**
		Other confounding factors:	Not stated	Group 1: 91
				Group 2: 131
				Age: 8

Author (year)	Nanda (1974)	**Inclusion criteria**	Lifetime residents of study areas	**Fluoride level (artificially or naturally fluoridated):**
Country of study	India	**Children from 103 urban & 66 rural schools**	Children from 103 urban & 66 rural schools	Group 1: >1.21 (Natural)
Geographic location	Lucknow	**All permanent teeth (excluding third molars) present**	All permanent teeth (excluding third molars) present	Control: 0.3-0.4 (Natural)
Year study started	Not stated	**Consumed water from one source since birth**	Consumed water from one source since birth	**No of subjects:**
		Exclusion criteria	None stated	Group 1: 66
				Group 2: 134
				Group 3: 499
				Control: 710
				Age: 6-17
Study Details

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Country of study</th>
<th>Geographic location</th>
<th>Year study started</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Other sources of fluoride:</th>
<th>Social class:</th>
<th>Ethnicity:</th>
<th>Other confounding factors:</th>
<th>Fluoride level (artificially or naturally fluoridated):</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nunn (1992)</td>
<td>England</td>
<td>Hartlepool, Newcastle and Middlesborough</td>
<td>1989</td>
<td>Lifetime residents of study areas</td>
<td>Children with fractured incisor teeth, orthodontic bracket or surface otherwise obscured</td>
<td>Not stated</td>
<td>Occupation of head of household recorded</td>
<td>Ethnicity recorded but no expansion on variable</td>
<td>Not stated</td>
<td>Group 1: 1-1.3, Group 2: 1, Control: 0.2</td>
<td>Age: 15-16</td>
</tr>
<tr>
<td>Nunn (1994)</td>
<td>Sri-Lanka and England</td>
<td>Sri Lanka and North East England</td>
<td>1990</td>
<td>Lifetime residents of study areas (England only)</td>
<td>Children aged 12</td>
<td>Not stated</td>
<td>Children divided into high and low social class</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Group 1: 361, Group 2: 356, Control: 376</td>
<td>Fluoride level (min-max): 0-1.1</td>
</tr>
<tr>
<td>Ocke (1941)</td>
<td>South Africa</td>
<td>Upington, Kenhardt and Pofadder</td>
<td>1939</td>
<td>Children attending schools in study areas</td>
<td>Children aged 6-17</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Study areas at same altitude, same climate, similar countryside and vegetation, differences in drinking water composition discussed</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 2.46 (av), Group 2: 6.8, Control: 6.38</td>
<td>Age: 6-17</td>
</tr>
<tr>
<td>Ray (1982)</td>
<td>India</td>
<td>Rustampur and Ledhupur, 2 adjacent village in Varanasi District</td>
<td>Not stated</td>
<td>None stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Study areas similar in respect to demographic and socio-economic characteristics</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Group 1: >2 (Natural), Group 2: 1-2 (Natural), Control: <1 (Natural)</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 75, Group 2: 471, Control: 964</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year): Riordan (1991) Country of study: Australia Geographic location: Perth (F) and Bunbury (non-F), Western Australia Year study started: 1989</td>
<td>Inclusion criteria: Children born in 1978 Children attending government schools in study areas Parental consent Exclusion criteria: Subjects with amelogenesis imperfecta or orthodontic banding</td>
<td>Other sources of fluoride: Questionnaire investigated periods and duration of use of fluoride supplements, use of fluoride toothpaste, included age at which use of toothpaste commenced, whether child swallowed toothpaste Social class: Schools assigned socio-economic score - no significant difference in scores between study areas Ethnicity: Not stated Other confounding factors: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Author (year): Rugg-Gunn (1997) Country of study: Saudi Arabia Geographic location: Jeddah (low F), Riyadh (moderate F) and Quassim (high F) adjacent rural areas with similar water supplies to rural area selected Year study started: 1992</td>
<td>Inclusion criteria: Lifetime residents of study areas Boys aged 14 Parental consent Exclusion criteria: Photographs which failed to show whole buccal surface Out of focus photographs</td>
<td>Other sources of fluoride: Not stated Social class: Schools grouped according to the socio-economic status of residential areas in the urban community. Family income and parental education measured using questionnaire Ethnicity: Not stated Other confounding factors: Nutritional status</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Author (year): Russell (1951) Country of study: USA Geographic location: Colorado Springs (F), Bolder (non-F), Colorado Year study started: 1950</td>
<td>Inclusion criteria: White native residents listed in school census record for 1920, 1930 or 1940 and as resident in current city directory Mothers living in study area at time of birth Aged 20-44 Residence and usage of local water unbroken except for periods not exceeding 60 days during calcification and eruption of permanent teeth Exclusion criteria: None stated</td>
<td>Other sources of fluoride: Not stated Social class: Workers in two communities followed similar occupations and had similar average salaries Ethnicity: Native born white 98% of Boulder pop. And 96% of Colorado Springs pop Other confounding factors: Colorado Springs 3 times size of Bolder, similar altitude and climate, neither population ageing nor young., both are highly literate, water systems similar</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Author (year): Rwennyonyi (1998) Country of study: Uganda Geographic location: 4 areas of Uganda located at different altitudes Year study started: Not stated</td>
<td>Inclusion criteria: Lifetime residents of study areas Exclusion criteria: None stated</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Mother's interviewed about water intake and food habits of child during early childhood Altitude</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Rwenyonyi (1999)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Uganda</td>
<td>Children aged 10-14</td>
<td>Fluoride exposure from liquid estimated by daily liquid intake - subjects from fluoride area had higher intake of water, consumed more boiled water and consumed less tea than subjects from control area, higher consumption of fluoride from Trona in control group</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Kasese (low F), Kisoro (high F)</td>
<td>Lifetime residents of study areas</td>
<td>Social class: Most families were small scale farmers and all appeared to be of similar social class</td>
</tr>
<tr>
<td>Year study started</td>
<td>1996</td>
<td>Consumed drinking water from same source for first 6 years of life</td>
<td>Ethnicity: All children were ethnic Bantu Africans from the Bafumbria and Bakonjo tribes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parental consent</td>
<td>Other confounding factors: Vegetarianism (associated with fluorosis), altitude (results presented separately for different altitudes) - no association found between altitude and fluorosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None stated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Scheinin (1964)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Finland</td>
<td>Children aged 11</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Artjarvi, Askola, Elimaki, Litti, Myrskyla, Parikkala, Taipalsaari, Varkela, Vehkalahti</td>
<td></td>
<td>Social class: Not stated</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td>Ethnicity: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Segreto (1984)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>16 Texas communities</td>
<td>Exclusion criteria</td>
<td>Social class: Not stated</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Ethnicity: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors: Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Selwitz (1998)</td>
<td>Lifetime residents of study areas Parental consent</td>
<td>Type of toothpaste currently used and used before age 6, use of dietary fluoride</td>
<td>Age:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>supplements, receipt of professionally applied fluoride treatments</td>
<td>Group 1: 1</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>Social class: Not stated</td>
<td>Group 3: 0.3</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td>Control: 0.3</td>
</tr>
<tr>
<td>Kewanee (F), Holdrege and</td>
<td></td>
<td>Other confounding factors:</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Broken Bow (non-F)</td>
<td></td>
<td>Private well water use</td>
<td>Group 1: 260</td>
</tr>
<tr>
<td>Year study started</td>
<td>Inclusion/Exclusion Criteria</td>
<td></td>
<td>Group 3: 128</td>
</tr>
<tr>
<td>1990</td>
<td>Inclusion criteria</td>
<td></td>
<td>Control: 107</td>
</tr>
<tr>
<td>Other sources of fluoride:**</td>
<td>Type of toothpaste currently used and used before age 6,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social class: Not stated</td>
<td>use of dietary fluoride supplements, receipt of professionally applied fluoride treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: Not stated</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private well water use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spadaro (1955)</td>
<td>Children attending schools in study areas</td>
<td>Fluoride level (min-max):</td>
<td>Fluoride level:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>0.4 - 1.9</td>
<td>Fluoride level (min-max):</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td>No of subjects (min-max):</td>
<td>Children aged 6-11</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcelona, Pozzo di Gotto,</td>
<td></td>
<td></td>
<td>Group 1: 55</td>
</tr>
<tr>
<td>Sicily</td>
<td></td>
<td></td>
<td>Control: 136</td>
</tr>
<tr>
<td>Year study started</td>
<td>Inclusion criteria</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>1954</td>
<td>Inclusion criteria</td>
<td>Age:</td>
<td>Group 1: 1</td>
</tr>
<tr>
<td>Other sources of fluoride:**</td>
<td>Use of fluoride dentifrice, fluoride drops,</td>
<td></td>
<td>Group 3: 0.3</td>
</tr>
<tr>
<td>Social class: Not stated</td>
<td>fluoride tablets, age at which brushing commenced (from parental questionnaire)</td>
<td></td>
<td>Control: 0.3</td>
</tr>
<tr>
<td>Ethnicity: Not stated</td>
<td>Other confounding factors:</td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td>Group 1: 260</td>
</tr>
<tr>
<td>Fluoride measure:</td>
<td>Fluoride level:</td>
<td></td>
<td>Group 3: 128</td>
</tr>
<tr>
<td>Age:</td>
<td>Fluoride level (min-max):</td>
<td></td>
<td>Control: 107</td>
</tr>
<tr>
<td>Children aged 6-11</td>
<td>Fluoride level (min-max):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephen (1999)</td>
<td>Lifetime or school lifetime fluoridated subjects Parental consent</td>
<td>Group 1: (Natural)</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td>Group 1: 55</td>
<td>Group 3: (Natural)</td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
<td>Control: Low</td>
<td>Control: 136</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Inclusion criteria</td>
<td>No of subjects: 37-727</td>
<td></td>
</tr>
<tr>
<td>Burghead, Findhorn & Kinloss (F), and Buckie & Portessie (Non-F)</td>
<td>Exclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>Inclusion criteria</td>
<td>Age:</td>
<td>Group 1: 8-12</td>
</tr>
<tr>
<td>1998</td>
<td>Inclusion criteria</td>
<td></td>
<td>Group 3: 8-12</td>
</tr>
<tr>
<td>Other sources of fluoride:**</td>
<td>Use of fluoride dentifrice, fluoride drops,</td>
<td></td>
<td>Control: 8-12</td>
</tr>
<tr>
<td>Social class: Not stated</td>
<td>fluoride tablets, age at which brushing commenced (from parental questionnaire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: Not stated</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Age:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1: 1.2</td>
<td>Fluoride level:</td>
<td></td>
<td>Group 3: 0.8</td>
</tr>
<tr>
<td>Group 2: 1.0</td>
<td>Fluoride level:</td>
<td></td>
<td>Control: 0.8</td>
</tr>
<tr>
<td>Group 3: 0.8</td>
<td>Fluoride level:</td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Control: 0.0</td>
<td>Fluoride level:</td>
<td></td>
<td>Group 1: 43</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Fluoride level:</td>
<td></td>
<td>Group 3: 249</td>
</tr>
<tr>
<td>Group 3: 43</td>
<td>Fluoride level:</td>
<td></td>
<td>Control: 133</td>
</tr>
<tr>
<td>Control: 249</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control: 133</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szpunar (1988)</td>
<td>Lifetime residents of study areas Children aged 6-12</td>
<td>Age:</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Exclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Inclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Inclusion criteria</td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td></td>
</tr>
<tr>
<td>Cadillac (non-F), Hudson,</td>
<td>Exclusion criteria</td>
<td>Age:</td>
<td></td>
</tr>
<tr>
<td>Reedford, Richmond (F) -</td>
<td>Inclusion criteria</td>
<td></td>
<td>Group 1: 6-12</td>
</tr>
<tr>
<td>Michigan</td>
<td>Inclusion criteria</td>
<td></td>
<td>Group 3: 6-12</td>
</tr>
<tr>
<td>Year study started</td>
<td>Inclusion criteria</td>
<td></td>
<td>Control: 6-12</td>
</tr>
<tr>
<td>Not stated</td>
<td>Inclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other sources of fluoride:**</td>
<td>Use of F supplements,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social class: Not stated</td>
<td>dental attendance,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: Not stated</td>
<td>time interval since last dental visit,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other confounding factors:</td>
<td>age began brushing (parent & child), age at start of F rinsing,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td>feeding method in 1st year of life,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride level (artificially or naturally fluoridated):</td>
<td>Age: 6-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1: 1.2</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2: 1.0</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: 0.8</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control: 0.0</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1: 43</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: 249</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3: 133</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control: 131</td>
<td>Fluoride level:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Venkateswarlu (1952)</td>
<td>Study Details</td>
<td>Inclusion/Exclusion Criteria</td>
</tr>
<tr>
<td>Country of study</td>
<td>India, Switzerland</td>
<td></td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Villages in the Visakhapatnam area (India), 3 villages in Switzerland</td>
<td></td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td>Exclusion criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not stated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Venkateswarlu (1952)</th>
<th>Country of study</th>
<th>India, Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Villages in the Visakhapatnam area (India), 3 villages in Switzerland</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Vignarajah (1993)</th>
<th>Country of study</th>
<th>Antigua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Urban and rural areas in Antigua</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 12-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Exclusion criteria</td>
<td>Lifetime residents of study areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Villa (1998)</th>
<th>Country of study</th>
<th>Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Rancagua (non-F), Santiago (low-F), La Serena (medium F), San Felipe & Iquique (High F)</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 7,12 and 15 in selected schools in study areas</td>
</tr>
<tr>
<td>Year study started</td>
<td>1996</td>
<td>Exclusion criteria</td>
<td>Children selected from schools graded according to socio-economic status to give similar socio-economic distribution in each study area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children (age not stated)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location</td>
<td>Hotan, Kaxgar and Aksu, in south Xinjiang</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Children aged 3-14</td>
</tr>
<tr>
<td>Year study started</td>
<td>1991</td>
<td>Exclusion criteria</td>
<td>Areas with <= 2ppm F in water supplies</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year): Wang (1999)
 Country of study: China
 Geographic location: Xindiliang Village (high F), Shiligetu Village (lower F)
 Year study started: Not stated</td>
<td>Inclusion criteria: Not stated
 Exclusion criteria: Not stated</td>
<td>Other sources of fluoride: Not stated
 Social class: Not stated
 Ethnicity: Not stated
 Other confounding factors: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 2-4 (Natural)
 Control: 1.3 (Natural)
 No of subjects: Group 1: 12
 Control: 46</td>
</tr>
<tr>
<td>Author (year): Warnakulasuriya (1992)
 Country of study: Sri Lanka
 Geographic location: Four geographic areas at same altitude & temp from 4 districts in Sri Lanka (Galewala, Warapola, Kekirawa & Rambukkana)
 Year study started: 1986</td>
<td>Inclusion criteria: Lifetime residents of study areas
 Exclusion criteria: Children aged 14
 **Children who lived more than 15 miles from school
 Children absent on day of examination</td>
<td>Other sources of fluoride: Fluoride containing toothpaste or other fluoride therapies had not been used by or on these children during time of development of primary dentition. Tea consumption high.
 Social class: Wide ranges of socio-economic differences not expected
 Ethnicity: Not stated
 Other confounding factors: Not stated</td>
<td>Fluoride measure: Fluoride level
 Fluoride level (min-max): <0.39>=1.0
 No of subjects (min-max): 27-211</td>
</tr>
<tr>
<td>Author (year): Wenzel (1982)
 Country of study: Danish
 Geographic location: Ry (non-F), Naestved (F), and Greve (F)
 Year study started: Not stated</td>
<td>Inclusion criteria:
 Lifetime residents of study areas
 Girls aged 12-15
 Children with orthodontic appliances
 Children who lived more than 15 miles from school
 Children absent on day of examination</td>
<td>Other sources of fluoride: Not stated
 Social class: Not stated
 Ethnicity: Not stated
 Other confounding factors: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 2.4
 **Group 2: 1.0
 Control: <0.2
 No of subjects: Group 1: 127
 Group 2: 50
 Control: 116</td>
</tr>
<tr>
<td>Author (year): Zheng (1986)
 Country of study: China
 Geographic location: Guangzhou and Fangeun (F), Fushan and Zhaoping (non-F)
 Year study started: Not stated</td>
<td>Inclusion criteria: Not stated
 Exclusion criteria: Not stated</td>
<td>Other sources of fluoride: Not stated
 Social class: Not stated
 Ethnicity: Not stated
 Other confounding factors: Not stated</td>
<td>Fluoride level (artificially or naturally fluoridated): Group 1: 0.6-1.2 (Artificial)
 **Group 2: 0.4-1.2 (Artificial)
 **Group 3: 0.2 (Natural)
 Control: 0.2 (Natural)
 No of subjects: Group 1: 600
 Group 2: 300
 Group 3: 450
 Control: 300</td>
</tr>
</tbody>
</table>
C5: Fluorosis Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Zimmermann (1954)</td>
<td></td>
<td>Fluoride level (artificially or naturally fluoridated):</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td></td>
<td>Group 1: 1.2 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Aurora, Illinois (F), Montgomery & Prince Georgies counties, Maryland (non-F)</td>
<td></td>
<td>Control: 0.2 (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1953</td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Group 1: 352</td>
</tr>
<tr>
<td></td>
<td>Lifetime residents of study areas</td>
<td>Not stated</td>
<td>Control: 220</td>
</tr>
<tr>
<td></td>
<td>White children aged 12-14</td>
<td>Social class:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children who had left study areas for periods of time other than for holidays</td>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>White children only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age: 12-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

1. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen 1993</td>
<td>Not stated</td>
<td>8-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td>% prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>3</td>
<td>211</td>
<td>3</td>
<td>16.7</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Group 4:</td>
<td>6</td>
<td>101</td>
<td>4</td>
<td>18.6</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>3.1</td>
<td>153</td>
<td>0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Group 4:</td>
<td>0.4</td>
<td>135</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Heifetz 1988</td>
<td>All permanent tooth surfaces</td>
<td>13-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td>TSIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>3.8-4.1</td>
<td>34</td>
<td>36.9</td>
<td>25.6</td>
<td>18.8</td>
<td>22.1</td>
</tr>
<tr>
<td>Group 2:</td>
<td>2.8-3.8</td>
<td>50</td>
<td>54.0</td>
<td>21.6</td>
<td>13.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Group 3:</td>
<td>2.1</td>
<td>39</td>
<td>61.7</td>
<td>25.4</td>
<td>7.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Group 4:</td>
<td>1.1</td>
<td>111</td>
<td>88.6</td>
<td>9.1</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>3.8-4.1</td>
<td>29</td>
<td>22.5</td>
<td>30.8</td>
<td>18.8</td>
<td>22.1</td>
</tr>
<tr>
<td>Group 2:</td>
<td>2.8-3.8</td>
<td>47</td>
<td>30.8</td>
<td>34.9</td>
<td>18.2</td>
<td>13.6</td>
</tr>
<tr>
<td>Group 3:</td>
<td>2.1</td>
<td>23</td>
<td>33.5</td>
<td>32.5</td>
<td>18.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Group 4:</td>
<td>1.1</td>
<td>94</td>
<td>70.7</td>
<td>21.6</td>
<td>4.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Kumar 1999</td>
<td>Not stated</td>
<td>7-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td>Dean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>1</td>
<td>459</td>
<td>78.4</td>
<td>13.7</td>
<td>4.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Group 2:</td>
<td>Low</td>
<td>289</td>
<td>73.0</td>
<td>13.1</td>
<td>8.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Group 3:</td>
<td>Low</td>
<td>134</td>
<td>76.1</td>
<td>9.7</td>
<td>8.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Group 4:</td>
<td>Low</td>
<td>425</td>
<td>81.4</td>
<td>11.3</td>
<td>4.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>1</td>
<td>847</td>
<td>62.9</td>
<td>18.5</td>
<td>12.8</td>
<td>5.3</td>
</tr>
<tr>
<td>Group 2:</td>
<td>1</td>
<td>289</td>
<td>71.6</td>
<td>13.5</td>
<td>10.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Group 3:</td>
<td>low</td>
<td>237</td>
<td>75.5</td>
<td>10.1</td>
<td>8.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Group 4:</td>
<td>low</td>
<td>646</td>
<td>81.4</td>
<td>7.4</td>
<td>7.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selwitz 1995</td>
<td>Percent distribution of TSIF scores across subjects & % surfaces fluorosed</td>
<td>14-16</td>
<td>Baseline</td>
<td></td>
<td></td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 1:</td>
<td>4</td>
<td>34</td>
<td>36.9</td>
</tr>
<tr>
<td>Index:</td>
<td>TSIF</td>
<td></td>
<td>Group 2:</td>
<td>3</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>2</td>
<td>39</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1</td>
<td>111</td>
<td>88.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final</td>
<td>Group 1:</td>
<td>4</td>
<td>20</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>3</td>
<td>48</td>
<td>53.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>2</td>
<td>29</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1</td>
<td>91</td>
<td>84.7</td>
</tr>
<tr>
<td>Skotowski (1995)</td>
<td>Percent distribution of TSIF scores across subjects & % surfaces fluorosed</td>
<td>8-10</td>
<td>Baseline</td>
<td></td>
<td></td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 1:</td>
<td>4</td>
<td>59</td>
<td>30.3</td>
</tr>
<tr>
<td>Index:</td>
<td>TSIF</td>
<td></td>
<td>Group 2:</td>
<td>3</td>
<td>82</td>
<td>48.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>2</td>
<td>61</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1</td>
<td>113</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final</td>
<td>Group 1:</td>
<td>4</td>
<td>57</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>3</td>
<td>69</td>
<td>45.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>2</td>
<td>76</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1</td>
<td>167</td>
<td>81.4</td>
</tr>
</tbody>
</table>

2. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Number of Subjects per Group</th>
<th>Exposures</th>
<th>Level of Exposure in Cases</th>
<th>Level of Exposure in Group 4 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skotowski (1995)</td>
<td>Dental fluorosis considered present if subject received TSIF score of 1 or more on any surface of criteria teeth - all permanent incisors and first molars. Emphasis placed on selecting cases with the most dental fluorosis to enhance contrast</td>
<td>54</td>
<td>Exposure 1: Fluoride exp. from drinking water in first 8 years of life, total ppm</td>
<td>5.6 (2.4)</td>
<td>3.1 (2.7)</td>
</tr>
</tbody>
</table>

3. Cross-Sectional Studies

a. Al-Alousi Index

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>% Fluorosis</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goward 1982</td>
<td>Dental fluorosis (% prevalence)</td>
<td>5</td>
<td>Group 1:</td>
<td>0.9</td>
<td>195</td>
<td>9</td>
<td>0.61</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 4:</td>
<td><0.1</td>
<td>205</td>
<td>9</td>
<td>0.39</td>
</tr>
<tr>
<td>Jackson 1975</td>
<td>Dental fluorosis (% prevalence)</td>
<td>15</td>
<td>Group 1:</td>
<td>0.9</td>
<td>88</td>
<td>35</td>
<td>3.3</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 4:</td>
<td><0.1</td>
<td>97</td>
<td>37</td>
<td>4.0</td>
</tr>
</tbody>
</table>

154
C6: Fluorosis Studies: Individual Study Results

b. Developmental Defects of Enamel Index (DDE Index)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Number of Subjects</th>
<th>Fluoride Level</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nunn 1992</td>
<td>Mouth prevalence</td>
<td>15-16</td>
<td>Group 1:</td>
<td>361</td>
<td>1-1.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2:</td>
<td>356</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>376</td>
<td>0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

c. Modified Developmental Defects of Enamel Index (modified DDE)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Number of Subjects</th>
<th>Fluoride Level</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booth 1991</td>
<td>All teeth</td>
<td>3</td>
<td>Group 1:</td>
<td>121</td>
<td><0.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Primary</td>
<td></td>
<td>Group 2:</td>
<td>107</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clarkson 1989	% of children with fluorosis presented - The labial surfaces of eight index impermanent teeth and the buccal and lingual surfaces of all erupted permanent teeth	15	Group 1:	90	0.9-0.95	0
	Teeth type: Permanent		Group 2:	84	low	1
			Group 4:	80	<0.3	2

| Cutress 1985 | Mouth prevalence, upper incisors (labial surfaces) only | 9 | Group 1: | 1078 | 1.0 | 0 |
| | Teeth type: Permanent | | Group 4: | 680 | <0.3 | 1 |

Downer 1994	10 index teeth	12	Group 1:	551	0.9ppm	0
	Teeth type: Not stated		Group 2:	599	Low	1
			Group 3:	489	Low	2
			Group 4:	939	Low	3

| Milsom 1990 | Buccal surfaces of all upper and lower permanent central and lateral incisors together with the first permanent molars | 8 | Group 1: | 91 | 1 | 0 |
| | Teeth type: Permanent | | Group 4: | 131 | <0.3 | 1 |

Rugg-Gunn 1997	Buccal surface of all teeth	14	Group 1:	437	2.7	0
	Teeth type: Permanent		Group 2:	542	0.8	1
			Group 4:	560	<0.3	2
C6: Fluorosis Studies: Individual Study Results

d. Dean’s Index

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Number of Subjects</th>
<th>Fluoride Level</th>
<th>Normal</th>
<th>Questionable</th>
<th>Very Mild</th>
<th>Mild</th>
<th>Mod</th>
<th>Severe</th>
<th>CFI (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelillo 1999</td>
<td>All fully erupted permanent teeth. Two teeth in mouth showing most advanced signs of fluorosis, child assigned score of lesser affected teeth</td>
<td>12</td>
<td>Group 1: 553</td>
<td>461</td>
<td>>=2.5 <=0.3</td>
<td>32.4</td>
<td>23.0</td>
<td>12.3</td>
<td>4.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.76(0.77)</td>
</tr>
<tr>
<td>Butler (1985)</td>
<td>Not stated – only present CFI</td>
<td>7-19</td>
<td>Group 1: 103</td>
<td>223</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Chen 1989</td>
<td>Not stated</td>
<td>6-16</td>
<td>Group 1: 380</td>
<td>912</td>
<td>2.1-2.8</td>
<td>12.1</td>
<td>16.6</td>
<td>18.1</td>
<td>48.2</td>
<td>12.6</td>
<td>1.3</td>
<td>1.61</td>
</tr>
<tr>
<td>Clarkson 1992</td>
<td>Not stated</td>
<td>8</td>
<td>Group 1: 459</td>
<td>98.1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Driscoll 1983</td>
<td>Two teeth most affected by fluorosis, if not equally affected take the least affected of the 2. Teeth had to have erupted to line of occlusion</td>
<td>8-16</td>
<td>Group 1: 136</td>
<td>89.7</td>
<td>1.9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Eklund 1987</td>
<td>Most severe form of dental fluorosis scored for 2 or more teeth</td>
<td>27-65</td>
<td>Group 1: 164</td>
<td>68.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.3</td>
<td>3.3</td>
<td>22.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Forrest 1956</td>
<td>Not stated</td>
<td>12-14</td>
<td>Group 1: 51</td>
<td>68.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.3</td>
<td>3.3</td>
<td>22.6</td>
<td>15.6</td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Number of Subjects</th>
<th>Fluoride Level</th>
<th>Normal</th>
<th>Questionable</th>
<th>Very Mild</th>
<th>Mild</th>
<th>Mod</th>
<th>Severe</th>
<th>CFI (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forrest 1965</td>
<td>Not stated</td>
<td>8</td>
<td>Group 1</td>
<td>91</td>
<td>1 "<0.2</td>
<td>88</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 4</td>
<td>130</td>
<td></td>
<td>92</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grimaldo 1995</td>
<td>Classified according to 2 most severely affected teeth</td>
<td>11-13</td>
<td>Group 1</td>
<td>58</td>
<td>>2.0</td>
<td>1.72</td>
<td>13.8</td>
<td>20.7</td>
<td>24.1</td>
<td>14.9</td>
<td>11.94</td>
<td>18.75</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>58</td>
<td>1.2-2.0</td>
<td>8.62</td>
<td>27.6</td>
<td>25.2</td>
<td>13.8</td>
<td>27.6</td>
<td>14.9</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>67</td>
<td>0.7-1.2</td>
<td>13.43</td>
<td>37.3</td>
<td>18.8</td>
<td>22.4</td>
<td>37.3</td>
<td>25.0</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>16</td>
<td><0.7</td>
<td>31.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grobler 1986</td>
<td>Not stated</td>
<td>12-13</td>
<td>Group 1</td>
<td>34</td>
<td>3.7</td>
<td>9.1</td>
<td>33.3</td>
<td>5.9</td>
<td>5.9</td>
<td>21.2</td>
<td>17.6</td>
<td>73.6</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>33</td>
<td>0.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.9</td>
<td>21.2</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Haavikko 1974</td>
<td>For overall %, % children with enamel defects given. For Dean's score % fluorosis of each defect in tooth population given</td>
<td>10-11</td>
<td>Group 1</td>
<td>57</td>
<td>1.08</td>
<td>34.6</td>
<td>25.7</td>
<td>4.2</td>
<td>11.4</td>
<td>10.9</td>
<td>5.0</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>62</td>
<td>0.41</td>
<td>66.1</td>
<td>15.6</td>
<td>11.0</td>
<td>0.0</td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>34</td>
<td>0.11</td>
<td>87.3</td>
<td>3.3</td>
<td>3.3</td>
<td>0.8</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>51</td>
<td>0.05</td>
<td>72.0</td>
<td>16.8</td>
<td>7.4</td>
<td>1.1</td>
<td>0.4</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Heller 1997</td>
<td>Not stated</td>
<td>7-17</td>
<td>Group 1</td>
<td>772</td>
<td>>1.2</td>
<td>28.1</td>
<td>30.5</td>
<td>27.2</td>
<td>7.0</td>
<td>0.8</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>6728</td>
<td>0.7-1.2</td>
<td>33.6</td>
<td>36.5</td>
<td>22.5</td>
<td>5.8</td>
<td>1.3</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>1793</td>
<td>0.3-0.7</td>
<td>47.4</td>
<td>31.0</td>
<td>17.3</td>
<td>3.1</td>
<td>1.2</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>6239</td>
<td><0.3</td>
<td>59.8</td>
<td>26.6</td>
<td>10.7</td>
<td>2.4</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Hong 1990</td>
<td>Classified according to 2 most severely affected teeth</td>
<td>6-15</td>
<td>Group 1</td>
<td>3066</td>
<td>0.6</td>
<td>81.3</td>
<td>11.0</td>
<td>5.8</td>
<td>1.9</td>
<td>0.9</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>4087</td>
<td>0.6</td>
<td>95.8</td>
<td>2.9</td>
<td>9.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ibrahim 1995</td>
<td>Fluorosis scoring based on maxillary central incisors. If there was a difference between the right and left incisor the higher of the two scores was given. Questionable category not used</td>
<td>7-16</td>
<td>Group 1</td>
<td>58</td>
<td>2.56</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>31</td>
<td>7</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td></td>
<td>Group 4</td>
<td>55</td>
<td>0.25</td>
<td>9</td>
<td>0</td>
<td>53</td>
<td>29</td>
<td>7</td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>Kunzel 1976</td>
<td>Labial surfaces</td>
<td>9-10</td>
<td>Group 1</td>
<td>37</td>
<td>2.3-3.6</td>
<td>19</td>
<td>21.6</td>
<td>18.9</td>
<td>5.4</td>
<td>29.7</td>
<td>5.4</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>26</td>
<td>1.1-1.6</td>
<td>65.4</td>
<td>27.0</td>
<td>3.8</td>
<td>3.8</td>
<td>0</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>66</td>
<td>0.6-0.8</td>
<td>84.8</td>
<td>9.2</td>
<td>4.5</td>
<td>1.5</td>
<td>0</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>145</td>
<td>0.1</td>
<td>91.1</td>
<td>8.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Leverett 1986</td>
<td>Only posterior teeth displaying bilaterally symmetrical evidence of classical fluorosis</td>
<td>12-17</td>
<td>Group 1</td>
<td>729</td>
<td>1.0</td>
<td>73.1</td>
<td>95.6</td>
<td>22.6</td>
<td>3.2</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>564</td>
<td><=0.3</td>
<td>96.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mella 1992</td>
<td>Not stated</td>
<td>18-22</td>
<td>Group 1</td>
<td>46</td>
<td>>0.3</td>
<td>47.8</td>
<td>34.8</td>
<td>6.5</td>
<td>10.9</td>
<td>5.5</td>
<td>0.76</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 4</td>
<td>72</td>
<td><=0.3</td>
<td>44.4</td>
<td>37.6</td>
<td>12.5</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mella 1994</td>
<td>Criteria of Russell (2 most severely affected teeth, choose least severely affected one)</td>
<td>12</td>
<td>Group 1</td>
<td>171</td>
<td>2.2</td>
<td>38.6</td>
<td>14.0</td>
<td>33.3</td>
<td>13.5</td>
<td>0.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 2</td>
<td>203</td>
<td>0.0</td>
<td>80.8</td>
<td>9.3</td>
<td>7.3</td>
<td>1.5</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>125</td>
<td>1.0</td>
<td>44</td>
<td>30.4</td>
<td>21.6</td>
<td>2.4</td>
<td>1.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>194</td>
<td>0.3</td>
<td>96.8</td>
<td>0</td>
<td>2.1</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nanda 1974</td>
<td>Not stated</td>
<td>6-17</td>
<td>Group 1</td>
<td>66</td>
<td>>1.2</td>
<td>18</td>
<td>16</td>
<td>26</td>
<td>17</td>
<td>23</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent (excluding third molars)</td>
<td></td>
<td>Group 2</td>
<td>134</td>
<td>0.81-1.2</td>
<td>24</td>
<td>35</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3</td>
<td>499</td>
<td>0.41-0.8</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4</td>
<td>710</td>
<td>0.4</td>
<td>38</td>
<td>50</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Number of Subjects</th>
<th>Fluoride Level</th>
<th>Normal</th>
<th>Questionable</th>
<th>Very Mild</th>
<th>Mild</th>
<th>Mod</th>
<th>Severe</th>
<th>CFI (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ray 1982</td>
<td>Not stated</td>
<td></td>
<td>Group 1:</td>
<td>75</td>
<td>>2</td>
<td>62.7</td>
<td>16</td>
<td>8</td>
<td>6.7</td>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 2:</td>
<td>471</td>
<td>1-2</td>
<td>64.2</td>
<td>18.9</td>
<td>9.6</td>
<td>4.0</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>964</td>
<td><1</td>
<td>78.2</td>
<td>14.0</td>
<td>4.4</td>
<td>2.0</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russell 1951</td>
<td>Fluorosis rating by individuals</td>
<td></td>
<td>Group 1:</td>
<td>385</td>
<td>2.5</td>
<td>16.4</td>
<td>100</td>
<td>45.2</td>
<td>28.3</td>
<td>8.3</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 4:</td>
<td>155</td>
<td><0.1</td>
<td></td>
<td></td>
<td>18.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheinin</td>
<td>Not stated – only present CFI</td>
<td></td>
<td>Group 1:</td>
<td>172</td>
<td>0.00-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>(1964)</td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>206</td>
<td>0.11-0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>199</td>
<td>0.4-0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>195</td>
<td>1.00-1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 5:</td>
<td>211</td>
<td>1.60 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Segreto 1984</td>
<td>All erupted teeth showing 50% or</td>
<td>7-12</td>
<td>Group 1:</td>
<td>90</td>
<td>2.7</td>
<td>8.9</td>
<td>8.9</td>
<td>42.2</td>
<td>33.3</td>
<td>6.7</td>
<td>0.0</td>
<td>1.33</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>more of buccal & / or lingual</td>
<td>&</td>
<td>Group 2:</td>
<td>170</td>
<td>2.7</td>
<td>20.0</td>
<td>4.1</td>
<td>32.4</td>
<td>30.0</td>
<td>13.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>surface of the crown examined for</td>
<td>14-18</td>
<td>Group 3:</td>
<td>200</td>
<td>2.7</td>
<td>2.5</td>
<td>7.0</td>
<td>52.0</td>
<td>34.5</td>
<td>4.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fluorosis. Classification on severest</td>
<td></td>
<td>Group 4:</td>
<td>223</td>
<td>0.3</td>
<td>81.2</td>
<td>10.3</td>
<td>8.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>form of mottling for 2/- teeth. Age</td>
<td></td>
<td>Group 5:</td>
<td>190</td>
<td>4.3</td>
<td>0.5</td>
<td>4.7</td>
<td>32.6</td>
<td>30.5</td>
<td>31.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>groups have been grouped together</td>
<td></td>
<td>Group 6:</td>
<td>113</td>
<td>3.1</td>
<td>12.4</td>
<td>10.6</td>
<td>44.2</td>
<td>28.3</td>
<td>4.4</td>
<td>0.0</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>in the study.</td>
<td></td>
<td>Group 7:</td>
<td>67</td>
<td>2.9</td>
<td>4.5</td>
<td>1.5</td>
<td>19.4</td>
<td>41.8</td>
<td>32.8</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 8:</td>
<td>103</td>
<td>0.3</td>
<td>60.2</td>
<td>31.1</td>
<td>6.8</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 9:</td>
<td>301</td>
<td>2.5</td>
<td>20.9</td>
<td>13.3</td>
<td>38.2</td>
<td>24.2</td>
<td>3.3</td>
<td>0.0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 10:</td>
<td>109</td>
<td>2.3</td>
<td>17.4</td>
<td>4.6</td>
<td>37.6</td>
<td>25.7</td>
<td>14.7</td>
<td>0.0</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 11:</td>
<td>23</td>
<td>2.3</td>
<td>21.7</td>
<td>4.3</td>
<td>21.7</td>
<td>39.1</td>
<td>13.0</td>
<td>0.0</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 12:</td>
<td>361</td>
<td>0.4</td>
<td>92.1</td>
<td>5.6</td>
<td>5.6</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 13:</td>
<td>128</td>
<td>1.4</td>
<td>52.3</td>
<td>32.0</td>
<td>14.8</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 14:</td>
<td>187</td>
<td>1.3</td>
<td>39.0</td>
<td>28.3</td>
<td>21.4</td>
<td>10.2</td>
<td>1.1</td>
<td>0.0</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 15:</td>
<td>211</td>
<td>1.3</td>
<td>49.8</td>
<td>21.3</td>
<td>22.3</td>
<td>5.7</td>
<td>0.9</td>
<td>0.0</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 16:</td>
<td>361</td>
<td>1.0</td>
<td>39.6</td>
<td>21.1</td>
<td>36.6</td>
<td>2.5</td>
<td>0.3</td>
<td>0.0</td>
<td>0.53</td>
</tr>
<tr>
<td>Sellman 1957</td>
<td>The severest form of dental fluorosis</td>
<td>12-14</td>
<td>Group 1:</td>
<td>25</td>
<td>1.0</td>
<td>60</td>
<td>20</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>recorded for 2 or more teeth</td>
<td></td>
<td>Group 2:</td>
<td>55</td>
<td>1.0-1.3</td>
<td>62</td>
<td>31</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>69</td>
<td>1.3</td>
<td>65</td>
<td>29</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>145</td>
<td>0.70-0.5</td>
<td>78</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Villa (1998)</td>
<td>Not stated – only present CFI</td>
<td>15</td>
<td>Group 1:</td>
<td>150</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>203</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>158</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>155</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 5:</td>
<td>132</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Wenzel 1982</td>
<td>Not stated</td>
<td>12-15</td>
<td>Group 1:</td>
<td>127</td>
<td>2.4</td>
<td>5</td>
<td>14</td>
<td>26</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>1.33</td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 2:</td>
<td>50</td>
<td>1.0</td>
<td><2</td>
<td>96</td>
<td>4</td>
<td></td>
<td></td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>116</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Zheng 1986</td>
<td>Not stated</td>
<td>12-17</td>
<td>Group 1:</td>
<td>600</td>
<td>0.6-1.2</td>
<td>42.7</td>
<td>28.7</td>
<td>13.7</td>
<td>6.5</td>
<td>5.5</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Not stated</td>
<td></td>
<td>Group 2:</td>
<td>300</td>
<td>0.4-1.2</td>
<td>38.2</td>
<td>16.7</td>
<td>11.7</td>
<td>6.4</td>
<td>5.5</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3:</td>
<td>450</td>
<td>0.2</td>
<td>8.9</td>
<td>9.1</td>
<td>8.9</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>300</td>
<td>0.2</td>
<td>97</td>
<td>1.3</td>
<td>1.3</td>
<td>1.0</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Zimmermann</td>
<td>Not stated</td>
<td>12-14</td>
<td>Group 1:</td>
<td>352</td>
<td>1.2</td>
<td>57</td>
<td>26</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td>Group 4:</td>
<td>220</td>
<td>0.2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

158
C6: Fluorosis Studies: Individual Study Results

e. Thylstrup and Fejerskov Index

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in Which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correia Sampaio 1999</td>
<td>Buccal faces of upper central incisors and lower first molars, teeth>1/3 crown visible</td>
<td>6-11</td>
<td>Group 1:</td>
<td>>1.0</td>
<td>126</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.7-1.0</td>
<td>360</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.7</td>
<td>164</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Crousaz 1982</td>
<td>Vestibular faces of permanent incisors and the occlusal surfaces of molars 16 and 46. The most severely affected incisor was scored</td>
<td>6-13</td>
<td>Group 1:</td>
<td>1</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>280</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaspar 1995</td>
<td>Vestibular surfaces of all teeth</td>
<td>10-14</td>
<td>Group 1:</td>
<td>0.7</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.2</td>
<td>200</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riordan 1991</td>
<td>Fluorosis present if fluorosis-like markings present and bilaterally symmetrical on upper anterior teeth. Labial surface of upper left incisor teeth scored using T & F</td>
<td>12</td>
<td>Group 1:</td>
<td>0.8</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.2</td>
<td>321</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f. Tooth Surface Index of Fluorosis (TSIF)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in Which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark 1993</td>
<td>Not stated</td>
<td>School aged</td>
<td>Group 1:</td>
<td>1.2</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.1</td>
<td>510</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackson 1999</td>
<td>Surfaces had to be fully erupted to be examined</td>
<td>7-10</td>
<td>Group 1:</td>
<td>4.0</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2:</td>
<td>1.0</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td>0.2</td>
<td>81</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levine 1989</td>
<td>Central incisors</td>
<td>9-10</td>
<td>Group 1:</td>
<td>1</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.1</td>
<td>600</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>Teeth type:</td>
<td>Permanent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>Fluorosis Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1:</td>
<td></td>
<td>93</td>
<td>1.0</td>
</tr>
<tr>
<td>Selwitz 1998</td>
<td>% distribution of TSIF scores for participants, and % surfaces fluoresced</td>
<td>13-16</td>
<td>Group 2: <0.3</td>
<td></td>
<td>24</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: <0.3</td>
<td></td>
<td>60</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-10</td>
<td>Group 1:</td>
<td>1</td>
<td>167</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: <0.3</td>
<td></td>
<td>104</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: <0.3</td>
<td></td>
<td>47</td>
<td>2.2</td>
</tr>
<tr>
<td>Vignarajah 1993</td>
<td>All tooth surfaces, excluding 2nd molars</td>
<td>12-14</td>
<td>Group 1: 0.6-1</td>
<td>123</td>
<td>84.1</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 0.1-0.3</td>
<td></td>
<td>154</td>
<td>93.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>85.0</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.9</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.4</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

g. % Prevalence of Fluorosis

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>% Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adair 1999</td>
<td>Dean's method used for identifying fluorosis, "questionable" teeth included with "normal" category of fluorosis</td>
<td>11-13</td>
<td>Group 1: 0.5-1.2</td>
<td>17</td>
<td>46</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: <0.1</td>
<td>34</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-10</td>
<td>Group 1: 0.5-1.2</td>
<td>65</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 0.1</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Alousi 1975</td>
<td>At least one mottled incisor. Distribution of mottled teeth according to Al-Alousi index also presented.</td>
<td>12-16</td>
<td>Group 1: 0.9</td>
<td>171</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: <0.01</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azcurra 1995</td>
<td>Not stated</td>
<td>6-7</td>
<td>Group 1: 9.05</td>
<td>50</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 0.19</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brothwell 1999</td>
<td>Incisors</td>
<td>7-8</td>
<td>Group 1: >=0.7</td>
<td>72</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: <0.7</td>
<td>646</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colquhoun 1984</td>
<td>Erupted permanent teeth</td>
<td>7+</td>
<td>Group 1: 1</td>
<td>1955</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: Low</td>
<td>732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellwood 1995</td>
<td>At least on tooth affected with mild hyper-mineralisation (TF>0)</td>
<td>14</td>
<td>Group 1: 0.7</td>
<td>196</td>
<td>62</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 0.9</td>
<td>455</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: <0.1</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellwood 1996</td>
<td>Upper permanent first premolars, canines, lateral incisor and central incisors, classified according to highest score recorded for different groups of index teeth</td>
<td>14</td>
<td>Group 1: 0.7</td>
<td>196</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: <0.1</td>
<td>267</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>% Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heintze 1998</td>
<td>All permanent teeth</td>
<td>5-24</td>
<td>Group 1:</td>
<td>0.9</td>
<td>430</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Group 4:</td>
<td>0.02</td>
<td>348</td>
<td>2</td>
</tr>
<tr>
<td>Ismail 1990</td>
<td>Percentage of students with one or more teeth affected by fluorosis (assessed by TSIF index)</td>
<td>11-17</td>
<td>Group 1: Group 4:</td>
<td>1.0 <0.1</td>
<td>222 251</td>
<td>46 31</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>Public School</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Private School</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jolly (1971)</td>
<td>Not stated</td>
<td>5-15</td>
<td>0.7-9.4</td>
<td>Not stated</td>
<td>2-70: increased with increasing water fluoride concentration</td>
<td></td>
</tr>
<tr>
<td>Lin 1991</td>
<td>Not stated</td>
<td>7-14</td>
<td>Group 1: Group 2:</td>
<td>0.88 0.34</td>
<td>250 256</td>
<td>20.8 16</td>
</tr>
<tr>
<td>Masztalerz 1990</td>
<td>Not stated</td>
<td>12</td>
<td>Group 1: Group 2: Group 4:</td>
<td>4.7 0.7-0.9 <0.2</td>
<td>101 106 112</td>
<td>82 60 1</td>
</tr>
<tr>
<td>Mazzotti (1939)</td>
<td>Not stated</td>
<td></td>
<td>Group 1: Group 2: Group 3: Group 4: Group 5: Group 6:</td>
<td><0.1 0.4-0.6 0.9-1.1</td>
<td>71 40 57 175 117</td>
<td>85 82 98 61 60</td>
</tr>
<tr>
<td>McInnes 1982</td>
<td>Primary teeth, patient assigned score according to most severely affected tooth - Dean's 0.5, 1 & 2 combined so only % fluorosis presented</td>
<td>1-5</td>
<td>Group 1: Group 4:</td>
<td>2.2-4.1 0.2</td>
<td>331 177</td>
<td>51 0</td>
</tr>
<tr>
<td>Nunn (1994)</td>
<td>Not stated</td>
<td>12</td>
<td>Group 1: Group 2: Group 3: Group 4: Group 5: Group 6:</td>
<td><0.1 0.4-0.6 0.9-1.1</td>
<td>71 40 57 175 117</td>
<td>85 82 98 61 60</td>
</tr>
<tr>
<td>Ockerse 1941</td>
<td>Number of children with mottled enamel</td>
<td>6-17</td>
<td>Group 1: Group 2: Group 4:</td>
<td>2.46 (av) 6.8 0.38</td>
<td>183 318 767</td>
<td>93 82 15</td>
</tr>
<tr>
<td>Rwenyonyi 1998</td>
<td>Buccal surfaces of all permanent teeth</td>
<td>10-14</td>
<td>Group 1: Group 4:</td>
<td>2.5 0.5</td>
<td>64 82</td>
<td>84 45</td>
</tr>
<tr>
<td></td>
<td>Teeth type: Permanent</td>
<td></td>
<td>High Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low Altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6: Fluorosis Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Method in which Indices were Applied</th>
<th>Age</th>
<th>Exposure Group Number of Subjects</th>
<th>Fluoride Level</th>
<th>Number of Subjects</th>
<th>% Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rwenyonyi</td>
<td>Tooth prevalence of fluorosis calculated based on fluorosis on incisors and first molars</td>
<td>11-14</td>
<td>Group 1: 2.5, Group 4: 0.5</td>
<td>155</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td>Group 4: 0.5</td>
<td>82</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1: 0.5, Group 4: 0.5</td>
<td>163</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: 2.5</td>
<td>81</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Szpunar</td>
<td>% with fluorosis (TSIF>=1)</td>
<td>6-12</td>
<td>Group 1: 1.2, Group 2: 1.0,</td>
<td>43</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td>Group 3: 0.8, Group 4: 0.0</td>
<td>249</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1: 1.2, Group 4: 2.5</td>
<td>133</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2: 1.0, Group 3: 0.8, Group 4: 0.0</td>
<td>131</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Venkateswarlu</td>
<td>Not stated</td>
<td>3-14</td>
<td>0.3-1.4</td>
<td>38-130</td>
<td>0-56: increased with increasing water fluoride concentration</td>
<td></td>
</tr>
<tr>
<td>(1952)</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang</td>
<td></td>
<td>Not stated</td>
<td>Group 1: 1.58, Group 2: 1.85, 2.00</td>
<td>Not stated</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td>Group 3: 0.48, Group 4: 2.5</td>
<td>28</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 5: 0.43, Group 6: 0.46, Group 4: 0.43</td>
<td>91</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1: 1.58, Group 2: 1.85, 2.00</td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3: 0.48, Group 4: 2.5</td>
<td>22</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Wang</td>
<td></td>
<td>10-19</td>
<td>Group 1: 2.4, Group 4: 1.3</td>
<td>12</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td>Group 1: 1.58, Group 2: 2.00, 4.00</td>
<td>46</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3: 0.48, Group 4: 2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 4: 2.4, Group 1: 1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warnakulasuriya</td>
<td>Not stated</td>
<td>14</td>
<td>Group 1: <0.39, Group 2: 0.4-0.59</td>
<td>211</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>(1992)</td>
<td></td>
<td></td>
<td>Group 3: 0.6-0.79, Group 4: 0.8-0.99>1.0</td>
<td>49</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 5: 0.8-0.99 >1.0</td>
<td>27</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Cohort and Ecological Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Outcome:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Arnala (1986)</td>
<td>Hip fracture</td>
<td>Age 50 years or more</td>
<td>Not stated</td>
<td>Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td></td>
<td></td>
<td>Group 1: >1.5 (Natural)</td>
</tr>
<tr>
<td>Finland</td>
<td>Case reports from Kuopio, University Central Hospital, Kotka Central Hospital, and Hamina Hospital</td>
<td></td>
<td></td>
<td>Group 2: 1-1.2 (Artificial)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Exclusion criteria</td>
<td></td>
<td></td>
<td>Control: <0.3 (Natural)</td>
</tr>
<tr>
<td>Kuopio, Kotka, and Hamina</td>
<td>Not stated</td>
<td></td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td></td>
<td>Group 1: 112903</td>
</tr>
<tr>
<td>Not stated</td>
<td>Study length (years)</td>
<td></td>
<td></td>
<td>Group 2: 156303</td>
</tr>
<tr>
<td>Study design:</td>
<td></td>
<td></td>
<td></td>
<td>Control: 108871</td>
</tr>
<tr>
<td>Ecological</td>
<td></td>
<td></td>
<td></td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Over 50</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Outcome:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Bernstein (1966)</td>
<td>Percentage of subjects with one or more collapsed vertebrae</td>
<td>Outpatients willing to participate in study</td>
<td>Not stated</td>
<td>Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td></td>
<td></td>
<td>Group 1: 4-5.8 (Natural)</td>
</tr>
<tr>
<td>England</td>
<td>Cases identified from x-rays taken of the lateral lumbar area of the spine</td>
<td></td>
<td></td>
<td>Control: <=0.3 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Exclusion criteria</td>
<td></td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Mott and Hettinger (high F), Grafton, Carrington and New Rockford (high F)</td>
<td>Not stated</td>
<td></td>
<td></td>
<td>Group 1: 300</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td></td>
<td>Control: 715</td>
</tr>
<tr>
<td>Not stated</td>
<td>Study length (years)</td>
<td></td>
<td></td>
<td>Age</td>
</tr>
<tr>
<td>Not stated</td>
<td>Study design:</td>
<td></td>
<td></td>
<td>Over 45</td>
</tr>
<tr>
<td>Ecological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome Details</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Confounding Factors</td>
<td>Baseline Data</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Wrist fracture</td>
<td>Women recruited at the Study of Osteoporotic Fractures Pittsburgh clinic</td>
<td>Not stated</td>
<td>Number of years of exposure to fluoridated public water supplies (mean exposed level = 1.0, unexposed = 0.15)</td>
</tr>
<tr>
<td>Country of study</td>
<td>Hip fracture</td>
<td>Women aged >=65</td>
<td>Social class: Education>12 years</td>
<td>Group 1: >20</td>
</tr>
<tr>
<td>USA</td>
<td>Nonspine fractures</td>
<td>Exclusion criteria</td>
<td>Ethnicity: Black women</td>
<td>Group 2: 11-20</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Incident vertebral fractures</td>
<td>Other confounding factors: Age, BMI, Calcium intake, alcohol, coffee, tea & cola intake, live alone, leave neighborhood >=once per day, self reported health status, health status compared with 1 year ago, functional status, smoke (current/ever), walk for exercise, history of osteoporosis</td>
<td>Group 3: 1-10</td>
<td></td>
</tr>
<tr>
<td>Most women from Westmoreland and Washington counties, Pennsylvania</td>
<td>Osteoporotic fracture - fractures of hip, wrist, humerus, pelvis, toe, leg, hand, clavicle, rib</td>
<td></td>
<td>Control: 0</td>
<td></td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Method of outcome assessment: Participants contacted every 4 months by postcard/telephone to ask if had sustained fracture or fall. If fracture reported participants interviewed, obtained copy of radiographic report which had to specifically mention occurrence of acute fracture</td>
<td>Other confounding factors:</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td>Baseline Data</td>
<td></td>
<td>Group 1: 192</td>
<td></td>
</tr>
<tr>
<td>Study design:</td>
<td>Outcome: Wrist fracture</td>
<td>Study design:</td>
<td>Group 2: 198</td>
<td></td>
</tr>
<tr>
<td>Prospective cohort</td>
<td>Hip fracture</td>
<td>Baseline: Prospective cohort</td>
<td>Group 3: 438</td>
<td></td>
</tr>
<tr>
<td>Outcome:</td>
<td>Nonspine fractures</td>
<td>Baseline: Prospective cohort</td>
<td>Control: 1248</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Incidence vertebral fractures</td>
<td>Baseline: Prospective cohort</td>
<td>Age (mean)</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Osteoporotic fracture - fractures of hip, wrist, humerus, pelvis, toe, leg, hand, clavicle, rib</td>
<td>Baseline: Prospective cohort</td>
<td>Group 1: 71.6</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Method of outcome assessment: Participants contacted every 4 months by postcard/telephone to ask if had sustained fracture or fall. If fracture reported participants interviewed, obtained copy of radiographic report which had to specifically mention occurrence of acute fracture</td>
<td>Baseline: Prospective cohort</td>
<td>Group 2: 70.7</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td>Group 3: 71.2</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td>Control: 70.8</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td>Baseline: Prospective cohort</td>
<td></td>
</tr>
</tbody>
</table>

Author (year): Cooper (1990)
Country of study: England and Wales
Geographic location: Health regions in England and Wales excluding the four Thames regions
Year study started: 1978
Study length (years): 4
Study design: Ecological

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome:</td>
<td>Inclusion criteria: Patients discharged from hospital with a diagnosis of hip fracture</td>
<td>Other sources of fluoride: Not stated</td>
<td>Exposure: Water fluoride level, 38 study areas, levels ranged from 0.05 – 0.93 ppm</td>
<td></td>
</tr>
<tr>
<td>Country of study:</td>
<td>Outcome: Hip fracture</td>
<td>Social class: Education>12 years</td>
<td>No of subjects: 4121 men, 16,272 women (number of subjects = number of cases per year)</td>
<td></td>
</tr>
<tr>
<td>England and Wales</td>
<td>Outcome: Hip fracture</td>
<td>Ethnicity: Not stated</td>
<td>Age: Over 45 years</td>
<td></td>
</tr>
<tr>
<td>Geographic location:</td>
<td>Inclusion criteria: Patients admitted as emergencies</td>
<td>Other confounding factors: Discharge rates directly standardised by age and sex within five year age groups using the 1981 population. Association of hip fracture with calcium content of water also investigated.</td>
<td>Age: Over 45 years</td>
<td></td>
</tr>
<tr>
<td>Health regions in England and Wales excluding the four Thames regions</td>
<td>Outcome: Patients aged 45 years and over</td>
<td>Exposure: Water fluoride level, 38 study areas, levels ranged from 0.05 – 0.93 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started: 1978</td>
<td>Exclusion criteria: Patient who had undergone a revision of arthroplasty</td>
<td>No of subjects: 4121 men, 16,272 women (number of subjects = number of cases per year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study length (years): 4</td>
<td>Inclusion criteria: Patients of otolaryngologists between Jan 1 1968 and November 15 1968</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design: Ecological</td>
<td>Exclusion criteria: Lifetime residents of study areas</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome: Stapedal otosclerosis</td>
<td>Inclusion criteria: Patients of otolaryngologists between Jan 1 1968 and November 15 1968</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study: USA</td>
<td>Method of outcome assessment: Subjects diagnosed by otolaryngologists and surgically confirmed.</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location: Lubbock, Texas (F), Hattiesburg, Mississippi(non-F)</td>
<td>Exclusion criteria: Not stated</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started: 1968</td>
<td>Inclusion criteria: Patients of otolaryngologists between Jan 1 1968 and November 15 1968</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study length (years): 1</td>
<td>Outcome: Stapedal otosclerosis</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design: Retrospective Cohort</td>
<td>Inclusion criteria: Patients of otolaryngologists between Jan 1 1968 and November 15 1968</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome: Stapedal otosclerosis</td>
<td>Inclusion criteria: Patients of otolaryngologists between Jan 1 1968 and November 15 1968</td>
<td>Age: Over 45 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Details</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Danielson (1992)</td>
<td>Hip fracture requiring hospitalisation</td>
<td>Patients aged >=65</td>
<td>Level of water fluoridation</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Method of outcome assessment: Utah Peer Review Organisation maintains computerised database of all Medicare admissions and discharges in Utah since 1984, data on hip fracture incidence and age-specific populations obtained from this register and used to calculate hip fracture rates</td>
<td>Medicare recipients</td>
<td>Group 1: Artificial</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Brigham City (F), Logan and Cedar City (non-F), Utah</td>
<td>Exclusion criteria: Hip fractures listed as other than first diagnosis second hip fractures</td>
<td>Exclusion criteria: ICD 9 code for surgical revision of hip fracture</td>
<td>Control: <0.3 (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1984</td>
<td>Inclusion criteria: Patients with metastatic cancer</td>
<td>Other confounding factors: Smoking (no significant differences between fluoridated and non-fluoridated counties)</td>
<td>Year of fluoridation: 1966, 3 year interruption</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>6</td>
<td></td>
<td></td>
<td>No of subjects: Not stated</td>
</tr>
<tr>
<td>Study design</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Over 65 years of age</td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Jacobsen (1992)</td>
<td>Discharge for hip fracture defined as ICD code 820.0 - 820.9</td>
<td>Patients covered under Medicare programme or discharged from VA hospitals</td>
<td>% of population served with fluoridated water (level at which considered fluoridated not stated), fluoridated if changed from <10% to more than 66% within 3 year period</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Method of outcome assessment: Discharge records of HCFA for persons covered under Medicare and discharges from VA hospitals for persons classified as above, denominator data provided by Bureau of Census - county estimates of 1985 pop. Of white women by 5 year age group & then 85+</td>
<td>Counties with centralised water system</td>
<td>Group 1: >60%</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Throughout USA</td>
<td>Exclusion criteria: % of population served with fluoridated water (level at which considered fluoridated not stated)</td>
<td>Exclusion criteria: ZIP code from Puerto Rico or missing or country of residency was out of scope Alaska, Hawaii and Virginia</td>
<td>Control: <10%</td>
</tr>
<tr>
<td>Year study started</td>
<td>1984</td>
<td>Inclusion criteria: White men and women aged >65</td>
<td>Other confounding factors: Latitude centroid, water hardness index (measure of calcium carbonate), January sunlight</td>
<td>No of subjects: Group 1: 40 000 000</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>3</td>
<td></td>
<td></td>
<td>Control: 30 000 000</td>
</tr>
<tr>
<td>Study design</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Over 65 measured in 5 year age groups</td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Jacquin-Gadda (1998)</td>
<td>Non-hip fractures</td>
<td>Patients covered under Medicare programme or discharged from VA hospitals</td>
<td>% of population served with fluoridated water (level at which considered fluoridated not stated), fluoridated if changed from <10% to more than 66% within 3 year period</td>
</tr>
<tr>
<td>Country of study</td>
<td>France</td>
<td>Hip fracture</td>
<td>Counties with centralised water system</td>
<td>Group 1: >60%</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Gironde and Dordogne</td>
<td>Exclusion criteria: Subjects visited at 1, 3 and 5 years after baseline and interviewed about fractures, also completed postal survey on fractures that required hospitalisation, Physician required to confirm fracture when details weren't clear</td>
<td>Exclusion criteria: Subjects included in a previous cohort study (Paquide study on ageing)</td>
<td>Control: <10%</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Inclusion criteria: Subiects included in a previous cohort study (Paquide study on ageing)</td>
<td>Inclusion criteria: Subiects included in a previous cohort study (Paquide study on ageing)</td>
<td>No of subjects: Group 1: 40 000 000</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Not stated</td>
<td>Method of outcome assessment: Random sample of subjects selected from the study in a 3-step procedure with stratification by age, sex, and size of urban unit</td>
<td>Method of outcome assessment: Random sample of subjects selected from the study in a 3-step procedure with stratification by age, sex, and size of urban unit</td>
<td>Control: 30 000 000</td>
</tr>
<tr>
<td>Study design</td>
<td>Prospective cohort</td>
<td>Exclusion criteria: Subjects asked information on profession in questionnaire, Dordogne is a more rural area</td>
<td>Exclusion criteria: Subjects asked information on profession in questionnaire, Dordogne is a more rural area</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethnicity: White men and women only</td>
<td>Ethnicity: White men and women only</td>
<td>Over 65 measured in 5 year age groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other confounding factors: Latitude centroid, water hardness index (measure of calcium carbonate), January sunlight</td>
<td>Other confounding factors: Latitude centroid, water hardness index (measure of calcium carbonate), January sunlight</td>
<td></td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
</table>
| **Author (year)** Jacqmin-Gadda (1995)
Country of study France
Geographic location Gironde and Dordogne
Year study started Not stated
Study length (years) Not stated
Study design: Ecological | **Outcome:** Any fractures
Hip fracture
Method of outcome assessment: Data collected on fracture history at time of baseline survey | **Inclusion criteria**
Men and women aged 65 years or more enrolled in a previous cohort study (the Paquide study on ageing)
Subjects living at home | **Other sources of fluoride:** Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: age, sex, BMI, smoking and physical activity | Exposure:
Water level
Group 1: 0.11-1.83
Control: <0.11
No of subjects: Not stated
Age 65+ |
| **Author (year)** Karagas (1996)
Country of study USA
Geographic location USA
Year study started 1986
Study length (years) 4
Study design: Ecological | **Outcome:** Fracture of the proximal humerus
Ankle fracture
Fracture of the distal forearm
Hip fracture (ICD9 820-820.9)
Method of outcome assessment: Cases identified from hospital discharge records or emergency room visit diagnoses | **Inclusion criteria**
US Medicare population
Patients aged 65 to 89 years
Areas with municipal water supplies that could be classified according to fluoridation status | **Other sources of fluoride:** Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Not stated | Exposure:
Subjects classified according to county of residence. Proportion of residents receiving fluoridated water at levels >=0.7ppm
Group 1: 67% (both)
Control: <10% (Natural)
Year of fluoridation: No of subjects: Not stated
Age 65-89 |
| **Author (year)** Karjalainen (1982)
Country of study Finland
Geographic location Kuopio (F) & surrounding low fluoride areas
Year study started 1974
Study length (years) 3
Study design: Retrospective Cohort | **Outcome:** Incidence of otosclerosis
Method of outcome assessment: Patients identified through same otolaryngological clinic
Exclusion criteria
Patients who lived for a long time outside the study area | **Inclusion criteria**
Patients treated in same otolaryngological clinic
Exclusion criteria
Patients treated in same otolaryngological clinic
Social class: Not stated | **Other sources of fluoride:** Author states no significant sources of fluoride other than drinking water
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Not stated | Exposure:
Water fluoride content
Group 1: 0.95-0.99 (Artificial)
Control: 0.02-0.32 (Natural)
No of subjects: Group 1: 71180
Control: 181833
Age
Mean age 39.6 in F area, 38.8 in low F area |
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Kelsey (1971)</td>
<td>Outcome: Incidence of slipped epiphysis Method of outcome assessment: Use of diagnostic indexes in all general hospitals in and near the state and in Newington hospital for children operating room log books.</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Not stated</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Year study started</td>
<td>1960</td>
<td>Study length (years)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Connecticut</td>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Korns (1969)</td>
<td>Outcome: Wrist fracture Cervical, intertrochanteric or subcapital hip fractures Method of outcome assessment: Identification of cases from hospital records, confirmed from X-ray records</td>
<td>Inclusion criteria Residents of study areas since 1945 White only for hip fracture data Residents over 40 years old</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: White residents only included for hip fracture, all races included for wrist fracture Other confounding factors: % pop resident in study areas since 1945 approximately same in both areas (+/-60%)</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Year study started</td>
<td>1964</td>
<td>Study length (years)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Newburgh (F), Kingston (non-F), New York State</td>
<td>Study design: Ecological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Kroger (1994)</td>
<td>Outcome: Other fractures Wrist fracture Ankle fracture All fractures Method of outcome assessment: Reported by women</td>
<td>Inclusion criteria Pre-menopausal women aged 47-56 living in study area Random stratified sample of those willing to undergo bone densitometry selected from total cohort</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Age, weight, years since last menstruation, parity, calcium intake, physical demands of work, overall physical activity, HRT, walking/running, alcohol intake, height, menopausal status, smoking & leisure exercise</td>
</tr>
<tr>
<td>Country of study</td>
<td>Finland</td>
<td>Year study started</td>
<td>1980</td>
<td>Study length (years)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Kuopio province - Kuopio (F), surrounding area (non-F)</td>
<td>Study design: Retrospective Cohort</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Kurttio (1999)</td>
<td>Outcome: ICD 8 & 9 code for hip fracture of 820</td>
<td>Inclusion criteria: Villages and squares where more than 90% of the population was not provided with a municipal water system</td>
<td>Exposure: Estimated water fluoride level of well (see study for further details of method of estimation)</td>
</tr>
<tr>
<td>Country of study</td>
<td>Finland</td>
<td>Method of outcome assessment: The cohort was linked to the hospital discharge register using personal identification numbers, all hospital types were included in the study</td>
<td></td>
<td>Group 1: >1.5 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Finland</td>
<td></td>
<td></td>
<td>Group 2: 1.1-1.5 (Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1981</td>
<td></td>
<td></td>
<td>Group 3: 0.5-1.0 (Natural)</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>13</td>
<td></td>
<td></td>
<td>Group 4: 0.3-0.5 (Natural)</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Group 5: 0.11-0.30 (Natural)</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Lehmann (1998)</td>
<td>Outcome: Femoral neck or trochanteric fracture, ICD code 820.0, 820.2, 820.8</td>
<td>Inclusion criteria: Aged >=35</td>
<td>Year of fluoridation: 1959</td>
</tr>
<tr>
<td>Country of study</td>
<td>Germany</td>
<td>Method of outcome assessment: All patients hospitalised for hip fracture in study areas identified through hospital records</td>
<td></td>
<td>Group 1: 11759</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Chemnitz (Karl-Marx-Stadt) and Halle</td>
<td></td>
<td></td>
<td>Group 2: 30497</td>
</tr>
<tr>
<td>Year study started</td>
<td>1987</td>
<td></td>
<td></td>
<td>Group 3: 66448</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>2</td>
<td></td>
<td></td>
<td>Group 4: 26820</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Group 5: 219627</td>
</tr>
<tr>
<td>Author (year)</td>
<td></td>
<td></td>
<td></td>
<td>Control: 554621</td>
</tr>
<tr>
<td>Outcome:</td>
<td></td>
<td></td>
<td></td>
<td>Age</td>
</tr>
<tr>
<td>Inclusion criteria:</td>
<td></td>
<td></td>
<td></td>
<td>Mean 37.8 in men, 39.1 in women in Halle, and 42.9 in men in Chemnitz, 40.7 in women. Results presented refer to over 60s only - incidence same in both cities up to age 60</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
<td></td>
<td>Year of fluoridation: 1959</td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Outcome:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Li (1999)</td>
<td>Hip fracture</td>
<td>25 years or more continuous residence in study areas</td>
<td>None of the subjects used fluoride containing toothpaste or mouthwashes, use of packaged beverages and canned food was minimal. Tea drinking reported by 13.5% of subjects - fluoride content of tea largely determined by fluoride content of water used</td>
<td>Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td>Social class:</td>
<td>Group 1:</td>
<td>Natural</td>
</tr>
<tr>
<td>China</td>
<td>Subjects questioned about location, nature, frequency and circumstances of fracture sustained since age 20</td>
<td>Environment, culture, ethnic background, social structure and economic conditions of all populations had not changed significantly over the past several decades</td>
<td>4.32-7.97 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Outcome:</td>
<td>Ethnicity:</td>
<td>Group 2:</td>
<td>Natural</td>
</tr>
<tr>
<td>6 rural areas of China</td>
<td>Hip fracture</td>
<td>White people only</td>
<td>2.62-3.56 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>Year study started</td>
<td>Method of outcome assessment:</td>
<td>Other confounding factors:</td>
<td>Group 3:</td>
<td>Natural</td>
</tr>
<tr>
<td>Not stated</td>
<td>Subjects questioned about location, nature, frequency and circumstances of fracture sustained since age 20</td>
<td>Age, gender, BMI, alcohol consumption, smoking and level of physical activity</td>
<td>1.45-2.19 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Outcome:</td>
<td>Exclusion criteria:</td>
<td>Group 4:</td>
<td>Natural</td>
</tr>
<tr>
<td>Not stated</td>
<td>Hip fracture</td>
<td>Not stated</td>
<td>1.00-1.06 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>Study design:</td>
<td>Method of outcome assessment:</td>
<td>Social class:</td>
<td>Group 5:</td>
<td>Natural</td>
</tr>
<tr>
<td>Retrospective cohort</td>
<td>Subjects questioned about location, nature, frequency and circumstances of fracture sustained since age 20</td>
<td>Environment, culture, ethnic background, social structure and economic conditions of all populations had not changed significantly over the past several decades</td>
<td>0.58-0.73 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>No of subjects:</td>
<td>Outcome:</td>
<td>Ethnicity:</td>
<td>Control:</td>
<td>Natural</td>
</tr>
<tr>
<td>Group 1: 1501</td>
<td>Hip fracture</td>
<td>White people only</td>
<td>0.25-0.34 (Natural)</td>
<td>(Both)</td>
</tr>
<tr>
<td>Group 2: 1051</td>
<td></td>
<td></td>
<td></td>
<td>(Both)</td>
</tr>
<tr>
<td>Group 3: 1574</td>
<td></td>
<td></td>
<td></td>
<td>(Both)</td>
</tr>
<tr>
<td>Group 4: 1407</td>
<td></td>
<td></td>
<td></td>
<td>(Both)</td>
</tr>
<tr>
<td>Group 5: 1363</td>
<td></td>
<td></td>
<td></td>
<td>(Both)</td>
</tr>
<tr>
<td>Control: 1370</td>
<td></td>
<td></td>
<td></td>
<td>(Both)</td>
</tr>
<tr>
<td>Age</td>
<td>Mean aged varied from 61.3 to 64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>McClure (1944)</td>
<td>Outcome: All fractures Method of outcome assessment: Men interviewed during physical examination regarding fracture history at any time in their lives</td>
<td>Inclusion criteria Men reporting for physical examination at US military services induction centres Exclusion criteria Not stated</td>
<td>Other sources of fluoride: Not stated Social class: Not stated Ethnicity: Not stated Other confounding factors: Height and weight measured</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Lubbock, Texas; Oklahoma City; Oklahoma; Indianapolis, Ind; Fort Myer, Virginia; Manchester, New Hampshire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design:</td>
<td>Retrospective cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Outcome: All fractures Method of outcome assessment: Boys interviewed during school physical examination regarding fracture history at any time in their lives | Inclusion criteria High school boys aged 15-17 Continuous residents | Exclusion criteria Not stated | Other confounding factors: Height and weight measured | Exposure: Water fluoride level Group 1: 1.9 (Natural) Group 2: 1.7 (Natural) Group 3: 1.7-1.9 (Natural) Group 4: 1.2 (Natural) Group 5: 0.5 (Natural) Group 6: 0.1 (Natural) Group 7: 0.0 (Natural) Control: 0.0-0.1 (Natural) No of subjects: Group 1: 207 Group 2: 909 Group 3: 297 Group 4: 248 Group 5: 218 Group 6: 206 Group 7: 203 Control: 409 Age: 15-17 years |</p>
<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year) Niessen (1986)</td>
<td>Outcome Fracture of the humerus, radius, ulna, tibia, fibula, femur & pelvis</td>
<td>Inclusion criteria White women aged 65 or more Michigan Medicaid recipients</td>
<td>Other sources of fluoride Not stated</td>
<td>Exposure Percentage of pop. receiving fluoridated water Group 1: >=0.89 Group 2: >=0.89 (excluding Wayne county) Control: <=0.15 Year of fluoridation Not stated No of subjects Group 1: 2727 Group 2: 1727 Control: 1155 Age Not stated</td>
</tr>
<tr>
<td>Country of study USA</td>
<td>Method of outcome assessment Number of fractures obtained from Medicaid fracture data</td>
<td>Exclusion criteria None stated</td>
<td>Social class Not stated</td>
<td>Ethnicity Not stated</td>
</tr>
<tr>
<td>Geographic location 4 metropolitan counties with pop >4 million (F), 27 rural communities pop approx. 500 000 (non-F)</td>
<td>Study length (years) 1980</td>
<td>Other confounding factors Not stated</td>
<td>Baseline Data</td>
<td></td>
</tr>
<tr>
<td>Year study started 1980</td>
<td>Study length (years) 2</td>
<td>Study design: Ecological</td>
<td>Baseline Data</td>
<td></td>
</tr>
<tr>
<td>Author (year) Phipps (1999)</td>
<td>Outcome All non-vertebral fractures</td>
<td>Inclusion criteria White women aged 65 or more Completion of residence history questionnaire</td>
<td>Other sources of fluoride Not stated</td>
<td>Exposure Number of years of exposure to fluoridated public water supplies Group 1: >20 Control: 0 Year of fluoridation 1971 No of subjects Not stated Age Not stated</td>
</tr>
<tr>
<td>Country of study USA</td>
<td>Hip fracture</td>
<td>Social class 1/2 with education beyond elementary school</td>
<td>Ethnicity White women only</td>
<td>Other confounding factors Age, BMI, weight, exercise, muscle strength, fall in last year, surgical menopause, calcium & alcohol intake, functional status, current smoker, history of osteoporosis/non-insulin dependent diabetes, oestrogen, thiazide diuretic & thyroid hormone use</td>
</tr>
<tr>
<td>Geographic location Portland, OR, Minneapolis, MN, Baltimore, MD, Monongahela Valley, PA</td>
<td>Humerus</td>
<td>Year of fluoridation 1971</td>
<td>Baseline Data</td>
<td></td>
</tr>
<tr>
<td>Study length (years) 1986</td>
<td>Incident vertebral fractures</td>
<td>No of subjects Not stated</td>
<td>Age Not stated</td>
<td></td>
</tr>
<tr>
<td>Study design: Prospective cohort</td>
<td>Wrist fracture</td>
<td>Study length (years) 9</td>
<td>No stated</td>
<td></td>
</tr>
<tr>
<td>Author (year) Simonen (1985)</td>
<td>Outcome: Femoral-neck fracture</td>
<td>Inclusion criteria Residents of study areas aged 50 or more Cases where diagnosis of hip fracture was the main diagnosis</td>
<td>Other sources of fluoride Not stated</td>
<td>Exposure Water fluoride level Group 1: 1 (Artificial) Control: <0.1 (Natural) Year of fluoridation 1959 No of subjects Group 1: 17591 Control: 14701 Age 50+</td>
</tr>
<tr>
<td>Country of study Finland</td>
<td>Method of outcome assessment: Participants contacted every 4 months by postcard/telephone to ask if had sustained fracture or fall. If fracture reported participants interviewed, obtained copy of radiographic report which had to specifically mention occurrence of acute fracture</td>
<td>Exclusion criteria Women unable to walk without assistance Women who had bilateral hip replacement Women with mixed/unknown exposure to fluoridated water Fractures due to major trauma, e.g. traffic accident</td>
<td>Year of fluoridation Not stated No of subjects Not stated Age Not stated</td>
<td></td>
</tr>
<tr>
<td>Geographic location Kuopio (F) and Jyvaskyla (non-F)</td>
<td>Outcome: Femoral-neck fracture</td>
<td>Exclusion criteria Not stated</td>
<td>Baseline Data</td>
<td></td>
</tr>
<tr>
<td>Year study started 1967</td>
<td>Method of outcome assessment: Cases identified from hospital discharge data for Finland. All cases recorded under ICD codes 820.00 and 820.10 included in the study, only records with main diagnosis of hip fracture and first admissions for fractures included</td>
<td>Other confounding factors: Areas similar in water hardness (calcium and magnesium water content)</td>
<td>Baseline Data</td>
<td></td>
</tr>
</tbody>
</table>
C7: Bone Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Sowers (1991)</td>
<td>Country of study</td>
<td>USA</td>
<td>Year of fluoridation:</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Rural communities in north-western Iowa</td>
<td>Study length (years)</td>
<td>6</td>
<td>Group 1:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1983</td>
<td>Study design:</td>
<td>Prospective cohort</td>
<td>Control:</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>6</td>
<td>Study design:</td>
<td>Ecological</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Outcome:</td>
<td>Hip fracture incidence</td>
<td>Inclusion criteria:</td>
<td>Women resident in study areas for >=5 years, consumed public water, aged 20-80, ambulatory</td>
<td>Age</td>
</tr>
<tr>
<td>Fracture incidence</td>
<td>Method of outcome assessment:</td>
<td>Reported during interview</td>
<td>Pregnant women, no wrist or forearm fractures in previous 2 years</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Social class:</td>
<td></td>
<td></td>
<td></td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
</tr>
<tr>
<td>Exposure:</td>
<td>Water fluoride levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of fluoridation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author (year) | **Suarez-Almazor (1993)** | **Country of study** | Canada | **Social class:** | Calgary: service & administrative occupational structure, Edmonton: manufacturing & processing base |
Geographic location	Edmonton (high-F), Calgary (low-F), Alberta	**Year study started**	1981		Ethnic composition of two areas reasonably similar - multiple origins, British, French, German, Dutch, Ukrainian, Aboriginal & Chinese	
Study length (years)	6	**Study design:**	Ecological		Other confounding factors:	% married, population density, oestrogen therapy, body build, alcohol & tobacco use, calcium water content
Outcome:	Hip fracture	**Inclusion criteria**:	Aged >=45, primary, secondary or tertiary discharge for hip fracture, resident in study areas		**Exposure:**	Water fluoride levels
Method of outcome assessment:	Total number of admission identified from hospital records with discharge diagnosis of hip fracture ICD-9 820.0-820.9	**Exclusion criteria**:	Transfers to other hospitals, discharge diagnosis code 905.3 or 733.8		**Group 1:**	1 (Artificial)
Other sources of fluoride:	Not stated				**Control:**	0.3 (Natural)
Ethnicity:					**Year of fluoridation:**	1967
Other confounding factors:					**No of subjects:**	Group 1: 336423, Control: 340331
Age					**45-64, 65+**	
C7: Bone Studies: Baseline Data

2. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Case and Control Selection</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Case-definition: Patients with diagnosed fractures of the femoral neck that were through or above the lesser trochanter and not caused by cancer identified through ward admission books for Hartlepool General, North Tees General and Middlesbrough General Hospitals</td>
<td>Inclusion criteria: Residents of Cleveland aged 50 years or more</td>
<td>Other sources of fluoride: Dietary sources of fluoride</td>
<td>Number of subjects Cases: 514</td>
</tr>
<tr>
<td>Hillier (2000)</td>
<td>Method of control selection: Randomly selected from list of all members of the study population registered National Health Service general practitioners</td>
<td>Score of 6 or more on Hodkinson abbreviated mental test</td>
<td>Social class: Not stated</td>
<td>Controls 1: 527</td>
</tr>
<tr>
<td>Country of study</td>
<td>Matching: Age (in 5 year bands) and sex</td>
<td>Exclusion criteria: Not stated</td>
<td>Ethnicity: Not stated</td>
<td>Age range (mean) Not stated</td>
</tr>
<tr>
<td>England</td>
<td>Ratios of cases to controls: 1:1</td>
<td></td>
<td>Other confounding factors: Demographic variables, BMI, lifetime residential history, physical activity, recent medication, dietary sources of calcium, age at menopause, smoking, alcohol consumption</td>
<td>Exposure 1: Average drinking water concentration of fluoride: <0.9</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Average drinking water concentration of fluoride: >= 0.9</td>
</tr>
<tr>
<td>Cleveland</td>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: Odds ratio adjusted for all potential confounders</td>
</tr>
<tr>
<td>Year study started</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Case-definition: Cases of slipped epiphysis identified though diagnostic indexes and operating room log books of 21 hospitals included in study, in Arizona, Texas, Colorado and New Mexico</td>
<td>Inclusion criteria: Aged <25</td>
<td>Other sources of fluoride:</td>
<td>Number of subjects per outcome group: Arizona: 56</td>
</tr>
<tr>
<td>Kelsey (1971)</td>
<td>Method of control selection: Two sets of controls: orthopaedic (1) & other (2) - next patients admitted to orthopaedic/other service after the slipped epiphysis patient</td>
<td>Exclusion criteria: None stated</td>
<td>Social class: Not stated</td>
<td>Texas: 33</td>
</tr>
<tr>
<td>Country of study</td>
<td>Matching: Matched on sex and age within 2 years</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td>New Mexico: 11</td>
</tr>
<tr>
<td>USA</td>
<td>Ratios of cases to controls: 1:1</td>
<td></td>
<td>Other confounding factors:</td>
<td>Colorado: 41</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
<td></td>
<td>Exposure: Water fluoride level</td>
</tr>
<tr>
<td>Colorado, Arizona, New Mexico, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C8: Bone Studies: Individual Study Results

1. Cohort and Ecological Studies

a. Studies which present adjusted outcomes

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Risk Males/100 000</th>
<th>Crude Risk Females/100 000</th>
<th>Summary Measure (CI):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measure used:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variable controlled for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauley (1995)</td>
<td>Hip fracture</td>
<td>Group 1:</td>
<td>>20</td>
<td>1041.7</td>
<td>1010.2</td>
<td>Male: 0.44 (0.1, 1.86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>11-20</td>
<td>2283.2</td>
<td>2163.5</td>
<td>Female: 0.58 (0.14, 2.48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident vertebral fractures</td>
<td></td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>1.63 (0.57, 4.67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>11-20</td>
<td></td>
<td></td>
<td>0.58 (0.21, 1.60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1-10</td>
<td></td>
<td></td>
<td>1.02 (0.55, 1.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsinew fractures</td>
<td></td>
<td>Group 1:</td>
<td>>20</td>
<td>14062.5</td>
<td></td>
<td>0.73 (0.48, 1.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>11-20</td>
<td>16161.6</td>
<td></td>
<td>1.04 (0.71, 1.52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1-10</td>
<td>20319.6</td>
<td></td>
<td>1.10 (0.85, 1.42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td>17708.3</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Osteoporotic fractures - fractures of hip, wrist, humerus, pelvis, toe, leg, hand, clavicle, rib</td>
<td></td>
<td>Group 1:</td>
<td>>20</td>
<td>11458.3</td>
<td>12121.2</td>
<td>0.74 (0.46, 1.19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>11-20</td>
<td>15753.4</td>
<td></td>
<td>0.96 (0.67, 1.54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1-10</td>
<td>14262.8</td>
<td></td>
<td>1.04 (0.77, 1.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Wrist fracture</td>
<td></td>
<td>Group 1:</td>
<td>>20</td>
<td>3125</td>
<td>3050.3</td>
<td>0.95 (0.40, 2.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>11-20</td>
<td></td>
<td></td>
<td>0.81 (0.32, 2.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1-10</td>
<td></td>
<td></td>
<td>1.17 (0.67, 2.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Danielson (1992)</td>
<td>Hip fracture requiring hospitalisation</td>
<td>Group 1:</td>
<td>1</td>
<td></td>
<td></td>
<td>1.41 (1.00-1.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><0.3</td>
<td></td>
<td></td>
<td>1.0 (1.08-1.46)</td>
</tr>
<tr>
<td>Jacobsen (1992)</td>
<td>Discharge for hip fracture defined as ICD code 820.0 - 820.9</td>
<td>Group 1:</td>
<td>>60% <10%</td>
<td></td>
<td></td>
<td>-0.002 (p=0.0138)</td>
</tr>
<tr>
<td>Cooper (1990)</td>
<td>Hip fracture</td>
<td>38 study areas</td>
<td>0.05-0.93</td>
<td></td>
<td></td>
<td>Standardised rates ranged from 2.17 to 0.88, no association with water fluoride level was found</td>
</tr>
</tbody>
</table>
C8: Bone Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group 1: Control</th>
<th>Group 2: Control</th>
<th>Group 3: Control</th>
<th>Summary Measure (CI):</th>
<th>Details</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacqmin-Gadda (1995)</td>
<td>Any fractures</td>
<td>0.11-1.83</td>
<td><0.11</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>0.98 (0.80-1.21)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Odds ratio</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age, sex and BMI</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hip fracture</td>
<td>0.11-1.83</td>
<td><0.11</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>2.43 (1.11-5.33)</td>
<td>3.25 (.66-6.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Odds ratio</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age, sex, BMI, smoking, spirit consumption,</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>use of non-psychotropic drugs, hypnotic drug</td>
<td></td>
<td>0.74-1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>use, antidepressive drug use, neuroleptic drug</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Non-hip fractures</td>
<td>-0.25</td>
<td>0.11-0.25</td>
<td>0.05-0.11</td>
<td></td>
<td>Measure used:</td>
<td>1.05 (0.74-1.51)</td>
<td>0.88 (0.63-1.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rates</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Karagas (1996)</td>
<td>Ankle fracture</td>
<td>67%</td>
<td><10%</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>1.01 (0.87-1.16)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Fracture of the distal forearm</td>
<td>67%</td>
<td><10%</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>1.16 (1.02-1.33)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Fracture of the proximal humerus</td>
<td>67%</td>
<td><10%</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>1.23 (1.06-1.43)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Hip fracture (ICD9 820-820.9)</td>
<td>67%</td>
<td><10%</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>1.00 (0.92-1.09)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Karjalainen (1982)</td>
<td>Incidence of otosclerosis</td>
<td>0.95-0.99</td>
<td>0.02-0.32</td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>0.93</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Relative Risk</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Kurttio (1999)</td>
<td>ICD 8 & 9 code for hip fracture</td>
<td>0.3-0.5</td>
<td>0.11-0.30</td>
<td>0.10</td>
<td></td>
<td>Measure used:</td>
<td>0.98 (0.61-1.60)</td>
<td>0.67 (0.46-0.97)</td>
</tr>
<tr>
<td></td>
<td>of 820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rate ratio</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for:</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not stated, possible age and sex standardised</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Study Details

- **Jacqmin-Gadda (1995)**
 - Any fractures
 - Hip fracture
 - Non-hip fractures

- **Jacqmin-Gadda (1998)**
 - Hip fracture

- **Karagas (1996)**
 - Ankle fracture
 - Fracture of the distal forearm
 - Fracture of the proximal humerus

- **Hip fracture (ICD9 820-820.9)**
 - Control: 0.95-0.99
 - Group 1: 0.02-0.32

- **Incidence of otosclerosis**
 - Group 1: 0.95-0.99
 - Group 2: 0.02-0.32

- **ICD 8 & 9 code for hip fracture of 820**
 - Group 1: 0.3-0.5
 - Group 2: 0.11-0.30
 - Group 3: 0.5-1.0
 - Group 4: 0.10-0.10
 - Group 5: 0.3-0.5
 - Control: 0.10-0.10
C8: Bone Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Risk (Males)/100 000</th>
<th>Crude Risk (Females)/100 000</th>
<th>Summary Measure (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li (1999)</td>
<td>All fractures</td>
<td>Group 1:</td>
<td>4.32-7.02</td>
<td>7395.1</td>
<td>1.47 (p=0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>2.62-3.56</td>
<td>6089.41</td>
<td>1.18 (0.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1.45-2.19</td>
<td>6035.6</td>
<td>1.17 (0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1.00-1.06</td>
<td>5109.5</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 5:</td>
<td>0.58-0.73</td>
<td>6396.6</td>
<td>1.25 (p=0.17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.25-0.34</td>
<td>7410.1</td>
<td>1.50 (p=0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>Odds ratio</td>
<td>Variables controlled for: Age and gender, relative to 1.00-1.06 fluoride group</td>
</tr>
<tr>
<td></td>
<td>Hip fracture</td>
<td>Group 1:</td>
<td>4.32-7.97</td>
<td>1199.2</td>
<td>3.26 (p=0.02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>2.62-3.56</td>
<td>761.2</td>
<td>1.73 (p=0.34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>1.45-2.19</td>
<td>889.5</td>
<td>2.13 (p=0.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1.00-1.06</td>
<td>365.0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 5:</td>
<td>0.58-0.73</td>
<td>426.4</td>
<td>1.12 (0.85)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.25-0.34</td>
<td>366.8</td>
<td>0.99 (0.99)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>Odds ratio</td>
<td>Variables controlled for: Age and BMI, relative to 1.00-1.06 fluoride group</td>
</tr>
<tr>
<td>Phipps (1999)</td>
<td>All non-vertebral fractures</td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>0.96 (0.83, 1.10)</td>
</tr>
<tr>
<td></td>
<td>Hip fracture</td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>0.69 (0.5, 0.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.15 (0.80, 1.63)</td>
</tr>
<tr>
<td></td>
<td>Humerus</td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>0.74 (0.55, 0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Incident vertebral fractures</td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>1.3 (1.02, 1.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Wrist fracture</td>
<td>Group 1:</td>
<td>>20</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.5 (1.2-1.8)</td>
</tr>
<tr>
<td>Simonen (1995)</td>
<td>Femoral-neck fracture</td>
<td>Group 1:</td>
<td>1</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.1</td>
<td></td>
<td></td>
<td>2.5 (1.6-3.9)</td>
</tr>
<tr>
<td>Sowers (1991)</td>
<td>Fracture incidence</td>
<td>Group 1:</td>
<td>4 (age 20-35)</td>
<td>13432.8</td>
<td>1.81 (0.45-8.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>1 (age 20-35)</td>
<td>8108.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>4 (age 55-80)</td>
<td>19018.4</td>
<td>2.11 (1.01-4.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1 (age 55-80)</td>
<td>9090.9</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0</td>
<td></td>
<td></td>
<td>1.5 (1.2-1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>Relative Risk</td>
<td>Variables controlled for: Age and Quatelet index (weight/height*height)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Studies which present standardised results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Risk (Males)/100 000</th>
<th>Crude Risk (Females)/100 000</th>
<th>Summary Measure (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacobsen (1992)</td>
<td>Discharge for hip fracture defined as ICD code 820.0-820.9</td>
<td>Group 1:</td>
<td>% of population served with fluoridated water</td>
<td>>60%</td>
<td></td>
<td></td>
<td>4.71 (4.59-4.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td></td>
<td><10%</td>
<td></td>
<td></td>
<td>3.99 (3.88-4.10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measure used:</td>
<td>Method used</td>
<td>Standard population</td>
<td>Standardised rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct</td>
<td>Entire US population aged 65 years and older</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td>7.85 (7.74-7.96)</td>
</tr>
</tbody>
</table>
C8: Bone Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Risk (Males)/ 100 000</th>
<th>Crude Risk (Females)/ 100 000</th>
<th>Standardisation</th>
<th>Methods</th>
<th>Standardised rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simonen (1985)</td>
<td>Femoral-neck fracture</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1 <0.1</td>
<td></td>
<td></td>
<td>Method used Direct</td>
<td>Standard population Not stated, standardised on age and sex</td>
<td>2.5 7.0 6.0 9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td>508.8 447.0</td>
<td>953.8 1008.5</td>
<td>Edmonton</td>
<td></td>
<td>5.09 4.52 9.54 9.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td>58.9 53.2</td>
<td>59.8 68.1</td>
<td>Method used Direct</td>
<td>Standard population Edmonton</td>
<td></td>
</tr>
<tr>
<td>Suarez-Almazor (1993)</td>
<td>Hip fracture</td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.09 4.52 9.54 9.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59 0.55 0.6 0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.09 4.52 9.54 9.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride levels</td>
<td>1 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59 0.55 0.6 0.71</td>
</tr>
</tbody>
</table>

c. Studies which present crude data only

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Risk /100 000</th>
<th>Male</th>
<th>Female</th>
<th>Standardised rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnala (1986)</td>
<td>Hip fracture</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>>1.5 1-1.2</td>
<td></td>
<td></td>
<td></td>
<td>124.0 119.0 124.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2: Control:</td>
<td>Water fluoride level</td>
<td><0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernstein (1966)</td>
<td>Prevalence of subjects with one or more collapsed vertebrae</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>4-5.8 <=0.3</td>
<td></td>
<td></td>
<td></td>
<td>30120.5 31410.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1 <0.6</td>
<td></td>
<td>1928.4</td>
<td></td>
<td>20347.4</td>
</tr>
<tr>
<td>Daniel (1969)</td>
<td>Stapedal otosclerosis</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1 0.05</td>
<td>613.915 351.5</td>
<td>1271.2</td>
<td>1392.62</td>
<td></td>
</tr>
<tr>
<td>Kelsey (1971)</td>
<td>Incidence of slipped epiphysis</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1 0.05</td>
<td>40 99.0</td>
<td>354.0</td>
<td></td>
<td>372.0</td>
</tr>
<tr>
<td>Korns (1969)</td>
<td>Cervical, intertrochanteric or subcapital hip fractures</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1-1.2 0.05</td>
<td></td>
<td></td>
<td></td>
<td>4437.6 3107.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1-0.2 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1-0.2 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krogger (1994)</td>
<td>Wrist fracture</td>
<td>Group 1: Control:</td>
<td>Water fluoride level. Exposed had >10 years exposure, control no exposure</td>
<td>1.2 0.0-0.3</td>
<td></td>
<td></td>
<td></td>
<td>8359.1 8122.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1.2 0.0-0.3</td>
<td></td>
<td></td>
<td></td>
<td>2476.8 2174.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>1.2 0.0-0.3</td>
<td></td>
<td></td>
<td></td>
<td>15273.5 13404.3</td>
</tr>
<tr>
<td>Lehmann (1998)</td>
<td>Femoral neck or trochanteric fracture, ICD code 820.0, 820.2, 820.8</td>
<td>Group 1: Control:</td>
<td>Water fluoride level, also looks at length of exposure to fluoridated water in years</td>
<td>0.77-1.2 0.08-0.36</td>
<td></td>
<td></td>
<td></td>
<td>161.2 177.2 382.4 458.1</td>
</tr>
</tbody>
</table>
C8: Bone Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Risk /100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madans (1983)</td>
<td>Hip fracture</td>
<td>Group 1: Control:</td>
<td>Proportion of population exposed to fluoridated water at a level of 0.7 ppm or more</td>
<td>Crude Risk</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> = 80%< 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McClure (1944)</td>
<td>All fractures</td>
<td>Group 1: Group 2: Group 3: Group 4:</td>
<td>Water fluoride level</td>
<td>2.0 - 5.0 0.3 - 1.0 0.5 - 1.0 0.0 - 0.5</td>
<td>Crude Risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: Group 2: Group 3: Group 4: Group 5: Group 6: Group 7:</td>
<td></td>
<td>0.2 0.0 0.0 1.9 1.7 1.7 - 1.9 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Niessen (1986)</td>
<td>Fracture of the humerus, radius, ulna, tibia, fibula, femur & pelvis</td>
<td>Group 1: Group 2: Control:</td>
<td>Water fluoride level</td>
<td>> = 0.89 > = 0.89 (excluding Wayne county) <= 0.15</td>
<td>Crude Risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9431.1 8106.5 7878.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sowers (1991)</td>
<td>Hip fracture incidence</td>
<td>Group 1: Group 2: Group 3: Control:</td>
<td>Fluoride level (mg/L)</td>
<td>4 1</td>
<td>4 1</td>
</tr>
</tbody>
</table>

2. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Number of Subjects per Group</th>
<th>Exposures</th>
<th>Level of Exposure in Cases</th>
<th>Level of Exposure in Control 1</th>
<th>Level of Exposure in Control 2</th>
<th>OR for Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillier (2000)</td>
<td>Patients with diagnosed fractures of the femoral neck that were through or above the lesser trochanter and not caused by cancer identified through ward admission books for Hartlepool General, North Tees General and Middlesbrough General Hospitals</td>
<td>514</td>
<td>Exposure 1: Water fluoride: < 0.9 Exposure 2: Water fluoride: >= 0.9 Exposure 3: Odds ratio adjusted for all potential confounders</td>
<td>380 80</td>
<td>346 77</td>
<td>2.064 2.188</td>
<td>2.118 1.0 (0.7-1.5)</td>
</tr>
<tr>
<td>Kelsey (1971)</td>
<td>Cases of slipped epiphysis identified though diagnostic indexes and operating room log books of 21 hospitals included in study</td>
<td>33</td>
<td>Exposure 1: Water fluoride level</td>
<td>2.064</td>
<td>2.188</td>
<td>2.118</td>
<td>1.0 (0.7-1.5)</td>
</tr>
<tr>
<td>Texas</td>
<td>11</td>
<td>0.727</td>
<td>0.636</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>41</td>
<td>1.051</td>
<td>0.995</td>
<td>1.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>56</td>
<td>0.564</td>
<td>0.366</td>
<td>0.607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

178
C9: Cancer Studies: Baseline Data

1. Cohort and Ecological Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Chilvers (1985)</td>
<td>Outcome: Cancer mortality from oesophagus, lung, stomach, pancreas, breast, rectum, bladder, buccal cavity, kidney and intestinal cancer and cancer mortality from all causes</td>
<td>Other sources of fluoride: Not stated</td>
<td>Exposure: Water fluoride level Group 1: >=1.0 (Natural) Group 2: 0.5-0.99 (Natural) Group 3: <=0.2 (Natural) Group 4: <=0.1 (Natural)</td>
</tr>
<tr>
<td>Country of study</td>
<td>UK</td>
<td></td>
<td>Social class: Not stated</td>
<td>Group 1: >=1.0 (Natural) Group 2: 0.5-0.99 (Natural) Group 3: <=0.2 (Natural) Group 4: <=0.1 (Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>67 small areas in England</td>
<td></td>
<td>Ethnicity: Not stated</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study length (years)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author (year)	Cohn (1992)	**Outcome:** Cases of osteosarcoma	**Inclusion criteria:** Not stated	**Other sources of fluoride:** Not stated	**Exposure:** Proportion of the population receiving fluoridated water from at least the early 1970s to 1987 Group 1: >85% Control: <10%	**No of subjects:** Group 1: 218588 Control: 502759 **Age:** <20
Country of study	USA	**Method of outcome assessment:** Cases identified from New Jersey Cancer Registry, 1980 census used as source of population data.	**Exclusion criteria:** Not stated	**Social class:** Not stated		
Geographic location	New Jersey		**Ethnicity:** Not stated			
Year study started	1979					
Study length (years)	8					
Study design:	Ecological					

<p>| Author (year) | Glattre (1979) | Outcome: Mortality from oral or pharyngeal cancer (ICD 140-149) | Inclusion criteria: Areas where > 80% of population get water from registered supplies | Other sources of fluoride: Not stated | Exposure: Weighted average fluoride concentration of registered water supplies Group 1: 0.11-0.50 (Natural) Group 2: 0.06-0.10 (Natural) Group 4: 0-0.05 (Natural) | No of subjects: Group 1: 207300 Group 2: 811600 Group 4: 931800 Age: Not stated |
| Country of study | Norway | Method of outcome assessment: Age-adjusted mortality rate for oral and pharyngeal cancer provided by the Central Bureau of Statistics of Norway | Exclusion criteria: Not stated | Social class: Not stated | | |
| Geographic location | 70 Municipalities in Southern Norway | | | | | |
| Year study started | 1971 | | | | | |
| Study length (years) | 4 | | | | | |
| Study design: | Ecological | | | | | |</p>
<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
</table>
| **Hoover (1976)** | **Outcome:** Mortality from cancer of the nose and nasal sinuses, eye, brain, connective tissue, colon, bladder, oesophagus, skin, uterus, liver and bile duct, rectum, ovary, stomach, nasopharynx, lung, thyroid, cervix, bone, kidney, lip, breast, larynx, leukaemia, pancreas, testis, salivary gland, prostate, mouth and throat, other and unspecified sites, and, all sites. Also mortality from melanoma, lymphoma, Hodgkin’s disease, multiple myeloma and cancer of other endocrine organs. **Method of outcome assessment:** Age-race and sex- specific numbers of cancer deaths, coded according to the ICD were provided by the National Center for Health statistics. | **Inclusion criteria:** White subjects only
Exclusion criteria: Counties with artificially fluoridated water
Other sources of fluoride: Not stated
Social class: Counties subdivided by percent urbanisation and socio-economic categories based on median number of years of school completed by the adult population of each county
Ethnicity: White subjects only
Other confounding factors: Age | **Exposure:** Level of fluoride that >2/3 of the population were exposed to
Group 1: >2.0 (Natural)
Group 2: 1.3-1.9 (Natural)
Group 3: 0.7-1.2 (Natural)
Group 4: <0.7 (Natural)
No of subjects: Not stated
Age: All ages |
| **Hrudey (1990)** | **Outcome:** Osteosarcoma incidence
Method of outcome assessment: Cases identified through Alberta Cancer Board cancer registry | **Inclusion criteria:** None stated
Exclusion criteria: None stated
Other sources of fluoride: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Age | **Exposure:** Water fluoride content
Group 1: 1.0 (Artificial)
Group 2: 0.3 (Natural)
Year of fluoridation: 1967
No of subjects: Group 1: 9629630
Group 2: 10000000
Age: All ages |
| **Kinlen (1975)** | **Outcome:** Kidney, stomach, oesophagus, bone, colon, bladder, thyroid, breast and rectum cancer
Method of outcome assessment: Cancer incidence data supplied by OPCS from National cancer registration scheme | **Inclusion criteria:** Local authority districts with water fluoride > 1 ppm
Group 4 areas for each high fluoride area, with water fluoride <0.2 ppm
Group 4 area, area nearest of similar size
Similar procedure for areas of high/medium (0.5-0.99), with matched Group 4 areas <0.1 ppm
Exclusion criteria: None stated | **Other sources of fluoride:** Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Areas matched on urban/rural, age standardised, presented by sex. | **Exposure:** Water fluoride level
Group 1: 1
Group 2: 0.5-0.99
Group 3: <0.2 (Natural)
Group 4: <0.1 (Natural)
No of subjects: Group 1: 482398
Group 2: 779054
Group 3: 510045
Group 4: 896625
Age: All ages |
C9: Cancer Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
</table>
| **Author (year)**: Lynch (1985)
Country of study: USA
Geographic location: Iowa
Year study started: 1969
Study length (years): 12
Study design: Ecological
Outcome: Incidence of breast cancer, bladder cancer, prostate cancer, colon cancer, lung cancer, rectum cancer, cancer of all other sites and cancer of all sites combined
Method of outcome assessment: Cases of cancer identified through the Iowa Cancer Information System, population data provided by the census bureau for 1970 & 1980, Rushton's estimates for inter-census years used for other years. Address algorithm used to classify cancer case exposure | **Inclusion criteria**: Areas with 1970 pop >1000
Fluoride concentration maintained at 0.9-1.2 ppm from time of initiation of fluoridation
Divided into 2 groups: 1970 pops > and < 10 000
Exclusion criteria: Areas that failed to maintain fluoridation programmes for any period of > 6 months | **Other sources of fluoride**: Social class: Education, marital status, occupation, foreign born, family income
Ethnicity: 98.5% of Iowa's 1970 population was white, so no race adjustment performed
Other confounding factors: Initiation of water treatment processes, water samples analysed for several volatile organics, trace elements and heavy metals, primary source of drinking water, distance to nearest city with pop. > 25 00, % change in pop between 1980 and 1970 | **Exposure**:
Study 1: Length of time from initiation of artificial water fluoridation until 1981
Low population (<10 000) group:
Group 1: 0-9(Artificial)
Group 2: 10-19(Artificial)
Group 3: 20+ (Artificial)
High population group:
Group 1: <20(Artificial)
Group 2: >20(Artificial)
Study 2: Natural water fluoride level, and minimum length of exposure to this fluoride level
Group 1: <=0.5, exp. 1968-81(Natural)
Group 2: >=1.0, exp. 1968-81(Natural)
Group 3: <=0.5, exp. 1950-81 (Natural)
Group 4: >=1.0, exp. 1950-81(Natural)
Age: All ages |

| **Author (year)**: Mahoney (1991)
Country of study: USA
Geographic location: New York state, exclusive of New York City
Year study started: 1975
Study length (years): 12
Study design: Ecological
Outcome: Bone cancer incidence
Osteosarcoma incidence
Method of outcome assessment: United States census data used to provide population denominator figures, cases of bone cancer identified through New York State Cancer Registry | **Inclusion criteria**: None stated
Exclusion criteria: None stated | **Other sources of fluoride**: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Not stated | **Exposure**: Fluoridated water
Group 1: High(Artificial)
Group 2: Low(Natural)
Group 3: High(Artificial)
Group 4: Low(Natural)
Year of fluoridation:
No of subjects:
Group 1: 17000000
Group 2: 7500000
Group 3: 17403846
Group 4: 9142857
Age: <30 given in exposed 1 & 2, 30 + given in exposed 3 & 4 |
C9: Cancer Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Richards (1979)</td>
<td>Outcome: Deaths from Malignant neoplasms</td>
<td>Other sources of fluoride: Not stated</td>
<td>Exposure: Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Australia</td>
<td>Method of outcome assessment: Deaths from malignant neoplasms obtained from Australian Bureau of Statistics. Annual average number of deaths used as numerator, population at 1971 census used as denominator.</td>
<td>Social class: Not stated</td>
<td>Group 1: High(Artificial)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>10 fluoridated and 10 non-fluoridated areas in New South Wales</td>
<td>Exclusion criteria: Areas which had been fluoridated for <5 years</td>
<td>Ethnicity: Not stated</td>
<td>Group 4: Low(Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1970</td>
<td>Inclusion criteria: None stated</td>
<td>Other confounding factors: Areas matched on population size where possible, age and sex.</td>
<td>No of subjects: Group 1: 163616</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>2</td>
<td>Exposure:</td>
<td></td>
<td>Group 4: 192322</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td>Age</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

Author (year)	Smith (1980)	Outcome: Deaths from cancer	Exposure: Water fluoride level, exposed 1 & 2 used for 1950 data, exposed 3 & 4 for 1970 data (study before after not traditional cohort)
Country of study	USA	Method of outcome assessment: Not stated	Group 1: Low(Natural)
Geographic location	20 US cities, 10 F, 10 non-F	Exclusion criteria: None stated	Group 2: Low(Natural)
Year study started	1950	Inclusion criteria: 10 largest fluoridated cities in US 10 largest non-fluoridated cities in US, with death rates >155 per 100 000	Group 3: High (Artificial)
Study length (years)	20	Exclusion criteria: Not stated	Group 4: Low(Natural)
Study design:	Ecological	Other sources of fluoride: Not stated	Year of fluoridation:
		Social class: Not stated	No of subjects: Group 1: 11885800
		Ethnicity: Group 4 led for using indirect standardisation	Group 2: 6290100
		Other confounding factors: Age, sex	Group 3: 10766600
			Group 4: 7347700
			Age
			All ages
C9: Cancer Studies: Baseline Data
2. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
</table>
| **Author (year)** *Chilvers (1983)*
Country of study USA
Geographic location 35 US cities
Year study started 1950
Year study ended: 1970 | Outcome:
Death from cancer
Method of outcome assessment: Numbers of deaths from cancer abstracted from successive volumes of Vital Statistics in the United States | Inclusion criteria
10 largest fluoridated cities in US
10 largest non-fluoridated cities in US, with death rates >155 per 100 000
10 additional fluoridated and 5 additional non-fluoridated areas
5 additional Group 4 areas
Exclusion criteria
None stated
10 additional fluoridated and 5 additional non-fluoridated areas | Other sources of fluoride: Not stated
Social class: Not stated
Ethnicity: Standardised for ethnic group
Other confounding factors: Rates also standardised for age and sex | Fluoride level (ppm):
Group 1: Low (Natural)
Group 4: Low (Natural)
Year fluoridation initiated: 1951-1964
No of subjects: Not stated
Age: Not stated | Fluoride level (ppm):
Group 1: High (Artificial)
Group 4: Low (Natural)
No of subjects: Not stated
Age: Not stated |
| **Author (year)** *Chilvers (1982)*
Country of study USA
Geographic location 20 US cities 10 F, 10 non-F
Year study started 1958
Year study ended: 1972 | Outcome:
Mortality from cancer of the digestive organs, respiratory system, breast, genital organs, urinary organs, leukaemia and aleukaemia, other malignant neoplasms and all malignant neoplasms
10 largest fluoridated cities in US
10 largest non-fluoridated cities in US, with death rates >155 per 100 000
Exclusion criteria
None stated | Other sources of fluoride: Not stated
Social class: Not stated
Ethnicity: Results standardised for ethnic group
Other confounding factors: Standardised for age and sex | Fluoride level (ppm):
Group 1: Low
Group 4: Low
No of subjects: Not stated
Age: Not stated | Fluoride level (ppm):
Group 1: High
Group 4: Low
No of subjects: Not stated
Age: Not stated |
| **Author (year)** Cook-Mozaffari (1981)
Country of study England
Geographic location Birmingham (F), London, Bristol, Liverpool, Manchester, Leeds, Sheffield (Non-F)
Year study started 1959
Year study ended: 1978 | Outcome:
Method of outcome assessment: Cancer data taken from Registrar General's area mortality tables & from volumes of Statistical Review of England and Wales, Pop. Data by age & sex obtained from 1961 & 1971 national censuses & estimates for individual years from OPCS | Inclusion criteria
Cities with populations > 400 000
Exclusion criteria
None stated | Other sources of fluoride: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Age standardised and sex stratified | Fluoride level (ppm):
Group 1: Low (Natural)
Group 4: Low (Natural)
Year fluoridation initiated: 1964
No of subjects: Not stated
Age: Not stated | Fluoride level (ppm):
Group 1: High (Artificial)
Group 4: Low (Natural)
No of subjects: Not stated
Age: Not stated |
C9: Cancer Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)
Doll (1977)
Country of study
USA
Geographic location
Twenty cities in America, 10 of which had fluoridated water
Year study started
1950
Year study ended:
1970</td>
<td>Outcome: Deaths from cancer
Method of outcome assessment: Not stated</td>
<td>Inclusion criteria
10 largest fluoridated cities in US
10 largest non-fluoridated cities in US, with death rates >155 per 100 000
Exclusion criteria
None stated</td>
<td>Other sources of fluoride:
Not stated
Social class:
Not stated
Ethnicity:
Raw data presented separately for whites and non-whites
Other confounding factors:
Age, sex</td>
<td>Fluoride level (ppm):
Group 1: Low
Group 4: Low
No of subjects:
Group 1: 11885800
Group 4: 6290000
Age
Not stated</td>
<td>Fluoride level (ppm):
Group 1: High
Group 4: Low
No of subjects:
Group 1: 10767000
Group 4: 7348000
Age
Not stated</td>
</tr>
<tr>
<td>Author (year)
Goodall (1980)
Country of study
New Zealand
Geographic location
Auckland, Manukau, Hamilton, Wellington, Waimairi County, Dunedin (F), Whangarei, Wanganui, Nelson and Christchurch city (Non-F)
Year study started
1961
Year study ended:
1976</td>
<td>Outcome: Cancer mortality
Method of outcome assessment: Registered cancer deaths</td>
<td>Inclusion criteria
Aged 45 or more
Exclusion criteria
Not stated</td>
<td>Other sources of fluoride:
Not stated
Social class:
Not stated
Ethnicity:
Not stated
Other confounding factors:
Rates standardised for age and sex</td>
<td>Exposure:
Water fluoride level
Group 1: low (natural)
Control: low (natural)
No of subjects:
Group 1: 1470791
Control: 73 228
Age
45+</td>
<td>Exposure:
Water fluoride level
Group 1: high (artificial)
Control: low (natural)
No of subjects:
Group 1: 180 855
Control: 7 901
Age
45+</td>
</tr>
<tr>
<td>Author (year)
Hoover (1991)
Country of study
USA
Geographic location
Areas in US covered by the SEER programme with known water fluoride concentrations
Year study started
1973
Year study ended:
1987</td>
<td>Outcome: Incidence of osteosarcoma (males only) and bone and joint cancers (both sexes)
Method of outcome assessment: Cases reported to to Surveillance, Epidemiology and End Results (SEER) program of the National Cancer Institute
Exclusion criteria
Not stated</td>
<td>Inclusion criteria
Cases of bone and joint cancers and osteosarcoma reported to the SEER programme of the National Cancer Institute
Exclusion criteria
Not stated</td>
<td>Other sources of fluoride:
Not stated
Social class:
Not stated
Ethnicity:
Not stated
Other confounding factors:
Not stated</td>
<td>Fluoride level (ppm):
Group 1: <10% pop, <0.3 (Natural)
Group 3: >60% pop, F<1955 (Artificial)
Group 4: >60% pop, F>=1966 (Artificial)
No of subjects:
Not stated
Age
All ages</td>
<td>Fluoride level (ppm):
Group 1: <10% pop, <0.3 (Natural)
Group 3: >60% pop, F<1955(Artificial)
Group 4: >60% pop, F>=1966(Artificial)
No of subjects:
Not stated
Age
All ages</td>
</tr>
</tbody>
</table>
C9: Cancer Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
</table>
| **Author (year)**: Schlesinger (1956)
Country of study: USA
Geographic location: Newburgh & Kingston, New York State
Year study started: 1944
Year study ended: 1952
Non-F: 10 Cities in US, 10 F, 10 | **Outcome**: Deaths from cancer
Method of outcome assessment: Not stated | **Inclusion criteria**: Not stated
Exclusion criteria: Not stated | **Other sources of fluoride**: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Age, race & sex specific pops obtained by linear extrapolation/interpolation. Age, race & sex specific pops obtained by linear interpolation. | **Fluoride level (ppm)**:
Group 1: Fluoridated
Group 2: Fluoridated
Group 3: Fluoridated
Group 4: Not fluoridated (Natural) | **Fluoride level (ppm)**:
Group 1: Fluoridated
Group 2: Fluoridated
Group 3: Fluoridated
Group 4: Not fluoridated (Natural) |
| **Author (year)**: Yiamouyiannis (1977)
Country of study: Canada
Geographic location: Areas in Canada, selected as outlined in inclusion criteria (pop. >25 000)
Year study started: 1954
Year study ended: 1973
Non-F: 24, 25-44, 45-64, 65+ | **Outcome**: Mortality from cancer (all malignant neoplasms)
Method of outcome assessment: Cases identified through Health Division of Statistics, Candad, data, population data provided from census data | **Inclusion criteria**: Urbanised core of each Census Metropolitan area
Exclusion criteria: Sections of fringe (area outside core) also included if a municipality of >25000 was in this area or a portion of a municipality listed as urbanised core lay in the fringe | **Other sources of fluoride**: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Age and sex | **Fluoride level (ppm)**:
Group 1: Fluoridated
Group 2: Fluoridated
Group 3: Fluoridated
Group 4: Not fluoridated (Natural) | **Fluoride level (ppm)**:
Group 1: Fluoridated
Group 2: Fluoridated
Group 3: Fluoridated
Group 4: Not fluoridated (Natural) |
| **Author (year)**: Raman (1977)
Country of study: USA
Geographic location: 20 Cities in US, 10 F, 10 non-F
Year study started: 1952
Year study ended: 1969
Non-F: 20 largest fluoridated cities in US, 10 largest non-fluoridated cities in US, with death rates >155 per 100 000 | **Outcome**: Death from cancers ages 0-24, 25-44, 45-64 and 65+
Method of outcome assessment: State/county/city health departments provided annual cancer deaths, missing data supplied by linear extrapolation/interpolation. Age, race & sex specific pops obtained by linear interpolation of census figures obtained from US Census Bureau | **Inclusion criteria**: 10 largest fluoridated cities in US
Exclusion criteria: None stated | **Other sources of fluoride**: Not stated
Social class: Not stated
Ethnicity: Author shows that % non-white increased in fluoridated areas over study period, states that regression analysis performed of increase in age-adjusted cancer rate against increase in % white population, found no correlation | **Fluoride level (ppm)**:
Group 1: Low (Natural)
Group 4: Low (Natural) | **Fluoride level (ppm)**:
Group 1: Low (Natural)
Group 4: Low (Natural) |
C9: Cancer Studies: Baseline Data

3. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Case and Group 4 selection</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Case-definition:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>Gelberg (1995)</td>
<td>Cases of osteosarcoma newly diagnosed from January 1978 to December 1988 identified from the New York Cancer Registry. Results presented separately for questionnaires completed by subjects and parents.</td>
<td>Newly diagnosed cases of osteosarcoma</td>
<td>Lifetime exposure to fluoride from tablets, mouthrinses, toothpaste, dental treatments and total fluoride measured in cases and Group 4s</td>
<td>Cases: 55</td>
</tr>
<tr>
<td></td>
<td>Method of Group 4 selection: Group 4s were randomly selected from live birth records maintained by the New York State Department of Health, had to survive until matched pairs subject's age at diagnosis</td>
<td>Aged less than 24 years at time of diagnosis</td>
<td>Social class: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matching: Matched by year of birth and sex</td>
<td>Resident in New York state excluding New York City</td>
<td>Ethnicity: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratios of cases to Group 4s: 1:1</td>
<td>Subjects with pre-existing cancers</td>
<td>Other confounding factors: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resident in New York state excluding New York City</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Lifetime exposure to water fluoride of 1-1850mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: Lifetime exposure to water fluoride of 1851-3385mg</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Case-definition:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>McGuire (1991)</td>
<td>Patients diagnosed with osteosarcoma between 1980 and 1990. Cases identified through University of Iowa cancer registry and medical records of division of orthopaedics, St. Joseph's Hospital, Omaha, Nebraska</td>
<td>Aged <40 at diagnosis</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of Group 4 selection: Patients of appropriate orthopaedic department</td>
<td>Patients with any prediagnosis history of radiation therapy</td>
<td>Social class: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matching:</td>
<td>Patients with history of kidney dialysis</td>
<td>Ethnicity: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratios of cases to Group 4s: 1:1</td>
<td></td>
<td>Other confounding factors: Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Lifetime exposure greater than 0.7ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: More than 1/3 of childhood at 0.7ppm</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Case-definition:</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>Moss (1995)</td>
<td>Primary osteosarcoma tumours occurring in Wisconsin reported to the Wisconsin Cancer Reporting System between 1979-89</td>
<td>Not stated</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of Group 4 selection: 2 groups of Group 4s: brain and nervous system tumours and digestive system cancers, reported to Wisconsin cancer reporting system during the same period as the cases</td>
<td>Social class: Not stated</td>
<td>Cases: 167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matching: Match according to age in 0-14 year and then 10 year age-groups, until >84, sex and race</td>
<td>Ethnicity: Matched on race</td>
<td>Group 4s 1: 647</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratios of cases to Group 4s: 1:4</td>
<td>Other confounding factors: Population size, radiation levels, age, sex</td>
<td>Group 4s 2: 342</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age range (mean)</td>
<td>Exposure 1: Water fluoride level >0.7, estimated according to area of residence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-40</td>
<td>Exposure 2: Water fluoride level <0.7, estimated according to area of residence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: Odds ratio adjusted for population, age, radiation and gender</td>
<td></td>
</tr>
</tbody>
</table>

186
C10: Cancer Studies: Individual Study Results

1. Cohort and Ecological Studies

a. Studies which present indirectly standardised results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation</th>
<th>Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Chilvers (1985)</td>
<td>Cancer mortality from cancer of the buccal cavity and pharynx</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>Method used</td>
<td>Indirect</td>
<td>102.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.69</td>
<td>64.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77.08</td>
<td>79.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from all causes</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>2426</td>
<td>2039</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2525</td>
<td>2169</td>
<td>89.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2255</td>
<td>1957</td>
<td>97.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2632</td>
<td>2236</td>
<td>95.55</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from all stomach cancers</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>288</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td>180</td>
<td>85.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>234</td>
<td>175</td>
<td>88.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>284</td>
<td>214</td>
<td>90.26</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from breast cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>410</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>396</td>
<td>396</td>
<td>105.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td>470</td>
<td>104.94</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from intestinal cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>162</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>264</td>
<td>94.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>177</td>
<td>221</td>
<td>113.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189</td>
<td>277</td>
<td>101.62</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from kidney cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>28</td>
<td>105.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>19</td>
<td>83.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>30</td>
<td>100.23</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from lung cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>938</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>984</td>
<td>221</td>
<td>87.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>841</td>
<td>181</td>
<td>91.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1035</td>
<td>207</td>
<td>94.80</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from oesophagus cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>69</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>50</td>
<td>81.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>54</td>
<td>90.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>78</td>
<td>108.10</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from ovary cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>119</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>107</td>
<td>100.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>80</td>
<td>118.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
<td>87</td>
<td>86.43</td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from pancreas cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=1.0</td>
<td>0.5-0.99</td>
<td>0.5-0.99</td>
<td><=0.1</td>
<td><=0.1</td>
<td>SMR</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>21</td>
<td>107.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>15</td>
<td>89.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>21</td>
<td>83.00</td>
</tr>
</tbody>
</table>

Standard population

- Standardised mortality ratios provided by OPCS. Where no deaths occurred in area expected deaths calculated by applying England and Wales age-sex specific death rates. Standardised for age.
Study Details

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Group</th>
<th>Exposure Level</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR M</th>
<th>F</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilvers (1985) - continued</td>
<td>Cancer mortality from rectum cancer</td>
<td>Group 1: >=1.0</td>
<td>115</td>
<td>103</td>
<td>Indirect Standard population The entire 1970 US population (5 year age-groups to 74, then 75-84 and 85+)</td>
<td>89.11</td>
<td>93.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.5-0.99</td>
<td>133</td>
<td>114</td>
<td></td>
<td></td>
<td>95.52</td>
<td>101.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: <=0.2</td>
<td>153</td>
<td>96</td>
<td></td>
<td></td>
<td>131.86</td>
<td>94.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: <=0.1</td>
<td>143</td>
<td>117</td>
<td></td>
<td></td>
<td>103.26</td>
<td>96.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from skin cancer</td>
<td>Group 1: >=1.0</td>
<td>19</td>
<td>30</td>
<td></td>
<td>97.59</td>
<td>142.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.5-0.99</td>
<td>21</td>
<td>16</td>
<td></td>
<td></td>
<td>93.96</td>
<td>69.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: <=0.2</td>
<td>22</td>
<td>26</td>
<td></td>
<td></td>
<td>120.79</td>
<td>129.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: <=0.1</td>
<td>23</td>
<td>25</td>
<td></td>
<td></td>
<td>107.15</td>
<td>108.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer mortality from bladder cancer</td>
<td>Group 1: >=1.0</td>
<td>110</td>
<td>41</td>
<td></td>
<td>96.48</td>
<td>88.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.5-0.99</td>
<td>99</td>
<td>45</td>
<td></td>
<td></td>
<td>79.78</td>
<td>95.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: <=0.2</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
<td>98.79</td>
<td>117.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: <=0.1</td>
<td>129</td>
<td>47</td>
<td></td>
<td></td>
<td>106.63</td>
<td>95.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoover (1976)</td>
<td>Mortality from cancer of all sites</td>
<td>Group 1: >=2.0</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: <=0.7</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the testis</td>
<td>Group 1: >=1.3</td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.7-1.2</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: <=0.7</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the nose and nasal sinuses</td>
<td>Group 1: >=2.0</td>
<td>0.8</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.1</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the oesophagus</td>
<td>Group 1: >=2.0</td>
<td>0.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the ovary</td>
<td>Group 1: >=2.0</td>
<td>1.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the pancreas</td>
<td>Group 1: >=2.0</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the prostate</td>
<td>Group 1: >=2.0</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the rectum</td>
<td>Group 1: >=2.0</td>
<td>0.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 2: 1.3-1.9</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.7-1.2</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: <=0.7</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome</td>
<td>Group</td>
<td>Exposure</td>
<td>Exposure Level</td>
<td>Crude Rate (Males)</td>
<td>Crude Rate (Females)</td>
<td>Standardisation Methods</td>
<td>Observed</td>
<td>Expected</td>
<td>SMR</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Hoover (1976)</td>
<td>Mortality from other lymphoma</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 0.9</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the stomach</td>
<td>Group 1:</td>
<td>>=1.3</td>
<td>0.7-1.2</td>
<td>M 1.1</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the lung</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 0.8</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the thyroid</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 1.1</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the uterus</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 1.4</td>
<td>1.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from Hodgkin's disease</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from leukemia</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from melanoma</td>
<td>Group 1:</td>
<td>>=1.3</td>
<td>0.7-1.2</td>
<td>M 1.3</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from multiple myeloma</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 0.7</td>
<td>1.2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the salivary gland</td>
<td>Group 1:</td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>M 0.9</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.7-1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the colon</td>
<td>Group 1:</td>
<td>>=1.3</td>
<td>0.7-1.2</td>
<td>M 0.9</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome</td>
<td>Group 1:</td>
<td>Group 2:</td>
<td>Group 3:</td>
<td>Group 4:</td>
<td>Exposure</td>
<td>Exposure Level</td>
<td>Crude Rate (Males)</td>
<td>Crude Rate (Females)</td>
<td>Standardisation</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Hoover (1976) -</td>
<td>Mortality from cancer of other endocrine</td>
<td></td>
</tr>
<tr>
<td>continued</td>
<td>cancers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the bladder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the nasopharynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>1.3</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the cervix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the mouth and throat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the connective tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>1.3</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the larynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the lip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1.4</td>
<td>1.6</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.8</td>
<td>1.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.7</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>0.6</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.3</td>
<td>1.1</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1</td>
<td>0.7</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
C10: Cancer Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation</th>
<th>Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoover (1976) - continued</td>
<td>Mortality from cancer of the liver and bile duct</td>
<td>Group 1:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from other skin cancer</td>
<td>Group 1:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality from cancer of the breast</td>
<td>Group 1:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>>=2.0</td>
<td>1.3-1.9</td>
<td>0.7-1.2</td>
<td><0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinlen (1975)</td>
<td>Thyroid cancer</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>9.3</td>
<td>6.9</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bone cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>3.7</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>177.5</td>
<td>128.2</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>127.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>123.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>127.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colon cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>80.0</td>
<td>78.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>75.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>80.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>78.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>26.7</td>
<td>25.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>25.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oesophagus cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>15.1</td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>14.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stomach cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>77.7</td>
<td>94.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>64.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>90.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>91.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bladder cancer</td>
<td>Group 1:</td>
<td></td>
<td>1</td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>89.1</td>
<td>81.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>87.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>87.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>0.5-0.99</td>
<td><0.2</td>
<td><0.1</td>
<td>87.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C10: Cancer Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation</th>
<th>Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinlen (1975) - continued</td>
<td>Rectum cancer</td>
<td>Group 1:</td>
<td>Length of time from initiation of artificial water fluoridation until 1981, in the high population group</td>
<td><20</td>
<td>1.050</td>
<td>1.041</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>>20</td>
<td>1.146</td>
<td>1.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0-9</td>
<td>1.085</td>
<td>1.192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>10-19</td>
<td>1.176</td>
<td>1.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20+</td>
<td>1.092</td>
<td>1.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer of all other sites</td>
<td>Group 1:</td>
<td>Length of time from initiation of artificial water fluoridation until 1981, in the low population group</td>
<td><20</td>
<td>1.027</td>
<td>1.061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>>20</td>
<td>1.208</td>
<td>1.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0-9</td>
<td>1.131</td>
<td>1.451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td>10-19</td>
<td>1.088</td>
<td>1.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20+</td>
<td>0.993</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of bladder cancer</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>1.133</td>
<td>1.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.088</td>
<td>1.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>0.993</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of breast cancer</td>
<td>Group 1:</td>
<td>Length of time from initiation of artificial water fluoridation until 1981, in the low population (<10 000) group</td>
<td>0-9</td>
<td>1.276</td>
<td>0.865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.036</td>
<td>0.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>1.031</td>
<td>1.164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of colon cancer</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>1.101</td>
<td>1.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.010</td>
<td>1.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>1.006</td>
<td>0.927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of lung cancer</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>1.053</td>
<td>1.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.044</td>
<td>1.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>1.074</td>
<td>1.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of prostate cancer</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>0.983</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.029</td>
<td>1.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>1.107</td>
<td>1.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of rectum cancer</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>0.951</td>
<td>1.073</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.135</td>
<td>1.135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>20+</td>
<td>1.155</td>
<td>1.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of cancer of all other sites</td>
<td>Group 1:</td>
<td></td>
<td>0-9</td>
<td>1.007</td>
<td>1.091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>10-19</td>
<td>1.027</td>
<td>0.895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of prostate cancer</td>
<td>Group 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C10: Cancer Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group 1: Group 2: Group 3: Group 4:</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation Methods</th>
<th>Observed</th>
<th>Expected</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch (1985) - continued</td>
<td>Incidence of bladder cancer</td>
<td>Natural water fluoride level, and minimum length of exposure to this fluoride level (Groups 1 & 2: 1968-81, Group 3 & Group 4 1950-81)</td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.079</td>
<td>0.960</td>
<td>Indirect Standard population</td>
<td>240</td>
<td>340</td>
<td>91.6</td>
</tr>
<tr>
<td>Incidence of breast cancer</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.083</td>
<td>0.924</td>
<td>Indirect Standard population</td>
<td>262</td>
<td>359</td>
<td>94.9</td>
</tr>
<tr>
<td>Incidence of prostate cancer</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.020</td>
<td>0.978</td>
<td>Indirect Standard population</td>
<td>1.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of rectum cancer</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.167</td>
<td>1.043</td>
<td>Indirect Standard population</td>
<td>1.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of cancer from all sites</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.072</td>
<td>1.043</td>
<td>Indirect Standard population</td>
<td>1.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of lung cancer</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.072</td>
<td>1.043</td>
<td>Indirect Standard population</td>
<td>1.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of colon cancer</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.072</td>
<td>1.043</td>
<td>Indirect Standard population</td>
<td>1.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of cancer of all other sites</td>
<td></td>
<td></td>
<td><=0.5</td>
<td>>=1.0</td>
<td>1.072</td>
<td>1.043</td>
<td>Indirect Standard population</td>
<td>1.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richards (1979) Deaths from Malignant neoplasms</td>
<td>Water fluoride level</td>
<td>High</td>
<td>146.7</td>
<td>176.8</td>
<td>1.083</td>
<td>1.161</td>
<td>Indirect Standard population</td>
<td>240</td>
<td>340</td>
<td>91.6</td>
</tr>
</tbody>
</table>

*Method used: Indirect Standard population

Annual average number of deaths with the census population of 1971 used to calculate 1971 SMRs & applied to population of selected study areas.
C10: Cancer Studies: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Rate (Males)</th>
<th>Crude Rate (Females)</th>
<th>Standardisation</th>
</tr>
</thead>
</table>
| Smith (1980) | Deaths from cancer | Group 1:
Group 2:
Group 3:
Group 4: | Water fluoride level, exposed 1 & 2 used for 1950 data, exposed 3 & 4 for 1970 data | Low: 180.8
Low: 179.0
High: 217.4
Low: 194.2 | Method used
Indirect Standard population
F: 1.0
Non-F: 1.0 | SMR | Observed | Expected |
| | | | | | | M | F | M | F |
| | | | | | | M | F | M | F |

b. Studies which present directly standardised results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Risk /100 000</th>
<th>Summary Measure (CI):</th>
<th>Details</th>
<th>Summary Measure (CI):</th>
<th>Details</th>
</tr>
</thead>
</table>
| Glattre (1979)| Mortality from oral or pharyngeal cancer (ICD 140-149) | Group 1:
Group 2:
Group 4: | 0.11-0.50
0.06-0.10
0-0.05 | Method used
Direct Standard population
Age standardised mortality rate (standard error of the mean) | 3.4 (0.81)
4.7 (0.90)
5.3 (0.99) | 0.6 (0.24)
1.1 (0.43)
1.5 (0.34) | Male | Female |
| | | | | | | | | |

c. Studies which present crude results only

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Risk /100 000</th>
<th>Summary Measure (CI):</th>
<th>Details</th>
<th>Summary Measure (CI):</th>
<th>Details</th>
</tr>
</thead>
</table>
| Cohen (1992) | Osteosarcoma incidence | Group 1:
Control: | % of the population exposed to fluoridated water | >85%
<10% | 1.35
0.40 | 0.35
0.35 | Male | Female |
| Hrudey (1990) | Osteosarcoma incidence | Group 1:
Group 4: | Water fluoride content | 1
0.3 | 0.27
0.29 | | |
| Mahoney (1991) | Osteosarcoma incidence
(SMSA data for fluoridated areas used, in order to best match the data from non-fluoridated areas) | Group 1:
Group 2:
Group 4: | Water fluoride level | High
Low | 0.43
0.44
0.33 | 0.25
0.32
0.24 | | |
| | Bone cancer incidence
Age <30 | Group 1:
Group 2:
Group 4: | Fluoridated water | High
Low | 0.90
0.97 | 1.04
0.87 | | |
| | Age >30 | | | | | | | |
C10: Cancer Studies: Individual Study Results

2. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Presented</th>
<th>Group</th>
<th>Fluoride Level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
<th>Outcome 3</th>
<th>Outcome 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td>120.54</td>
<td>116.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>123.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilvers (1982)</td>
<td>Standardised mortality ratios presented. Indirect standardisation carried out simultaneously for age (0-1, 1-4, 5-14), sex and ethnic group (white & non-white). Specific rates used were total US 1960</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td>125.31</td>
<td>109.92</td>
<td>119.90</td>
<td>109.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>104.56</td>
<td>108.01</td>
<td>115.64</td>
<td>113.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>106.72</td>
<td>96.05</td>
<td>199.17</td>
<td>92.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>135.71</td>
<td>195.53</td>
<td>195.33</td>
<td>97.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digestive organs (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respiratory system (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breast (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genital organs (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urinary organs (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leukaemia and alyukaemia (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other malignant neoplasms (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All malignant neoplasms (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook-Mozaffari (1981)</td>
<td>Age adjusted rate, adjusted using geometric mean of average annual rates for England and Wales for each study period, age groups 0-4 & then 10 year groups up to 85+. SMRs multiplied by age-standardised death rates for England and Wales to give rate</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td>125.51</td>
<td>109.20</td>
<td>118.79</td>
<td>128.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>104.56</td>
<td>108.01</td>
<td>114.82</td>
<td>113.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>201.6</td>
<td>199.17</td>
<td>204.3</td>
<td>128.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>211.2</td>
<td>195.53</td>
<td>223.9</td>
<td>128.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age adjusted cancer deaths males, 1959-63 & 1969-73 (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age adjusted cancer deaths females, 1959-63 & 1969-73 (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age adjusted cancer deaths males, 1969-73 & 1974-78 (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age adjusted cancer deaths females, 1969-73 & 1974-78 (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doll (1977)</td>
<td>Age (10 year groups), sex and ethnic group (white/non-white) standardised (standard, specific national cancer mortality rates for US) ratio of observed to expected deaths from cancer</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td>01.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>01.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deaths from cancer (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Outcome Presented</td>
<td>Group</td>
<td>Fluoride Level</td>
<td>Outcome 1</td>
<td>Outcome 2</td>
<td>Outcome 3</td>
<td>Outcome 4</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodall (1980)</td>
<td>Crude death rates from cancer per 100 000 population</td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>691.1</td>
<td>463.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>low</td>
<td>733.5</td>
<td>511.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td><10% pop, <0.3</td>
<td>0.29</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>>60% pop, F<1955</td>
<td>0.32</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>>60% pop, F≥1966</td>
<td>0.35</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlesinger (1956)</td>
<td>Crude death rate</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1-1.2</td>
<td>221.0</td>
<td>261.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td><0.2</td>
<td>264.4</td>
<td>264.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman (1977)</td>
<td>Age standardised results using the 1971 Canada population as standard</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>F <1959</td>
<td>161.1</td>
<td>146.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>F 1959-63</td>
<td>193.4</td>
<td>167.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>F 1964-67</td>
<td>159.5</td>
<td>134.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Not fluoridated</td>
<td>177.0</td>
<td>165.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>F <1959</td>
<td>170.5</td>
<td>136.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>F 1959-63</td>
<td>181.2</td>
<td>132.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>F 1964-67</td>
<td>166.9</td>
<td>122.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Not fluoridated</td>
<td>179.5</td>
<td>137.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yiannouliannis (1977)</td>
<td>Crude death rates</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>Low</td>
<td>9.7</td>
<td>49.96</td>
<td>338.3</td>
<td>1032.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>9.69</td>
<td>47.33</td>
<td>323.5</td>
<td>974.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>7.30</td>
<td>47.15</td>
<td>375.1</td>
<td>1069.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>Low</td>
<td>7.20</td>
<td>44.67</td>
<td>347.2</td>
<td>977.6</td>
</tr>
</tbody>
</table>
C10: Cancer Studies: Individual Study Results

3. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Number of Subjects per Group</th>
<th>Exposures</th>
<th>Level of Exposure in Cases</th>
<th>Level of Exposure in Group 4</th>
<th>OR for Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelberg (1995)</td>
<td>Cases of osteosarcoma newly diagnosed from January 1978 to December 1988 identified from the New York Cancer Registry. Questionnaire completed by subjects.</td>
<td>55</td>
<td>Exposure 1: Lifetime exposure to water fluoride of 0</td>
<td>21</td>
<td>29</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Lifetime exposure to water fluoride of 1-1850mg</td>
<td>15</td>
<td>11</td>
<td>2.31 (0.74, 7.20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: Lifetime exposure to water fluoride of 1851-3385mg</td>
<td>14</td>
<td>12</td>
<td>2.07 (0.53, 8.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Questionnaire completed by parents.</td>
<td>40</td>
<td>57</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>16</td>
<td>4.13 (1.65, 10.35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>23</td>
<td>1.84 (0.81, 4.2)</td>
</tr>
<tr>
<td>McGuire (1991)</td>
<td>Patients diagnosed with osteosarcoma between 1980 and 1990. Cases identified through University of Iowa cancer registry and medical records of division of orthopaedics, St. Joseph's Hospital, Omaha, Nebraska.</td>
<td>22</td>
<td>Exposure 1: More than 1/3 of life at >0.7ppm</td>
<td>0.14 (0.02, 1.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Lifetime exposure greater than 0.7ppm</td>
<td>0.33 (0.04, 2.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: More than 1/3 of childhood at 0.7ppm</td>
<td>0.33 (0.04, 2.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mooss (1995)</td>
<td>Primary osteosarcoma tumours occurring in Wisconsin reported to the Wisconsin Cancer Reporting System between 1979-1989</td>
<td>167</td>
<td>Exposure 1: Water fluoride level >0.7, estimated according to area of residence</td>
<td>110</td>
<td>695</td>
<td>1.0(0.6-1.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: Water fluoride level <0.7, estimated according to area of residence</td>
<td>57</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 3: Odds ratio adjusted for population, age, radiation and gender</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Cohort and Ecological Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Berry (1958)</td>
<td>Number of births with Down’s syndrome per 1000 births</td>
<td>Children born in study areas during study period</td>
<td>Not stated</td>
<td>Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td>Mothers living in study area at time of birth</td>
<td>Social class:</td>
<td>Group 1: 0.7-1.1</td>
</tr>
<tr>
<td>England</td>
<td>Information sought from institutions, death certificates, records of medical officers of health authorities, personal knowledge of health visitors</td>
<td>Exclusion criteria</td>
<td>Group 2: 1.9-2.0</td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Inclusion criteria</td>
<td>None stated</td>
<td>Group 3: 0.9</td>
<td>Group 4: <0.2</td>
</tr>
<tr>
<td>Essex county subdivided into fluoridated and non-fluoridated areas</td>
<td>Social class:</td>
<td>Other confounding factors:</td>
<td>Group 5: <0.2</td>
<td>Group 6: <0.2</td>
</tr>
<tr>
<td>Year study started</td>
<td>Exclusion criteria</td>
<td>Not stated</td>
<td>Group 7: <0.2</td>
<td>Control: <0.2</td>
</tr>
<tr>
<td>1945</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design:</td>
<td>Outcome:</td>
<td>Exposure:</td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>ecological</td>
<td>Number of births with Down’s syndrome per 1000 births</td>
<td>Water fluoride level</td>
<td>Group 1: 20760</td>
<td>Group 1: 20760</td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td>Determination of exposure to fluoridated water</td>
<td>Group 3: 9492</td>
<td>Group 3: 9492</td>
</tr>
<tr>
<td>USA</td>
<td>Cases identified through the Metropolitan Atlanta Congenital Malformations Surveillance Program and National Cleft Lip and Palate Intelligence service. Data for Down syndrome was supplemented by a retrospective ascertainment (using multiple sources) of children born between 1960 and 1967.</td>
<td>Down syndrome results stratified on maternal age</td>
<td>Group 4: 12620</td>
<td>Group 4: 12620</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Inclusion criteria</td>
<td></td>
<td>Group 5: 11587</td>
<td>Group 5: 11587</td>
</tr>
<tr>
<td>Georgia</td>
<td>Birth of white children only</td>
<td></td>
<td>Group 6: 22452</td>
<td>Group 6: 22452</td>
</tr>
<tr>
<td>Year study started</td>
<td>Exclusion criteria</td>
<td></td>
<td>Group 7: 14873</td>
<td>Group 7: 14873</td>
</tr>
<tr>
<td>1960-1973</td>
<td>Cities with mixed fluoridation status</td>
<td></td>
<td>Control: 6870</td>
<td>Control: 6870</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Other confounding factors:</td>
<td></td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Metropolitan area</td>
<td>Group 1: 95254</td>
</tr>
<tr>
<td>Study design:</td>
<td>Outcome:</td>
<td></td>
<td>Group 2: 234300</td>
<td>Group 2: 234300</td>
</tr>
<tr>
<td>Ecological</td>
<td>Deaths from all causes classified into 34 categories</td>
<td></td>
<td>NIS surveillance areas</td>
<td>Group 3: 1032100</td>
</tr>
<tr>
<td>Erickson (1978)</td>
<td>Deaths from all causes classified into 34 categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>Method of outcome assessment:</td>
<td></td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>USA</td>
<td>Computer tapes containing information abstracted from all United States death certificates for years 1969-1971 made available by United States National Center for Health Statistics</td>
<td></td>
<td></td>
<td>Metropolitan area</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Inclusion criteria</td>
<td></td>
<td></td>
<td>Group 1: 95254</td>
</tr>
<tr>
<td>Selected fluoridated and non-fluoridated cities in USA</td>
<td>Cities with 1957 populations >250 000</td>
<td></td>
<td>Group 2: 234300</td>
<td>Group 2: 234300</td>
</tr>
<tr>
<td>Year study started</td>
<td>Exclusion criteria</td>
<td></td>
<td>Control: 1032100</td>
<td>Control: 1032100</td>
</tr>
<tr>
<td>1969</td>
<td>Cities with mixed fluoridation status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Cities with supplies fluoridated since 1965</td>
<td></td>
<td></td>
<td>No of subjects:</td>
</tr>
<tr>
<td>3</td>
<td>Cities with supplies fluoridated since 1965</td>
<td></td>
<td></td>
<td>Group 1: 15972817</td>
</tr>
<tr>
<td>Study design:</td>
<td>Cities with supplies fluoridated since 1965</td>
<td></td>
<td>Control: 11106746</td>
<td>Control: 11106746</td>
</tr>
<tr>
<td>Ecological</td>
<td>Cities with supplies fluoridated since 1965</td>
<td></td>
<td>Age</td>
<td>All ages, age, sex and race standardised rates presented</td>
</tr>
</tbody>
</table>
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)
 Erickson (1980)
 Country of study
 USA
 Geographic location
 27 fluoridated, 17 non fluoridated US cities
 Year study started
 1973
 Study length (years)
 2
 Study design:
 Ecological</td>
<td>Outcome:
 Number of lives births with Down’s Syndrome
 Number of live births with congenital malformations (excluding Down's syndrome)</td>
<td>Inclusion criteria
 Cities with 1970 populations >=250 000
 Cities fluoridated for >= 5 years by 1973
 Exclusion criteria
 Cities with mixed fluoridation status
 States which do not report birth defects on birth certificates
 Cities fluoridated for <5 years by 1973</td>
<td>Other sources of fluoride:
 Not stated
 Social class:
 Not stated
 Ethnicity:
 White births only
 Other confounding factors:
 Not stated</td>
<td>Exposure:
 Water fluoride level
 Group 1: >=0.7
 Control: <0.7(Natural)</td>
</tr>
<tr>
<td>Author (year)
 Farkas (1983)
 Country of study
 Hungary
 Geographic location
 Kunzentmarton (F), Kiskunmajsa (non-F)
 Year study started
 Not stated
 Study length (years)
 Not stated
 Study design:
 Retrospective cohort</td>
<td>Outcome:
 Median age at menarche</td>
<td>Inclusion criteria
 Girls resident in study areas
 Exclusion criteria
 Twins and gypsy children of another ethnic group</td>
<td>Other sources of fluoride:
 Not stated
 Social class:
 Not stated, author states that areas similar in respects other than water fluoride level
 Ethnicity:
 Children of other ethnic origin excluded (assume means only hungarian children included)
 Other confounding factors:
 Not stated</td>
<td>Exposure:
 Water fluoride level
 Group 1: 1.09(Natural)
 Group 2:
 Group 3:
 Control: <0.17(Natural)</td>
</tr>
<tr>
<td>Author (year)
 Forbes (1997)
 Country of study
 Canada
 Geographic location
 Ontario
 Year study started
 Not stated
 Study length (years)
 Not stated
 Study design:
 Ecological</td>
<td>Outcome:
 Alzheimer's disease reported as the underlying cause of death
 Rate of impaired mental functioning</td>
<td>Inclusion criteria
 Subjects enrolled in the Ontario Longitudinal Study of Ageing</td>
<td>Other sources of fluoride:
 Not stated
 Social class:
 Not stated
 Ethnicity:
 Not stated
 Other confounding factors:
 Levels of aluminium, iron and silica in water, water pH and source of water</td>
<td>Exposure:
 Water fluoride level
 Group 1: >=0.98
 Group 2: 0.5-0.98
 Control: <0.5</td>
</tr>
<tr>
<td>Author (year)
 Not stated
 Country of study
 USA
 Geographic location
 27 fluoridated, 17 non fluoridated US cities
 Year study started
 Not stated
</td>
<td>Outcome:
 Number of lives births with Down’s Syndrome
 Number of live births with congenital malformations (excluding Down's syndrome)</td>
<td>Inclusion criteria
 Cities with 1970 populations >=250 000
 Cities fluoridated for >= 5 years by 1973
 Exclusion criteria
 Cities with mixed fluoridation status
 States which do not report birth defects on birth certificates
 Cities fluoridated for <5 years by 1973</td>
<td>Other sources of fluoride:
 Not stated
 Social class:
 Not stated
 Ethnicity:
 White births only
 Other confounding factors:
 Not stated</td>
<td>Exposure:
 Water fluoride level
 Group 1: >=0.8
 Control: <0.8(Natural)</td>
</tr>
</tbody>
</table>
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Griffith (1963)</td>
<td>Outcome:</td>
<td>Anaemia during pregnancy</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>Wales</td>
<td>Method of outcome assessment:</td>
<td>Results of haemoglobin tests taken during clinic visits used to calculate incidence of anaemia, defined as haemoglobin level below 75 (units not stated) at any time</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Anglesey</td>
<td>Inclusion criteria:</td>
<td>Pregnant women that could be allocated to one of two water supplies</td>
<td>Social class:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1960</td>
<td>Exclusion criteria:</td>
<td>Pregnant women for whom a clinic record was available which included at least one estimate of haemoglobin level</td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Not stated</td>
<td></td>
<td>None stated</td>
<td>Other confounding factors:</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Hagan (1954)</td>
<td>Outcome:</td>
<td>Average yearly deaths from all causes</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Method of outcome assessment:</td>
<td>Number of deaths in study areas obtained from vital statistics of the United States</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>32 paired fluoride and non-fluoride cities in the US</td>
<td>Inclusion criteria:</td>
<td>Cities with 1950 census populations 10 000</td>
<td>Social class:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1949</td>
<td>Exclusion criteria:</td>
<td>None stated</td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>1</td>
<td></td>
<td></td>
<td>Rates adjusted for race</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Other confounding factors:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Jacqmin-Gadda (1994)</td>
<td>Outcome:</td>
<td>Cognitive impairment (used as major clinical sign of Alzheimer's)</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>France</td>
<td>Method of outcome assessment:</td>
<td>Mini-mental state examination used as measure of cognitive mental status, total score ranges from 0-30 cognitive impairment defined as a score <24</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Gironde and Dordogne</td>
<td>Inclusion criteria:</td>
<td>Men and women aged 65 years and older</td>
<td>Social class:</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Exclusion criteria:</td>
<td>Areas where water samples could not be collected</td>
<td>Educational level:</td>
</tr>
<tr>
<td>Study design:</td>
<td>Ecological</td>
<td></td>
<td></td>
<td>Ethnicity:</td>
</tr>
</tbody>
</table>

| No of subjects: | Group 1: 626 | Group 2: 1417 | Group 3: 635 | Group 4: 635 | | |

Age Results standardised for age
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
</table>
| **Author (year)** Jooste (1999) | **Outcome:** % Prevalence of goitre | **Inclusion criteria** All 6, 12, and 15 year old children Lifetime residents of study areas | **Other sources of fluoride:** Not stated | **Exposure:** Water fluoride level | **Group 1:** 2.6 (Natural)
Group 2: 1.7 (Natural)
Group 3: 0.9 (Natural)
Group 4: 1.1 (Natural)
Group 5: 0.3 (Natural)
Control: 0.5 (Natural) |
| **Country of study** South Africa | **Method of outcome assessment:** All children examined by same physician to assess size of thyroid gland and incidence of goitre according to standard criteria | **Social class:** Not stated
Ethnicity: Not stated | **No of subjects:**
Group 1: 183
Group 2: 94
Group 3: 87
Group 4: 95
Group 5: 85
Control: 127
Age: Ages 6, 12 and 15 |
| **Geographic location** Victoria West and Williston (Low fluoride), Carnarvon and Frazerburg (Medium fluoride), Brandvlei and Kenhardt (high fluoride) | **Exclusion criteria** Not stated | **Other confounding factors:** Use of iodised and non-iodised salt for cooking, height, weight, urinary iodine levels, water iodine levels, salt iodine levels | **Year of fluoridation:** |
| **Year study started** Not stated | **Study design:** Cross Sectional | | **No of subjects:**
Group 1: 81017
Control: 1752435
Maternal mean age in fluoride area = 34.0, in non-fluoride area = 33.2 |
| **Author (year)** Needleman (1974) | **Outcome:** Cases of Down's syndrome | **Inclusion criteria** Children born with Down’s syndrome | **Other sources of fluoride:** Not stated | **Exposure:** Water fluoride level (artificially fluoridated areas fluoridated at some point during study period), status defined by the fluoride level of mother's residence 9 months before birth | **Group 1:** 183
Group 2: 94
Group 3: 87
Group 4: 95
Group 5: 85
Control: 127
Age: Maternal mean age in fluoride area = 34.0, in non-fluoride area = 33.2 |
| **Country of study** USA | **Method of outcome assessment:** Cases identified through maternity and paediatric hospitals, the Massachusetts Departments of Public and Mental Health, private nurseries and school for mentally retarded children, karyotyping laboratories and several miscellaneous sources | **Social class:** Not stated
Ethnicity: Not stated | **Year of fluoridation:** |
| **Geographic location** Massachusetts | **Exclusion criteria** Not stated | **Other confounding factors:** Not stated | **No of subjects:**
Group 1: 81017
Control: 1752435
Maternal mean age in fluoride area = 34.0, in non-fluoride area = 33.2 | **Age:** Maternal mean age in fluoride area = 34.0, in non-fluoride area = 33.2 |
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Rapaport (1957)</td>
<td>Outcome: Prevalence of Down’s syndrome</td>
<td>Other sources of fluoride: Not stated</td>
<td>Exposure: Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Method of outcome assessment: Alive subjects with Down's syndrome identified through institutions in North and South Dakota (cases living in the community not identified)</td>
<td>Social class: Not stated</td>
<td>Group 1: >3</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Areas with different water fluoride levels in Wisconsin, North and South Dakota and Illinois</td>
<td>Exclusion criteria: Not stated</td>
<td>Control: <3</td>
<td>No of subjects: Group 1: 31575</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Social class: Not stated</td>
<td>Control: 467685</td>
<td>No of subjects: Group 1: 670120</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Not stated</td>
<td>Ethnicity: Not stated</td>
<td>Control: 77049</td>
<td>No of subjects: Group 1: 41618</td>
</tr>
<tr>
<td>Study design: Ecological</td>
<td>Other confounding factors: Not stated</td>
<td>Method of outcome assessment: Alive subjects with Down's syndrome identified through institutions in Illinois</td>
<td>Group 1: 0.1-0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of outcome assessment: Alive subjects with Down's syndrome identified through institutions in North Dakota</td>
<td>Group 2: 1.0-1.2</td>
<td>Group 1: 670120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of outcome assessment: Alive subjects with Down's syndrome identified through institutions in Wisconsin</td>
<td>Group 3: 0.4-0.7</td>
<td>Control: 151167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of outcome assessment: Alive subjects with Down's syndrome identified through institutions in Wisconsin</td>
<td>Control: 0.3</td>
<td>Group 1: 1.6-2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 2: 2.0628</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 41618</td>
<td>Group 3: 196258</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2: 210628</td>
<td>Control: 151167</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3: 196258</td>
<td>Group 1: 2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control: 1.4</td>
<td>Group 2: 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of subjects:</td>
<td>Group 3: 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1: 52735</td>
<td>Control: 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2: 21538</td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3: 51189</td>
<td>Group 1: 52735</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control: 1076876</td>
<td>Group 2: 21538</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3: 51189</td>
<td></td>
</tr>
</tbody>
</table>
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
</table>
| **Author (year)**: Rapaport (1963)
Country of study: USA
Geographic location: Illinois
Year study started: 1950
Study length (years): 6
Study design: Ecological | **Outcome**: Infant mortality
Method of outcome assessment: Infant mortality data provided by the Public Health department of the state of Wisconsin from January 1946 until December 1956 | **Inclusion criteria**: All cases children with Down’s syndrome born during study period
Town (of mother’s residence): size 10 000 - 100 000
Exclusion criteria: Not stated | **Other sources of fluoride**: Not stated
Social class: Not stated
Ethnicity: Not stated
Other confounding factors: Maternal age, effect of other minerals in water: iron, magnesium, manganese, calcium
Exposure: Water fluoride level
Group 1: >2.0 (Natural)
Control: <1.0 (Natural)
Year of fluoridation: No of subjects:
Group 1: 15515
Control: 11935 | **Baseline Data** |
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Exposure:</td>
</tr>
<tr>
<td>Zhao (1996)</td>
<td>IQ</td>
<td>Children whose mothers lived in study areas</td>
<td>Not stated</td>
<td>Water fluoride level</td>
</tr>
<tr>
<td>Country of study</td>
<td>China</td>
<td>while pregnant</td>
<td>Social class:</td>
<td>Group 1: 4.12</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Sima (high F), Xinghua (lower F)</td>
<td>Children aged 7-14</td>
<td>Author states that occupations, living standards and social customs of residents of the two study areas are similar</td>
<td>Control: 0.91</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Exclusion criteria</td>
<td>Ethnicity:</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Study length (years)</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Not stated</td>
<td>Group 1: 160</td>
</tr>
<tr>
<td>Study design:</td>
<td>Cross-sectional</td>
<td>Other confounding factors:</td>
<td>Educational level of parents</td>
<td>Control: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age 7-14</td>
</tr>
</tbody>
</table>

2. Before/After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Outcome</td>
<td>Inclusion criteria</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (ppm):</td>
<td>Fluoride level (ppm):</td>
</tr>
<tr>
<td>Briner (1966)</td>
<td>Mortality</td>
<td>None stated</td>
<td>Social class:</td>
<td>Group 1: low (Natural)</td>
<td>Group 1: 1.1 (Artificial)</td>
</tr>
<tr>
<td>Country of study</td>
<td>Chile</td>
<td>Exclusion criteria</td>
<td>Group 2: 0.6-0.7 (Natural)</td>
<td>Control: low (Natural)</td>
<td>Group 2: 0.6-0.7(Natural)</td>
</tr>
<tr>
<td>Geographic location</td>
<td>La Serena (natural-F), Curico (Artificial F) and San Fernando (low-F)</td>
<td>None stated</td>
<td>Year fluoridation initiated:</td>
<td>Control: low(Natural)</td>
<td>Control: low(Natural)</td>
</tr>
<tr>
<td>Year study started</td>
<td>1953</td>
<td>Other confounding factors:</td>
<td>1953</td>
<td>No of subjects:</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Year study ended:</td>
<td>1963</td>
<td>Not stated</td>
<td></td>
<td>Group 1: 46017</td>
<td>Group 1: 58612</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group 2: 51267</td>
<td>Group 2: 64927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control: 35560</td>
<td>Control: 42952</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>Age</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Infant mortality</td>
<td>None stated</td>
<td>Fluoride level (ppm):</td>
<td>Fluoride level (ppm):</td>
<td></td>
</tr>
<tr>
<td>Overton (1954)</td>
<td>Still births</td>
<td>Exclusion criteria</td>
<td>Group 1: low (Natural)</td>
<td>Group 1: 1.1-1.2 (Artificial)</td>
<td></td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Not stated</td>
<td>Control: low (Natural)</td>
<td>Control: low(Natural)</td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Newburgh (F), Kingston (non-F), New York State</td>
<td>Other confounding factors:</td>
<td>Year fluoridation initiated:</td>
<td>No of subjects:</td>
<td>No of subjects:</td>
</tr>
<tr>
<td>Year study started</td>
<td>1939</td>
<td>Not stated</td>
<td>1945</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
<tr>
<td>Year study ended:</td>
<td>1952</td>
<td>Age</td>
<td>Age</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
</tbody>
</table>
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Rogot (1978)</td>
<td>Outcome: Mortality</td>
<td>Inclusion criteria: Cities with populations >25 000 Areas with reliable mortality data by cause for study years</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (ppm): Group 1: Low Group 2: >=0.7(Natural) Control: <0.7 (Natural) Year fluoridation initiated: 1945-69 No of subjects: Group 1: 37700000 Group 2: 2100000 Control: 17900000</td>
</tr>
<tr>
<td>Country of study</td>
<td>USA</td>
<td>Method of outcome assessment: Number of deaths obtained from official vital statistics for years 1949-50 (baseline), 1959-61 (not extracted) and 1969-71 (final)</td>
<td>Exclusion criteria: Cities of uncertain fluoridation status</td>
<td>Age: Not stated</td>
<td>Age: Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>484 urban areas of US</td>
<td>Baseline Group Characteristics:</td>
<td>Other confounding factors: Standardised for age and sex</td>
<td>Fluoride level (ppm): Group 1: Low Group 2: >=0.7(Natural) Control: <0.7 (Natural) Year fluoridation initiated: 1945-69 No of subjects: Group 1: 37700000 Group 2: 2100000 Control: 17900000</td>
<td>Fluoride level (ppm): Group 1: High (Artificial) Group 2: 0.67(Natural) Control: low(Natural) No of subjects: Group 1: 37600 Group 2: 46900 Control: 24300</td>
</tr>
<tr>
<td>Year study started</td>
<td>1950</td>
<td></td>
<td></td>
<td>Age: Not stated</td>
<td>Age: Not stated</td>
</tr>
<tr>
<td>Year study ended:</td>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Schatz (1976)</td>
<td>Outcome: Mortality</td>
<td>Inclusion criteria: None stated</td>
<td>Other sources of fluoride:</td>
<td>Fluoride level (ppm): Group 1: low (Natural) Group 2: 0.67(Natural) Control: low (Natural) Year fluoridation initiated: 1953 No of subjects: Group 1: 46500 Group 2: 50600 Control: 19500</td>
</tr>
<tr>
<td>Country of study</td>
<td>Chile</td>
<td>Method of outcome assessment: Statistics (pop. data & number of deaths) obtained directly from annual reports from the demographic department of the Chilean government</td>
<td>Exclusion criteria: None stated</td>
<td>Age: Not stated</td>
<td>Age: Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Curico (F), San Fernando (non-F) & La Serena(natural-F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year study ended:</td>
<td>1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of outcome assessment:</td>
<td>11 yearly average number of stillbirths + infant deaths per 1000 total births before (1943-53) and after (1954-64) water fluoridation was introduced in Curico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C11: Other Adverse Effects Studies: Baseline Data

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Group Characteristics</th>
<th>Final Group Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Schatz (1976)</td>
<td>Outcome Details</td>
<td>Method of outcome assessment: Statistics (pop. data & number of deaths) obtained directly from annual reports from the demographic department of the Chilean government</td>
<td>As above</td>
<td>No of subjects: Group 1: 46500 Group 2: 50600 Control: 19500</td>
</tr>
<tr>
<td>Country of study</td>
<td>Chile</td>
<td>Baseline Group Characteristics</td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Geographic location</td>
<td>Curico (F), San Fernando (non-F) & La Serena(natural-F)</td>
<td>Final Group Characteristics</td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Year study started</td>
<td>1943</td>
<td></td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Year study ended:</td>
<td>1964</td>
<td></td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Method of outcome assessment:</td>
<td>11 yearly average number of stillbirths + infant deaths per 1000 total births before (1943-53) and after (1954-64) water fluoridation was introduced in Curico</td>
<td></td>
<td>No of subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion/Exclusion Criteria</td>
<td>None stated</td>
<td>Other sources of fluoride:</td>
<td></td>
<td>Fluoride level (ppm): Group 1: 1.4 (Natural) Control: <0.25 (Natural)</td>
<td>Fluoride level (ppm): Group 1: 1.4 (Natural) Control: 0.25(Natural)</td>
</tr>
<tr>
<td>Confounding Factors</td>
<td>Not stated</td>
<td>No of subjects:</td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Baseline Group Characteristics</td>
<td></td>
<td>No of subjects:</td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Final Group Characteristics</td>
<td></td>
<td>No of subjects:</td>
<td></td>
<td>No of subjects:</td>
<td></td>
</tr>
<tr>
<td>Other Adverse Effects Studies: Baseline Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Case Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Case and Control Selection</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Dick (1999)</td>
<td>Inclusion criteria</td>
<td>Babies enrolled in the New Zealand cot death study</td>
<td>Other sources of fluoride: Method of infant feeding</td>
</tr>
<tr>
<td>Country of study</td>
<td>New Zealand</td>
<td>Exclusion criteria</td>
<td>If date of death/nominated sleep occurred during change from usual fluoridation status of area</td>
<td>Social class: Occupational status, marital status, age mother left school</td>
</tr>
<tr>
<td>Geographic location</td>
<td>New Zealand</td>
<td>Other confounding factors:</td>
<td>Difference in fluoridation status between 2 postnatal addresses</td>
<td>Ethnicity: Not Stated</td>
</tr>
<tr>
<td>Year study started</td>
<td>1987</td>
<td></td>
<td></td>
<td>Other confounding factors: Age, region, time, season, sex, birthweight, gestation, ethnicity, twin, age of mother at infant's birth & first pregnancy, no. previous pregnancies, smoking, alcohol, caffeine, antenatal clinics, maternal weight, sleep position, bed sharing, hospital admissions</td>
</tr>
<tr>
<td>Year study ended</td>
<td>Not stated</td>
<td></td>
<td></td>
<td>Age range (mean): Not stated</td>
</tr>
<tr>
<td>Number of subjects</td>
<td>Cases: 379</td>
<td></td>
<td></td>
<td>Exposure 1: >80% of population served with fluoridated water (artificially fluoridated to 1ppm)</td>
</tr>
<tr>
<td>Ratio of cases to controls:</td>
<td>1.4</td>
<td></td>
<td></td>
<td>Exposure 2: <20% of population served with fluoridated water (artificially fluoridated to 1ppm)</td>
</tr>
</tbody>
</table>

206
C11: Other Adverse Effects Studies: Baseline Data
4. Cross-Sectional Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Confounding Factors</th>
<th>Baseline Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author (year)</td>
<td>Jolly (1971)</td>
<td>Outcome:</td>
<td>Skeletal fluorosis (%)</td>
<td>Other sources of fluoride:</td>
</tr>
<tr>
<td>Country of study</td>
<td>India</td>
<td>Inclusion criteria:</td>
<td>School children</td>
<td>Not stated</td>
</tr>
<tr>
<td>Geographic location</td>
<td>The Punjab</td>
<td>Exclusion criteria:</td>
<td>None stated</td>
<td>Social class:</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
</tr>
<tr>
<td>No of subjects (min-max):</td>
<td>Not stated</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Age</td>
</tr>
<tr>
<td>Age:</td>
<td>Not stated</td>
<td>Fluoride measure:</td>
<td>Baseline Data:</td>
<td>Girls only</td>
</tr>
<tr>
<td>Sex:</td>
<td>Not stated</td>
<td>Fluoride measure:</td>
<td>Baseline Data:</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Gedalia (1963)</th>
<th>Outcome:</th>
<th>% with enlarged thyroid</th>
<th>Other sources of fluoride:</th>
<th>Fluoride measure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of study</td>
<td>Israel</td>
<td>Inclusion criteria:</td>
<td>Lifetime residents of study areas (girls only)</td>
<td>Not stated</td>
<td>Fluoride level</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Upper Galilee (non-F), Western Galilee (non-F), Kiriath Motzkin (F), Kiriath Bialik (medium F)</td>
<td>Exclusion criteria:</td>
<td>None stated</td>
<td>Social class:</td>
<td>Fluoride level (min-max):</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Ethnicity:</td>
<td>0.1-0.9</td>
</tr>
<tr>
<td>No of subjects (min-max):</td>
<td>410-979</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Age</td>
<td>Not stated</td>
</tr>
<tr>
<td>Age:</td>
<td>Aged 7-18 years</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Girls only</td>
<td>Not stated</td>
</tr>
<tr>
<td>Sex:</td>
<td>Girls only</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Not stated</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Lin (1991)</th>
<th>Outcome:</th>
<th>% with goitre</th>
<th>Other sources of fluoride:</th>
<th>Fluoride measure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of study</td>
<td>China</td>
<td>Inclusion criteria:</td>
<td>School children aged 7 to 14 years</td>
<td>Not stated</td>
<td>Fluoride level</td>
</tr>
<tr>
<td>Geographic location</td>
<td>Langan and Jiayi (non-F), Xinyuan (F)</td>
<td>Exclusion criteria:</td>
<td>Not stated</td>
<td>Social class:</td>
<td>Fluoride level (min-max):</td>
</tr>
<tr>
<td>Year study started</td>
<td>Not stated</td>
<td>Other confounding factors:</td>
<td>Not stated</td>
<td>Low socioeconomic status, mean annual income of about 200 yuan</td>
<td>0.34-0.88</td>
</tr>
<tr>
<td>No of subjects (min-max):</td>
<td>250-256</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Age</td>
<td>Not stated</td>
</tr>
<tr>
<td>Age:</td>
<td>Aged 7-14 years</td>
<td>Baseline Data:</td>
<td>Fluoride measure:</td>
<td>Girls only</td>
<td>Not stated</td>
</tr>
</tbody>
</table>
C12: Other Adverse Effects: Individual Study Results

1. Cohort and Ecological Studies

a. Studies which present adjusted outcomes

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Crude Risk Males/ 100 000</th>
<th>Crude Risk Females/ 100 000</th>
<th>Summary Measure (CI):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>Erickson (1978)</td>
<td>Deaths from all causes classified into 34 categories</td>
<td>Group 1: Control:</td>
<td>>0.7</td>
<td>3572.8</td>
<td>3160.8</td>
<td>Measure used: Rate ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td>3160.8</td>
<td></td>
<td>Variables controlled for: Age-sex-race standardised mortality rates controlled for city population density and median education, weighted for black and white 1970 populations,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summary Measure (CI):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>Forbes (1997)</td>
<td>Alzheimer's disease reported as the underlying cause of death</td>
<td>Group 1: Control:</td>
<td>>=0.98 0.5-0.98 <0.5</td>
<td>38035.3</td>
<td>48611.1</td>
<td>Measure used: Odds ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variables controlled for: Aluminium, iron and silica content of drinking water, water pH and water source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summary Measure (CI):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>Griffith (1963)</td>
<td>Anaemia during pregnancy</td>
<td>Group 1: Control:</td>
<td>1.0</td>
<td>2.03</td>
<td></td>
<td>Measure used: Rate difference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.1</td>
<td></td>
<td></td>
<td>Variables controlled for: Not controlled for any variables</td>
</tr>
</tbody>
</table>

b. Studies which present standardised results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure Level</th>
<th>Crude Risk Males/ 100 000</th>
<th>Crude Risk Females/ 100 000</th>
<th>Standardisation</th>
<th>Methods</th>
<th>SMR</th>
<th>Standardised rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMR</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Erickson (1978)</td>
<td>Deaths from all causes classified into 34 categories</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>>0.7</td>
<td>3572.8</td>
<td>3160.7</td>
<td>Indirect</td>
<td>1156.0</td>
<td>1102.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td>3160.7</td>
<td></td>
<td>Standard population</td>
<td>Deaths and populations of all cities pooled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erickson (1980)</td>
<td>Births with congenital malformations</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>>=0.7</td>
<td>650.5</td>
<td>650.4</td>
<td>Indirect</td>
<td>65.1</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.7</td>
<td>650.4</td>
<td></td>
<td>Standard population</td>
<td>Age-specific rates in all study areas combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SMR</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Hagan (1954)</td>
<td>Average yearly deaths from all causes</td>
<td>Group 1: Control:</td>
<td>Water fluoride level</td>
<td>>=0.7</td>
<td>1010.6</td>
<td></td>
<td>Direct</td>
<td>1010.6</td>
<td>1005.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><=0.25</td>
<td>4.4</td>
<td></td>
<td>Standard population</td>
<td>1950 US population, results standardised for age, sex and race (stated that used indirect, but actually used direct method)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C12: Other Adverse Effects: Individual Study Results

Studies which present crude results only

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure level</th>
<th>Crude Risk /100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berry (1958)</td>
<td>Number of births with Down’s syndrome per 1000 births</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>0.7-1.1</td>
<td>Male: 159.0 Female: 122.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>1.9-2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 5:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 6:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 7:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 8:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 9:</td>
<td></td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>Erickson (1976)</td>
<td>Number of births with Down’s syndrome per 10 000 births: data from Metropolitan Atlanta (1960-1973)</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>High</td>
<td>Male: 9.9 Female: 8.5 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of births with All congenital malformations per 10 000 births: data from Metropolitan Atlanta (1960-1973)</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>High</td>
<td>Male: 292.6 Female: 270 (p<0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low</td>
<td>96.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of births with All congenital malformations per 10 000 births: data from NIS surveillance areas (1961-1966)</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>High</td>
<td>Male: 102.0 (p<0.05) Female: 102.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>Low</td>
<td>153.1</td>
<td>133.8</td>
</tr>
<tr>
<td>Needleman (1974)</td>
<td>Cases of Down's syndrome</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>1</td>
<td>Male: 6.0 Female: 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapaport (1957)</td>
<td>Prevalence of Down’s syndrome</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>0.1-0.2</td>
<td>Male: 0.0 Female: 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevalence of Down’s syndrome</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>>3</td>
<td>Male: 34.8 Female: 15.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevalence of Down’s syndrome</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>2.8</td>
<td>Male: 30.3 Female: 25.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevalence of Down’s syndrome</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>1.6-2.6</td>
<td>Male: 14.4 Female: 12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>1.0-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>0.4-0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapaport (1963)</td>
<td>Infant mortality</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>>2.0</td>
<td>Male: 979.7 Female: 775.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidence of Down's syndrome per 100 000 births</td>
<td>Group 1:</td>
<td>Water fluoride level for area in which mother was living at time of birth</td>
<td>1.0-2.6</td>
<td>Male: 71.6 Female: 47.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.3-0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>0.1-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jooste (1999)</td>
<td>% Prevalence of goitre</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>2.6</td>
<td>Male: 28961.7 Female: 27659.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 4:</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 5:</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 6:</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farkas (1983)</td>
<td>Median age at menarche</td>
<td>Group 1:</td>
<td>Water fluoride level</td>
<td>1.09</td>
<td>Male: 12.78 Female: 12.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C12: Other Adverse Effects: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Group</th>
<th>Exposure</th>
<th>Exposure level</th>
<th>Crude Risk /100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacqmin – Gadda (1994)</td>
<td>Cognitive impairment (used as major clinical sign of Alzheimer's)</td>
<td>Group 1:</td>
<td>Water fluoride</td>
<td>0.6-2.03</td>
<td>23801.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.11-0.6</td>
<td>24417.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 3:</td>
<td></td>
<td>0.07-0.11</td>
<td>22906.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td></td>
<td>0.03-0.07</td>
<td>25511.8</td>
</tr>
<tr>
<td>Still (1980)</td>
<td>Primary degenerative dementia</td>
<td>Group 1:</td>
<td>Water fluoride</td>
<td>4.18</td>
<td>159.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.49</td>
<td>140.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td></td>
<td>0.61</td>
<td>131.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.1</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159.2</td>
<td>171.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140.3</td>
<td>133.6</td>
</tr>
<tr>
<td>Zhao (1996)</td>
<td>IQ</td>
<td>Group 1:</td>
<td>Water fluoride</td>
<td>4.12</td>
<td>98.1 (13.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td></td>
<td>0.91</td>
<td>105.0 (15.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Before-After Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Presented</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briner (1966)</td>
<td>Crude mortality rates (per 10 000) for 1953 and 1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>low</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2:</td>
<td>0.6-0.7</td>
<td></td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control:</td>
<td>low</td>
<td></td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>1</td>
<td></td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2:</td>
<td>0.6-0.7</td>
<td></td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>low</td>
<td></td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overton (1954)</td>
<td>Incident rate per 1000 live births for infant mortality and per 100 live and still births for still births</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>low</td>
<td></td>
<td>36.4</td>
<td>27</td>
<td>27.7</td>
</tr>
<tr>
<td>Control</td>
<td>low</td>
<td></td>
<td>43.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>1-1.2</td>
<td></td>
<td>27.6</td>
<td>18.7</td>
<td>18.8</td>
</tr>
<tr>
<td>Control</td>
<td>low</td>
<td></td>
<td>30.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogot (1978)</td>
<td>Average mortality ratios for deaths from all causes, indirectly standardised for age, sex and race using US specific rates for 3 year period 1959-61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>Low</td>
<td></td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2:</td>
<td>>=0.7</td>
<td></td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td><0.7</td>
<td></td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1:</td>
<td>>=0.7</td>
<td></td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2:</td>
<td>>=0.7</td>
<td></td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td><0.7</td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C12: Other Adverse Effects: Individual Study Results

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Presented</th>
<th>Group</th>
<th>Fluoride level</th>
<th>Outcome 1</th>
<th>Outcome 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schatz (1976)</td>
<td>Number of deaths per year for 1954 and 1964</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>low</td>
<td>837</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.67</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>low</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>High</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.67</td>
<td>647</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>low</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Schatz (1976)</td>
<td>Average yearly number of stillbirths and infant deaths per 1000 total births (number of subjects = number of births)</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td>Group 1:</td>
<td>low</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.67</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>low</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>high</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 2:</td>
<td>0.67</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td>low</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>Weaver (1944)</td>
<td>Crude death rates for deaths from all-causes</td>
<td>Baseline:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1.4</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><0.25</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group 1:</td>
<td>1.4</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control:</td>
<td><0.25</td>
<td>12.1</td>
<td></td>
</tr>
</tbody>
</table>

3. Case-Control Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Number of Subjects per Group</th>
<th>Exposures</th>
<th>Level of Exposure in Cases</th>
<th>Level of Exposure in Control 1</th>
<th>OR for Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dick (1999)</td>
<td>Postneonatal deaths attributed to SIDS</td>
<td>379</td>
<td>Exposure 1: >80% of population served with fluoridated water (artificially fluoridated to 1ppm)</td>
<td>227</td>
<td>944</td>
<td>1.19 (0.82-1.74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exposure 2: <20% of population served with fluoridated water (artificially fluoridated to 1ppm)</td>
<td>152</td>
<td>606</td>
<td>1.0</td>
</tr>
</tbody>
</table>
C12: Other Adverse Effects: Individual Study Results

4. Cross –Sectional Studies

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome Details</th>
<th>Exposure</th>
<th>Water Fluoride Level</th>
<th>Number of Subjects</th>
<th>Results (% prevalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jolly (1971)</td>
<td>Skeletal fluorosis (%)</td>
<td>Fluoride level</td>
<td>0.7-9.4</td>
<td>Not stated</td>
<td>The prevalence of skeletal fluorosis showed an increase with increasing water fluoride levels. The prevalence of skeletal fluorosis ranged from 45 at water fluoride levels of 0.7ppm to 70% at levels of 9.4ppm</td>
</tr>
<tr>
<td>Gedalia (1963)</td>
<td>% with enlarged thyroid</td>
<td>Fluoride level</td>
<td><0.1 <0.3 0.3 0.7 – 0.9</td>
<td>692 979 604 410</td>
<td>17 30 2.6 4.7</td>
</tr>
<tr>
<td>Lin (1991)</td>
<td>Goitre</td>
<td>Fluoride level</td>
<td>0.88 0.34</td>
<td>250 256</td>
<td>91 82</td>
</tr>
</tbody>
</table>
Validity Assessment Scoring and Definition of Terms in the Tables

Cohort, Before-After, Ecological, and Cross-Sectional Study Designs

<table>
<thead>
<tr>
<th>Prospective</th>
<th>Was the study prospective? Was it planned and started prior to the outcome of interest occurring? Score = 1 or 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design</td>
<td>The study design hierarchy for this review = cohort > before-after > ecological > cross-sectional. Scores range between 0.25-1, with cohort = 1, cross-sectional = 0.25</td>
</tr>
<tr>
<td>Fluoride Measurement</td>
<td>Was the Fluoride level reliably measured? Scores range between 0-1.</td>
</tr>
<tr>
<td>Confounding Factors</td>
<td>Were confounding factors addressed (measured)? Scores range between 0-1, with 3 or more factors measured = 1.</td>
</tr>
<tr>
<td>Control for Confounding</td>
<td>Was there adjustment for the possible effect of confounding factors in the analysis? Scores range between 0-1, with stratification by age and sex = 0.5, other types of analysis (e.g. regression) = 1.</td>
</tr>
<tr>
<td>Blinding</td>
<td>Were those measuring outcomes (e.g. fluorosis) blind to the exposure status of the person being assessed? Score = 0 or 1</td>
</tr>
<tr>
<td>Baseline Survey</td>
<td>Was the baseline survey at the point of initiation or discontinuation of water fluoridation? Score = 0 or 1</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>Was the final survey an adequate time after the initiation or discontinuation of water fluoridation to assess effects (2 years for caries, 5 years for other effects)? Score = 0 or 1</td>
</tr>
<tr>
<td>Score</td>
<td>Sum of the scores of the above questions. Total score is out of 8 possible.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>A, B or C based on the levels defined in the methods section.</td>
</tr>
</tbody>
</table>

Case-Control Study Designs

<table>
<thead>
<tr>
<th>Disease Validated</th>
<th>Was the disease state of the cases reliably assessed and validated? Score = 0 or 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases in Series</td>
<td>Are the cases representative of a series (or is there a potential for selection bias)? Score = 0 or 1</td>
</tr>
<tr>
<td>Controls Similar</td>
<td>Are the controls selected from a similar population to the cases? Score = 0 or 1</td>
</tr>
<tr>
<td>Controls Disease-Free</td>
<td>Is there evidence that the controls are free from disease? Score = 0 or 1</td>
</tr>
<tr>
<td>Confounding Factors</td>
<td>Are cases and controls comparable with respect to confounding factors? Scores range between 0-1, with 3 or more factors measured = 1</td>
</tr>
<tr>
<td>Exposure Assessment Similar</td>
<td>Was exposure (e.g. to fluoridated water) assessed in the same way for cases and controls? Score = 0 or 1</td>
</tr>
<tr>
<td>Response Rate Adequate</td>
<td>Was the response rate adequate (meaning numbers of people included into the study out of those possible)? Score = 0 or 1</td>
</tr>
<tr>
<td>Non-Response Similar</td>
<td>Was the non-response rate the same in cases and controls? Score = 0 or 1</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>Was an appropriate statistical analysis performed (e.g. use of matching)? Score = 0 or 1</td>
</tr>
<tr>
<td>Score</td>
<td>Sum of the scores of the above questions. Total score is out of 9 possible.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>A, B or C based on the levels defined in the methods section.</td>
</tr>
</tbody>
</table>
Caries Study Validity Assessment (Score out of 8)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective</th>
<th>Fluoride Measurement</th>
<th>Confounding factors</th>
<th>Control for confounding</th>
<th>Blinding</th>
<th>Baseline survey</th>
<th>Final survey</th>
<th>Follow-up</th>
<th>Score</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardwick</td>
<td>1982</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.8</td>
<td>B</td>
</tr>
<tr>
<td>Maupomé</td>
<td>2000</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.0</td>
<td>B</td>
</tr>
<tr>
<td>Kunzel</td>
<td>1997</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.8</td>
<td>B</td>
</tr>
<tr>
<td>Seppa</td>
<td>1998</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.8</td>
<td>B</td>
</tr>
<tr>
<td>Beal</td>
<td>1981</td>
<td>1</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
<td>B</td>
</tr>
<tr>
<td>DHSS</td>
<td>1969</td>
<td>1</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
<td>B</td>
</tr>
<tr>
<td>Kalsbeek</td>
<td>1993</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
<td>B</td>
</tr>
<tr>
<td>Adriasola</td>
<td>1959</td>
<td>1</td>
<td>2/3</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.2</td>
<td>B</td>
</tr>
<tr>
<td>Loh</td>
<td>1996</td>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.1</td>
<td>B</td>
</tr>
<tr>
<td>Backer Dirks</td>
<td>1961</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.0</td>
<td>B</td>
</tr>
<tr>
<td>Attwood</td>
<td>1988</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Beal</td>
<td>1971</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Guo</td>
<td>1984</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Alvarez-Ubilla</td>
<td>1959</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Arnold</td>
<td>1956</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Ast</td>
<td>1951</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Blayney</td>
<td>1960</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Brown</td>
<td>1965</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Hobbs</td>
<td>1994</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Wragg</td>
<td>1999</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>B</td>
</tr>
<tr>
<td>Pot</td>
<td>1974</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.0</td>
<td>B</td>
</tr>
<tr>
<td>Gray</td>
<td>1999</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
<td>B</td>
</tr>
</tbody>
</table>
Social Class Studies: Validity

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective</th>
<th>Study Design</th>
<th>Fluoride Measurement</th>
<th>Confounding Factors</th>
<th>Control for Confounding</th>
<th>Blinding</th>
<th>Baseline Survey</th>
<th>Follow-Up</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beal</td>
<td>1971</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>DHSS</td>
<td>1969</td>
<td>1</td>
<td>3/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.3</td>
<td>B</td>
</tr>
<tr>
<td>Gray</td>
<td>2000</td>
<td>1</td>
<td>3/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.3</td>
<td>B</td>
</tr>
<tr>
<td>Holdcroft</td>
<td>1999</td>
<td>1</td>
<td>3/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.3</td>
<td>B</td>
</tr>
<tr>
<td>Evans</td>
<td>1996</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>C</td>
</tr>
<tr>
<td>Rugg-Gunn</td>
<td>1977</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>C</td>
</tr>
<tr>
<td>Bradnock</td>
<td>1984</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Carmichael</td>
<td>1989</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Murray</td>
<td>1984</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Murray</td>
<td>1991</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Provart</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Riley</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Jones</td>
<td>1997</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
<tr>
<td>Jones</td>
<td>2000</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>C</td>
</tr>
</tbody>
</table>

Fluorosis Study Validity Assessment (Score out of 8)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective</th>
<th>Study Design</th>
<th>Fluoride Measurement</th>
<th>Confounding Factors</th>
<th>Control for Confounding</th>
<th>Blinding</th>
<th>Baseline Survey</th>
<th>Follow-Up</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumar</td>
<td>1999</td>
<td>1</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5.8</td>
<td>B</td>
</tr>
<tr>
<td>Jackson</td>
<td>1999</td>
<td>1</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5.3</td>
<td>C</td>
</tr>
<tr>
<td>Rugg-Gunn</td>
<td>1997</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.8</td>
<td>C</td>
</tr>
<tr>
<td>Brothwell</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.4</td>
<td>C</td>
</tr>
<tr>
<td>Chen</td>
<td>1989</td>
<td>1</td>
<td>3/4</td>
<td>2/3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.4</td>
<td>C</td>
</tr>
<tr>
<td>Butler</td>
<td>1985</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>Correia Sampaio</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>Heifetz</td>
<td>1988</td>
<td>1</td>
<td>3/4</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>Ismail</td>
<td>1990</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>Heller</td>
<td>1997</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.9</td>
<td>C</td>
</tr>
<tr>
<td>Millsom</td>
<td>1990</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Segreto</td>
<td>1984</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Szpunar</td>
<td>1988</td>
<td>0</td>
<td>1/4</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.6</td>
<td>C</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Prospective</td>
<td>Study Design</td>
<td>Fluoride Measurement</td>
<td>Confounding Factors</td>
<td>Control for Confounding</td>
<td>Blinding</td>
<td>Baseline Survey</td>
<td>Follow-Up</td>
<td>Score</td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>Heintze</td>
<td>1998</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>McInnes</td>
<td>1982</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Stephen</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Adair</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.4</td>
<td>C</td>
</tr>
<tr>
<td>Scheinin</td>
<td>1964</td>
<td>0</td>
<td>1/2</td>
<td>2/3</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.4</td>
<td>C</td>
</tr>
<tr>
<td>Selwitz</td>
<td>1995</td>
<td>0</td>
<td>1/2</td>
<td>2/3</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.4</td>
<td>C</td>
</tr>
<tr>
<td>Angelillo</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Chen</td>
<td>1993</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Colquhoun</td>
<td>1984</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Haavikko</td>
<td>1974</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>Ibrahim</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Kunzel</td>
<td>1976</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Mella</td>
<td>1994</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Nunn</td>
<td>1994</td>
<td>0</td>
<td>1/4</td>
<td>1/3</td>
<td>1/2</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Riordan</td>
<td>1991</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Villa</td>
<td>1998</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Ellwood</td>
<td>1996</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
<td>C</td>
</tr>
<tr>
<td>Russell</td>
<td>1951</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
<td>C</td>
</tr>
<tr>
<td>Sellman</td>
<td>1957</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
<td>C</td>
</tr>
<tr>
<td>Warnakulasuriya</td>
<td>1992</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.9</td>
<td>C</td>
</tr>
<tr>
<td>Booth</td>
<td>1991</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Ellwood</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Forrest</td>
<td>1965</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Ockerse</td>
<td>1941</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Ray</td>
<td>1982</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>Rwenyonyi</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Jolly</td>
<td>1971</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.7</td>
<td>C</td>
</tr>
<tr>
<td>Driscoll</td>
<td>1983</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Masztalerz</td>
<td>1990</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Selwitz</td>
<td>1998</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Nanda</td>
<td>1974</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.4</td>
<td>C</td>
</tr>
<tr>
<td>Clarkson</td>
<td>1992</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>de Crousaz</td>
<td>1982</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Prospective</td>
<td>Study</td>
<td>Fluoride</td>
<td>Confounding</td>
<td>Control for</td>
<td>Blinding</td>
<td>Baseline</td>
<td>Follow-Up</td>
<td>Score</td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Eklund</td>
<td>1987</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Grimaldo</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Hong</td>
<td>1990</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Jackson</td>
<td>1975</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Rwenyonyi</td>
<td>1998</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Zimmermann</td>
<td>1954</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Al-Alousi</td>
<td>1975</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.0</td>
<td>C</td>
</tr>
<tr>
<td>Wang</td>
<td>1993</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.0</td>
<td>C</td>
</tr>
<tr>
<td>Mazzotti</td>
<td>1939</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.9</td>
<td>C</td>
</tr>
<tr>
<td>Spadaro</td>
<td>1955</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.9</td>
<td>C</td>
</tr>
<tr>
<td>Venkateswarlu</td>
<td>1952</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.9</td>
<td>C</td>
</tr>
<tr>
<td>Azcurra</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Clarkson</td>
<td>1989</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Downer</td>
<td>1994</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Forrest</td>
<td>1956</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Gaspar</td>
<td>1995</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Grobler</td>
<td>1986</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Leverett</td>
<td>1986</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Mella</td>
<td>1992</td>
<td>0</td>
<td>1/4</td>
<td>1/3</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Vignarajah</td>
<td>1993</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Clark</td>
<td>1993</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Lin</td>
<td>1991</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Cutress</td>
<td>1985</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Levine</td>
<td>1989</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Nunn</td>
<td>1992</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Goward</td>
<td>1982</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
<td>C</td>
</tr>
<tr>
<td>Wang</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
<td>C</td>
</tr>
<tr>
<td>Wenzel</td>
<td>1982</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
<td>C</td>
</tr>
<tr>
<td>Zheng</td>
<td>1986</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
<td>C</td>
</tr>
</tbody>
</table>
Case Control Study Design (Score out of 9)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Disease Validated</th>
<th>Cases in Series</th>
<th>Controls Similar</th>
<th>Controls Disease-Free</th>
<th>Confounding Factors</th>
<th>Exposure Assessment Similar</th>
<th>Response Rate Adequate</th>
<th>Non-Response Similar</th>
<th>Statistical Analysis</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skotowski</td>
<td>1995</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Bone Effects Study Validity Assessment (Score out of 8)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective Study Design</th>
<th>Fluoride Measurement</th>
<th>Confounding Factors</th>
<th>Control for Confounding</th>
<th>Blinding</th>
<th>Baseline Survey</th>
<th>Follow-Up</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cauley</td>
<td>1995</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>6.0</td>
<td>C</td>
</tr>
<tr>
<td>Jacqmin-Gadda</td>
<td>1998</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.5</td>
<td>C</td>
</tr>
<tr>
<td>Bowers</td>
<td>1991</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.3</td>
<td>C</td>
</tr>
<tr>
<td>Jacqmin-Gadda</td>
<td>1995</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.0</td>
<td>C</td>
</tr>
<tr>
<td>Li</td>
<td>1999</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5.0</td>
<td>C</td>
</tr>
<tr>
<td>Kurttio</td>
<td>1999</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.5</td>
<td>C</td>
</tr>
<tr>
<td>Phipps</td>
<td>1999</td>
<td>0</td>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>Kelsey</td>
<td>1971</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.8</td>
<td>B</td>
</tr>
<tr>
<td>Lehmann</td>
<td>1998</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Danielson</td>
<td>1992</td>
<td>0</td>
<td>1/2</td>
<td>2/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.7</td>
<td>C</td>
</tr>
<tr>
<td>Karjalainen</td>
<td>1982</td>
<td>0</td>
<td>1</td>
<td>2/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.7</td>
<td>C</td>
</tr>
<tr>
<td>Bernstein</td>
<td>1966</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Cooper</td>
<td>1990</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Jacobsen</td>
<td>1992</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Niessen</td>
<td>1986</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.1</td>
<td>C</td>
</tr>
<tr>
<td>Suarez-Almazor</td>
<td>1993</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
<td>C</td>
</tr>
<tr>
<td>Kroger</td>
<td>1994</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Madans</td>
<td>1983</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>McClure</td>
<td>1944</td>
<td>0</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>McClure</td>
<td>1944</td>
<td>0</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Daniel</td>
<td>1969</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Korns</td>
<td>1969</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Simonen</td>
<td>1985</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Arnala</td>
<td>1986</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Karagas</td>
<td>1996</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
</tbody>
</table>
Bone Fracture Studies: Case Control Study Design (Score out of 9)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Disease Validated</th>
<th>Cases in Series</th>
<th>Controls Similar</th>
<th>Controls Disease-Free</th>
<th>Confounding Factors</th>
<th>Exposure Assessment Similar</th>
<th>Response Rate Adequate</th>
<th>Non-Response Similar</th>
<th>Statistical Analysis</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillier</td>
<td>2000</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Kelsey</td>
<td>1971</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Cancer Study Validity Assessment (Score out of 8)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective Study Design</th>
<th>Fluoride Measurement</th>
<th>Confounding Factors</th>
<th>Control for Confounding</th>
<th>Blinding</th>
<th>Baseline Survey</th>
<th>Follow-Up</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilvers</td>
<td>1982</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Doll</td>
<td>1977</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Smith</td>
<td>1980</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.8</td>
<td>B</td>
</tr>
<tr>
<td>Lynch</td>
<td>1985</td>
<td>0</td>
<td>1/2</td>
<td>2/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
<td>C</td>
</tr>
<tr>
<td>Yiamouyiannis</td>
<td>1977</td>
<td>0</td>
<td>3/4</td>
<td>1/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.1</td>
<td>C</td>
</tr>
<tr>
<td>Hruday</td>
<td>1990</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>B</td>
</tr>
<tr>
<td>Kinlen</td>
<td>1975</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
<td>C</td>
</tr>
<tr>
<td>Chilvers</td>
<td>1983</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Glatter</td>
<td>1979</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Hoover</td>
<td>1976</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Chilvers</td>
<td>1985</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Goodall</td>
<td>1980</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Cook-Mozaffari</td>
<td>1981</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Hoover</td>
<td>1991</td>
<td>0</td>
<td>3/4</td>
<td>1/3</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Tate</td>
<td>1977</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>C</td>
</tr>
<tr>
<td>Richards</td>
<td>1979</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
<td>C</td>
</tr>
<tr>
<td>Mahoney</td>
<td>1991</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
<td>B</td>
</tr>
<tr>
<td>Schlesinger</td>
<td>1956</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
</tbody>
</table>
Case Control Study Design (Score out of 9)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Disease Validated</th>
<th>Cases in Series</th>
<th>Controls Similar</th>
<th>Controls Disease-Free</th>
<th>Confounding Factors</th>
<th>Exposure Assessment Similar</th>
<th>Response Rate Adequate</th>
<th>Non-Response Similar</th>
<th>Statistical Analysis</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss</td>
<td>1995</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6.0</td>
<td>C</td>
</tr>
<tr>
<td>Gelberg</td>
<td>1995</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.3</td>
<td>C</td>
</tr>
<tr>
<td>McGuire</td>
<td>1991</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
<td>C</td>
</tr>
</tbody>
</table>

Other Effects Study Validity Assessment (Score out of 8)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Prospective</th>
<th>Study Design</th>
<th>Fluoride Measurement</th>
<th>Confounding Factors</th>
<th>Control for Confounding</th>
<th>Blinding</th>
<th>Baseline Survey</th>
<th>Follow-Up</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacqmin-Gadda</td>
<td>1994</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.5</td>
<td>C</td>
</tr>
<tr>
<td>Rogot</td>
<td>1978</td>
<td>0</td>
<td>3/4</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.1</td>
<td>C</td>
</tr>
<tr>
<td>Forbes</td>
<td>1997</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.0</td>
<td>C</td>
</tr>
<tr>
<td>Briner</td>
<td>1966</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Erickson</td>
<td>1978</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.8</td>
<td>C</td>
</tr>
<tr>
<td>Erickson</td>
<td>1980</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Erickson</td>
<td>1976</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Hagan</td>
<td>1954</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.5</td>
<td>C</td>
</tr>
<tr>
<td>Still</td>
<td>1980</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
<td>C</td>
</tr>
<tr>
<td>Overton</td>
<td>1954</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Schatz</td>
<td>1976</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2.8</td>
<td>C</td>
</tr>
<tr>
<td>Jolly</td>
<td>1971</td>
<td>0</td>
<td>1/4</td>
<td>2/3</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.7</td>
<td>C</td>
</tr>
<tr>
<td>Gedalia</td>
<td>1963</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Zhao</td>
<td>1996</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>C</td>
</tr>
<tr>
<td>Griffith</td>
<td>1963</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.3</td>
<td>C</td>
</tr>
<tr>
<td>Needleman</td>
<td>1974</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Rapaport</td>
<td>1963</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Rapaport</td>
<td>1957</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Jooste</td>
<td>1999</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Weaver</td>
<td>1944</td>
<td>0</td>
<td>3/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.8</td>
<td>C</td>
</tr>
<tr>
<td>Lin</td>
<td>1991</td>
<td>0</td>
<td>1.4</td>
<td>0</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Farkas</td>
<td>1983</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
<tr>
<td>Berry</td>
<td>1958</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>C</td>
</tr>
</tbody>
</table>
Case Control Study Design (Score out of 9)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Disease Validated</th>
<th>Cases in Series</th>
<th>Controls Similar</th>
<th>Controls Disease-Free</th>
<th>Confounding Factors</th>
<th>Exposure Assessment Similar</th>
<th>Response Rate Adequate</th>
<th>Non-Response Similar</th>
<th>Statistical Analysis</th>
<th>Score</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dick</td>
<td>1999</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>

221
Dental caries is a disease that affects the teeth. It is a destructive disease caused by microorganisms in plaque. These microorganisms produce acids through the breakdown of sugars. It is these acids that dissolve the tooth structure. It is possible to arrest this condition in the very early phases. However, progression leads to cavitation of the tooth surface and if not stopped can lead to infection of the tooth pulp (nerve), an abscess and, sometimes, serious facial infection.

Factors affecting the development of caries
Many factors are associated with the development of caries. The primary factors are the frequency and amount of non-milk extrinsic sugars in the diet, the presence of microorganisms in dental plaque, and the amount of fluoride in the oral environment.

Within the UK there is a strong social gradient associated with the prevalence of dental caries. This is found both in adults and in children. Those who are more deprived have significantly greater levels of disease. There is also geographical variation with the northwest of England, Scotland and Northern Ireland most severely affected. (Pitts, 1998; Kelly, 2000)

Measurement of caries
In the studies included in this review the measurement of dental caries has been undertaken by clinical diagnosis or by the examination of radiographs. The most common method used is to record the number and percentage of people who are caries-free. This means that none of their teeth have been affected by caries. However, sometimes the inverse of this figure is presented, the number of people with decay experience. In areas with a very high prevalence of caries this figure rapidly fails to show any difference between groups of people and it is necessary to introduce a measure of the severity of the disease process.

The use of the ‘DMFT’ index (decayed missing and filled teeth) acts as a measure of severity (Klein, 1938). This simple index ascribes a count of one to any tooth that is either decayed or missing or filled. Missing teeth are presumed to be due to caries, unless other reasons are noted (e.g. trauma). Thus the minimum score is zero and the maximum is 32. This is applied to the secondary (or permanent) dentition. The ‘dmft’ index is used for the primary (or deciduous) dentition. Here the minimum is zero and the maximum is 20. Similar indices are used to count surfaces. Instead of ascribing a count of one to a tooth, each tooth surface is counted separately. Posterior teeth have five surfaces and anterior teeth (the canines and incisors) usually have four surfaces but may occasionally be considered as having five. When counting surfaces, the indices are called ‘DMFS’ or ‘dmfs’ (decayed, missing, and filled surfaces). The main problem in using the DMFS / dmfs index is in deciding how many surfaces to count for a tooth that is missing. How many of its surfaces were affected by dental caries? This is impossible to deduce retrospectively and so it is prudent to report the DMFT as well as the DMFS. The use of the surface index is used particularly if small differences are expected or if it is thought that only some surfaces of the tooth may be affected. This means that in some cases data are presented separately for different tooth surfaces. For example, the occlusal (or biting) surfaces of the teeth may be presented separately from the smooth surfaces of teeth. In some studies the smooth surfaces are further subdivided into free smooth surfaces (those adjacent to the tongue, palate, cheek or lips) and the approximal (or proximal) surfaces which are those smooth surfaces between the teeth.

In older studies another index is used, which is the ‘deft’. This is similar to, but distinct from, the dmft. It is an index, based on the number of decayed, scheduled for extraction, and filled primary teeth. Thus it does not count missing teeth.

The recording of missing teeth in the primary dentition presents a particular problem because they are often being lost naturally as the permanent dentition erupts. Protocols will incorporate criteria that are usually age based as to whether a tooth should be recorded as lost or its permanent successor as unerupted.

The diagnosis of caries shows considerable variation between examiners unless monitored carefully. (Shaw, 1975) Examiners are trained in caries criteria, calibration exercises are undertaken and often a percentage of subjects are re-examined to determine if there has been a shift in diagnostic
standards. It should also be noted that different diagnostic thresholds are used in different studies. This makes inter-study comparison complicated.

The use of radiographs can help overcome some of the problems of reproducibility but, cannot provide reliable information on all tooth surfaces. Provided radiographs are taken and developed under standardised conditions they can provide an excellent way of assessing caries. The assessment can easily be undertaken blind. Studies using this technique often concentrate on the approximal surfaces because it is these that can best be assessed radiographically.

Using the DMFT and its variants gives the prevalence of dental caries. If this is recorded at more than two points in time, subtracting one from the other gives a disease increment and the amount of new decay recorded between the two examinations is found.

Clinical and radiographic examination of teeth always underestimates the true amount of caries in a population. This is because early lesions cannot be identified. This is of relevance in studies relating to fluoridation because it is believed that fluoride works by preventing demineralisation and by enhancing remineralisation in the early phase of caries development. In epidemiological studies this will not be measured because the techniques available are not sensitive enough.

Ages selected for the review

Some studies have reported results for each age of child entering the study (i.e. 5 to 17), while others have reported only specific ages. This has led to a vast amount of variable data being generated. In order to be able to make comparisons, data were extracted from children aged 5, 8, 12 and 15 years. If the data were not available the next closest age group was taken. The reasons for selecting these age groups were:

Age 5: The primary dentition is complete and the transition to the permanent dentition is about to start. This is a good time to measure the condition of the primary teeth. Children have often started some form of education and this makes sampling more straightforward.

Age 8: This is a period of the mixed dentition. The primary incisors have been lost and the permanent incisors and first molars have erupted. This allows the condition of the primary molars to be measured before they are shed.

Age 12: The permanent dentition is nearing completion. World wide compulsory schooling often finishes at around this age and it has become a standard measure for World Health Organisation (WHO) comparisons of dental health.

Age 15: This is the last age before many children leave school. For school-based projects the sample can often become distorted beyond age 15. It is a measure of the condition of the permanent dentition.
APPENDIX F

Comparison of Caries Prevalence at Baseline and Final Examinations

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age</th>
<th>Baseline exposed</th>
<th>Baseline control</th>
<th>Final exposed</th>
<th>Final control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adriasola</td>
<td>1959</td>
<td>5</td>
<td>4.0</td>
<td>2.2</td>
<td>10.0</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>7.6</td>
<td>4.2</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.5</td>
<td>2.3</td>
<td>4.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Alvarez-Ubilla</td>
<td>1959</td>
<td>5</td>
<td>4</td>
<td>2.2</td>
<td>10</td>
<td>13.3</td>
</tr>
<tr>
<td>Ast</td>
<td>1951</td>
<td>28.2</td>
<td>23.0</td>
<td>33.0</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>Beal</td>
<td>1971</td>
<td>5</td>
<td>16</td>
<td>29</td>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>Beal</td>
<td>1981</td>
<td>5</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>35</td>
<td>41</td>
<td>44</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>7</td>
<td>27</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>Brown</td>
<td>1965</td>
<td>9-11</td>
<td>6.1</td>
<td>5.7</td>
<td>8.1</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-14</td>
<td>0.6</td>
<td>1.2</td>
<td>2.3</td>
<td>18.7</td>
</tr>
<tr>
<td>DHSS England</td>
<td>1969</td>
<td>5</td>
<td>14</td>
<td>8</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>22</td>
<td>20</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Wales</td>
<td></td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
<td>5</td>
<td>4.2</td>
<td>6.2</td>
<td>3.7</td>
<td>20.3</td>
</tr>
<tr>
<td>Gray</td>
<td>2000</td>
<td>5</td>
<td>74</td>
<td>60</td>
<td>64</td>
<td>76</td>
</tr>
<tr>
<td>Guo</td>
<td>1984</td>
<td>5</td>
<td>8.3</td>
<td>10.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>79.6</td>
<td>70.9</td>
<td>29.9</td>
<td>85.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>14.6</td>
<td>13.5</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>56.5</td>
<td>51.3</td>
<td>16.8</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>54.5</td>
<td>47.6</td>
<td>8.2</td>
<td>35.7</td>
</tr>
<tr>
<td>Kunzel</td>
<td>1997</td>
<td>5</td>
<td>22.7</td>
<td>33.6</td>
<td>32.2</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>43.0</td>
<td>42.2</td>
<td>30.9</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>5.2</td>
<td>4.8</td>
<td>5.7</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>6.6</td>
<td>8.2</td>
<td>5.2</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.8</td>
<td>5.9</td>
<td>2.5</td>
<td>12.1</td>
</tr>
</tbody>
</table>

A paired t-test was conducted to investigate whether there was any significant difference in caries experience at baseline between the exposed and control study areas. $t = 0.033$ on 29 degrees of freedom, 2-tailed p-value = 0.97, suggesting that there were no significant differences in baseline caries experience, as measured by the proportion of caries free children, between the two groups.
Caries experience in studies that examined dmft/DMFT or DMFS score

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age</th>
<th>Outcome</th>
<th>Baseline exposed</th>
<th>Baseline control</th>
<th>Final exposed</th>
<th>Final control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarez-Ubilla</td>
<td>1959</td>
<td>5</td>
<td>dmft score</td>
<td>8.9</td>
<td>8.1</td>
<td>6.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Arnold</td>
<td>1956</td>
<td>8</td>
<td>DMFT score</td>
<td>3.0</td>
<td>2.8</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>8.1</td>
<td>8.7</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>12.5</td>
<td>12.9</td>
<td>8.9</td>
<td>12.4</td>
</tr>
<tr>
<td>Ast</td>
<td>1951</td>
<td>8</td>
<td>DMFT rate per 100 erupted permanent teeth</td>
<td>17.1</td>
<td>17.3</td>
<td>9.9</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>25.4</td>
<td>25.4</td>
<td>16.5</td>
<td>27.0</td>
</tr>
<tr>
<td>Beal</td>
<td>1981</td>
<td>5</td>
<td>dmft score</td>
<td>4.3</td>
<td>4.3</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>5.0</td>
<td>5.4</td>
<td>3.4</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>DMFT score</td>
<td>1.5</td>
<td>1.6</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>3.5</td>
<td>4.3</td>
<td>2.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Blayney</td>
<td>1960</td>
<td>8</td>
<td>DMFT score</td>
<td>2.5</td>
<td>2.2</td>
<td>0.9</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>7.6</td>
<td>7.7</td>
<td>3.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Brown</td>
<td>1965</td>
<td>9-11</td>
<td>DMFT score</td>
<td>4.1</td>
<td>4.2</td>
<td>1.5</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-14</td>
<td></td>
<td>7.7</td>
<td>7.9</td>
<td>3.2</td>
<td>7.5</td>
</tr>
<tr>
<td>DHSS England</td>
<td>1969</td>
<td>5</td>
<td>dmft score</td>
<td>5.43</td>
<td>4.97</td>
<td>1.61</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>2.4</td>
<td>2.4</td>
<td>1.08</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>DMFT score</td>
<td>5.6</td>
<td>6.1</td>
<td>3.52</td>
<td>4.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>8.4</td>
<td>7.9</td>
<td>5.77</td>
<td>6.74</td>
</tr>
<tr>
<td>Wales</td>
<td>1969</td>
<td>5</td>
<td>dmft score</td>
<td>5.56</td>
<td>5.49</td>
<td>2.85</td>
<td>4.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>DMFT score</td>
<td>4.65</td>
<td>3.95</td>
<td>4.38</td>
<td>6.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>6.95</td>
<td>5.60</td>
<td>6.73</td>
<td>7.64</td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
<td>5</td>
<td>dmft score</td>
<td>6.44</td>
<td>6.52</td>
<td>3.99</td>
<td>6.89</td>
</tr>
<tr>
<td>Guo</td>
<td>1984</td>
<td>5</td>
<td>dmft score</td>
<td>6.5</td>
<td>6.4</td>
<td>5.1</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>4.2</td>
<td>3.5</td>
<td>2.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>DMFT score</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>1.9</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>1.7</td>
<td>1.2</td>
<td>2.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Hardwick</td>
<td>1982</td>
<td>12</td>
<td>DMFT score</td>
<td>4.3</td>
<td>4.4</td>
<td>4.6</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>DMFS score</td>
<td>7.0</td>
<td>6.8</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Kunzel</td>
<td>1997</td>
<td>5</td>
<td>dmft score</td>
<td>2.4</td>
<td>3.3</td>
<td>1.4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>4.9</td>
<td>4.9</td>
<td>2.8</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>DMFT score</td>
<td>1.3</td>
<td>1.3</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>3.6</td>
<td>3.5</td>
<td>2.0</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>5.7</td>
<td>5.4</td>
<td>4.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Loh</td>
<td>1996</td>
<td>7-9</td>
<td>DMFT score</td>
<td>2.9</td>
<td>1.9</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-9</td>
<td></td>
<td>4.4</td>
<td>3.7</td>
<td>2.1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

A paired t-test was conducted to investigate whether there was any significant difference in caries experience at baseline between the exposed and control study areas. $t = 0.303$ on 15 degrees of freedom, 2-tailed p-value = 0.77, suggesting that there were no significant differences in baseline caries experience, as measured by dmft/DMFT between the two groups.
APPENDIX G

Meta-regression for mean difference of dmft/DMFT – models not presented in main analysis

Model 1
This model was produced using a step-up regression analysis instead of a step-down analysis. The only difference compared to the model produced using the step-down method is that this model does not include temperature as an explanatory variable. The between study variance left in this model is greater than that remaining in the model presented in the main analysis suggesting that that model provides a better fit for the data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Co-efficient</th>
<th>p-value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.21</td>
<td>0.21</td>
<td><0.001</td>
<td>0.583</td>
</tr>
<tr>
<td>Baseline DMFT/dmft *</td>
<td>3.6</td>
<td>0.26</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Validity score</td>
<td></td>
<td>-0.77</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.5</td>
<td>0.13</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>Study duration (years)</td>
<td>10.7</td>
<td>0.22</td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>

Model 2
This is the model produced using a step-down regression analysis but study validity was not forced into this model. This model differs very little from the model presented in the main analysis; the coefficients, standard errors and p-values for the variables included in both models are almost identical.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Co-efficient</th>
<th>p-value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.23</td>
<td>0.17</td>
<td><0.001</td>
<td>0.393</td>
</tr>
<tr>
<td>Baseline DMFT/dmft *</td>
<td>3.6</td>
<td>0.37</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Average temperature (°C)</td>
<td>13.3</td>
<td>0.09</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.5</td>
<td>0.16</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Study duration (years)</td>
<td>10.7</td>
<td>0.15</td>
<td>0.041</td>
<td></td>
</tr>
</tbody>
</table>
A number of methods of measuring social class have been proposed, however no one measure is considered the gold standard. The Registrar General’s classification is based on the occupation of the head of household. It is based therefore on individuals but may be inaccurate if another member of the family has a different level of occupation than that of the ‘head of household’. There are a number of groups of people who cannot be classified e.g. students, unemployed. Townsend proposed an index of “material deprivation” based on electoral wards, that was constructed using four census variables (Table 1.0). Variations in health were shown to correspond closely with variations in material deprivation. The four variables chosen explained more variation in health than the Registrar General’s indicators based on social class. The Jarman Index has been published widely, is readily available and has started to be used widely by health authorities for planning. It was originally designed as a method of identifying areas of high workload for general practitioners from routinely available census data. It was not designed for use as a measure of need within localities for either health care services or health promotion input and has not been validated adequately for these purposes (Campbell, 1991).

Table 1.0 Measures of social class or deprivation

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Meaning of Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarman (1983) Social deprivation score</td>
<td>Elderly living alone</td>
<td>Zero = population mean</td>
</tr>
<tr>
<td></td>
<td>Population aged under 5</td>
<td>Negative score = less deprivation</td>
</tr>
<tr>
<td></td>
<td>One-parent families</td>
<td>Positive score = more deprivation</td>
</tr>
<tr>
<td></td>
<td>Lowest social class Unemployed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overcrowded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changed address within last year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethnic minorities</td>
<td></td>
</tr>
<tr>
<td>Townsend et al. (1988) Social deprivation score</td>
<td>Economically active unemployed</td>
<td>Zero = population mean</td>
</tr>
<tr>
<td></td>
<td>Households with no car</td>
<td>Negative score = less deprivation</td>
</tr>
<tr>
<td></td>
<td>Households not owner occupied</td>
<td>Positive score = more deprivation</td>
</tr>
<tr>
<td></td>
<td>Households overcrowded</td>
<td></td>
</tr>
<tr>
<td>Registrar Generals Classification of Occupation Social class score</td>
<td>Based on ‘Head’ of household</td>
<td>Class / Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II managerial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III skilled non-manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III skilled manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV Partly skilled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V Unskilled</td>
</tr>
</tbody>
</table>
Dental fluorosis is a hypocalcification of tooth enamel or dentine produced by the chronic ingestion of excessive amounts of fluoride during the period when teeth are developing. Clinically it varies in appearance from small white flecks on the enamel surface, visible only on very close inspection, to gross disturbances of the enamel structure.

The incorporation of fluoride into the hydroxyapatite, as proposed above as a mechanism for preventing caries, implies an age-related consequence for the development of fluorosis. Fluoride is incorporated into the tooth during its formation, hence, once the permanent teeth are formed the development of fluorosis is also complete.

A number of epidemiological indices for measuring the clinical manifestations of dental fluorosis have been developed. The most common indices are Dean’s Index, Developmental Defects of Enamel and Modified Developmental Defects of Enamel, Thylstrup and Fejerskov Index, Tooth Surface Index of Fluorosis and Al-Alousi’s Index. These are described in detail below.

Fluorosis Indices

Table I1 Dean's Index

<table>
<thead>
<tr>
<th>Score</th>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>Enamel represents the usual translucent semi-vitriform type of structure. Surface is smooth, glossy, and usually of a pale creamy white colour.</td>
</tr>
<tr>
<td>0.5</td>
<td>Questionable</td>
<td>Enamel discloses slight aberration from the translucency of normal enamel ranging from few white flecks to occasional white spots. This classification is used in those instances where a definite diagnosis of the mildest form of fluorosis is not warranted and a classification of "normal" not justified.</td>
</tr>
<tr>
<td>1</td>
<td>Very mild</td>
<td>Small, opaque, paper white areas scattered irregularly over the tooth, but not involving as much as approximately 25% of the tooth surface. Frequently included in this classification are teeth showing no more than about 1-2mm of white opacity at the tip of the summit of the cusps of the bicuspids or second molars.</td>
</tr>
<tr>
<td>2</td>
<td>Mild</td>
<td>The white opaque areas in the enamel of the teeth are more extensive, but do not involve as much as 50% of the tooth.</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>All enamel surfaces of teeth are affected, and surfaces subject to attrition show wear. Brown stain is frequently a disfiguring feature.</td>
</tr>
<tr>
<td>4</td>
<td>Severe</td>
<td>All enamel surfaces are affected and hypoplasia is so marked that the general form of the tooth may be affected. The major diagnostic sign of this classification is discrete or confluent pitting. Brown stains are widespread and teeth often present a corroded-like appearance.</td>
</tr>
</tbody>
</table>

Table I2a. Modified DDE Index for use in screening surveys

<table>
<thead>
<tr>
<th>Score</th>
<th>Type of defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>Demarcated</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse</td>
</tr>
<tr>
<td>3</td>
<td>Hypoplasia</td>
</tr>
</tbody>
</table>
Table I2 b. Modified DDE Index for use in general purpose epidemiological studies

<table>
<thead>
<tr>
<th>Score</th>
<th>Type of defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Demarcated opacities:</td>
</tr>
<tr>
<td>2</td>
<td>Yellow/brown</td>
</tr>
<tr>
<td>3</td>
<td>Diffuse - lines</td>
</tr>
<tr>
<td>4</td>
<td>Diffuse - patchy</td>
</tr>
<tr>
<td>5</td>
<td>Diffuse - confluent</td>
</tr>
<tr>
<td>6</td>
<td>Diffuse/patchy + staining/loss of enamel</td>
</tr>
<tr>
<td>7</td>
<td>Pits</td>
</tr>
<tr>
<td>8</td>
<td>Missing enamel</td>
</tr>
<tr>
<td>9</td>
<td>Any other defects</td>
</tr>
</tbody>
</table>

Table I3 DDE Index

<table>
<thead>
<tr>
<th>Score</th>
<th>Type of Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Demarcated opacity</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse opacity</td>
</tr>
<tr>
<td>3</td>
<td>Hypoplasia</td>
</tr>
<tr>
<td>4</td>
<td>Hypoplasia pits</td>
</tr>
<tr>
<td>5</td>
<td>Hypoplasia grooves</td>
</tr>
<tr>
<td>6</td>
<td>Discoloration</td>
</tr>
<tr>
<td>7</td>
<td>Any other</td>
</tr>
<tr>
<td>1</td>
<td>White/cream</td>
</tr>
<tr>
<td>2</td>
<td>Yellow/Brown</td>
</tr>
<tr>
<td>1</td>
<td>Diffuse lines</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse patchy</td>
</tr>
<tr>
<td>3</td>
<td>Diffuse confluent</td>
</tr>
<tr>
<td>4</td>
<td>Staining with codes 2 or 3</td>
</tr>
<tr>
<td>5</td>
<td>Pits< 2mm with codes 2 or 3</td>
</tr>
<tr>
<td>6</td>
<td>Pits> 2mm or loss of enamel with codes 2 or 3</td>
</tr>
</tbody>
</table>

Extent (areas of surface affected) of Defect

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 1/3</td>
</tr>
<tr>
<td>2</td>
<td>At least 1/3 and less than 2/3</td>
</tr>
<tr>
<td>3</td>
<td>At least 2/3</td>
</tr>
</tbody>
</table>
Thylstrup and Fejerskov Index

<table>
<thead>
<tr>
<th>Score</th>
<th>Clinical appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal translucency of enamel remains after prolonged air drying</td>
</tr>
<tr>
<td>1</td>
<td>Narrow white lines located corresponding to the perikymata</td>
</tr>
<tr>
<td>2</td>
<td>Smooth surfaces
More pronounced lines of opacity which follow the perikymata. Occasionally confluence of adjacent lines
Occlusal surfaces
Scattered areas of opacity <2mm in diameter and pronounced opacity of cuspal ridges</td>
</tr>
<tr>
<td>3</td>
<td>Smooth surfaces
Merging and irregular cloudy areas of opacity. Accentuated drawing of perikymata often visible between opacities
Occlusal surfaces
Confluent areas of marked opacity. Worn areas appear almost normal but usually circumscribed by rim of opaque enamel</td>
</tr>
<tr>
<td>4</td>
<td>Smooth surfaces
The entire surface exhibits marked opacity or appears chalky white. Parts of surface exposed to attrition appear less affected
Occlusal surface
Entire surface exhibits marked opacity. Attrition is often pronounced shortly after eruption</td>
</tr>
<tr>
<td>5</td>
<td>Smooth and Occlusal surface
Entire surface displays marked opacity with focal loss of outermost enamel (pits)<2mm in diameter</td>
</tr>
<tr>
<td>6</td>
<td>Smooth surfaces
Pits are regularly arranged in horizontal bands <2mm in vertical extension
Occlusal surfaces
Confluent areas <3mm in diameter exhibit loss of enamel</td>
</tr>
<tr>
<td>7</td>
<td>Smooth surfaces
Loss of outermost enamel in irregular areas involving <1/2 of surface
Occlusal surfaces
Changes in morphology caused by merging pits and marked attrition</td>
</tr>
<tr>
<td>8</td>
<td>Smooth and Occlusal surfaces
Loss of outermost enamel involving >1/2 of surface</td>
</tr>
<tr>
<td>9</td>
<td>Smooth and Occlusal surfaces
Loss of main part of enamel with change in anatomic appearance of surface. Cervical rim of almost unaffected enamel is often noted</td>
</tr>
</tbody>
</table>

Tooth Surface Index of Fluorosis

<table>
<thead>
<tr>
<th>Score</th>
<th>Enamel shows no evidence of fluorosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enamel shows definite evidence of fluorosis, areas with parchment-white colour that total less than one-third of the visible enamel surface. This category includes fluorosis confined only to incisal edges of anterior teeth and cusp tips of posterior teeth</td>
</tr>
<tr>
<td>2</td>
<td>Parchment-white fluorosis totals at least 1/3 of visible surface, but less than 2/3</td>
</tr>
<tr>
<td>3</td>
<td>Parchment white fluorosis totals at least 2/3 of visible surface</td>
</tr>
<tr>
<td>4</td>
<td>Enamel shows staining in conjunction with any of the preceding levels of fluorosis. Staining is defined as an areas of definite discoloration that may range from light to very dark brown</td>
</tr>
<tr>
<td>5</td>
<td>Discrete pitting of the enamel exists, unaccompanied by evidence of staining intact enamel. A pit is defined as a definite physical defect in the enamel surface with a rough floor that is surrounded by a wall of intact enamel. The pitted areas is usually stained or differences in colour from the surrounding enamel</td>
</tr>
<tr>
<td>6</td>
<td>Both discrete pitting and staining of the intact enamel exists</td>
</tr>
<tr>
<td>7</td>
<td>Confluent pitting of the enamel surface exists. Large areas of enamel may be missing and the anatomy of the tooth may be altered. Dark brown stain is usually present</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>White areas less than 2 mm in diameter</td>
</tr>
<tr>
<td>B</td>
<td>White areas of or greater than 2 mm in diameter</td>
</tr>
<tr>
<td>C</td>
<td>Coloured (brown) areas less than 2 mm in diameter</td>
</tr>
<tr>
<td>D</td>
<td>Coloured (brown) areas of or greater than 2 mm in diameter</td>
</tr>
<tr>
<td>E</td>
<td>Horizontal white lines, irrespective of there being and white non-linear areas</td>
</tr>
<tr>
<td>F</td>
<td>Coloured (brown) or white areas or lines associated with pits or hypoplastic areas</td>
</tr>
</tbody>
</table>
Photographs of fluorosed teeth as classified by Dean's classification

1. Normal (0).
2. Questionable (0.5).
3. Very mild (1).
4. Mild (2).
5. Moderate (3).

Plates 1-6 Examples of Dean's classification system for dental fluorosis and assigned scores (From Driscoll et al., 1983, by kind permission of the Authors and the Journal of the American Dental Association)
Photographs of fluorosed teeth as classified by the Thylstrup-Fejerskov index

7. Tf score 1.
Fine lines across the entire tooth surface.

8. Tf score 2.
Fine lines frequently merge.

9. Tf score 3.
Irregular cloudy white areas.

10. Tf score 4 (right incisor) and score 5 (left incisor).

11. Tf score 7.

12. Tf scores 8 and 9.

Plates 7-12 Examples of the Thylstrup-Fejerskov index (By kind permission of Professor O. Fejerskov and Munksgaard Publishers. Copenhagen)
For clarity, the algebraic form of the model fitted is provided below.

\[
\ln(\text{odds})_{ij} \sim N \left(\alpha + (\text{fluoride level})_{ij} + u_j, \text{var}_{ij}\right)
\]

\[
\begin{pmatrix}
u_j \\
v_j
\end{pmatrix} \sim MVN\left(\begin{pmatrix}0 \\ 0\end{pmatrix}, \begin{pmatrix}\sigma & \sigma \\ \sigma & \sigma\end{pmatrix}\right)
\]

Where \(i = 1, \ldots, I\) indicate the groups within the \(j = 1, \ldots, J\) studies. \(\text{var}_{ij}\) is the variance of the log odds of fluorosis for each group, \(\alpha\) is the overall model intercept, \(b\) is the overall slope parameter, \(u_j\) is the deviance of the intercept away from \(\alpha\) for the \(j^{th}\) study, and \(v_j\) is the deviance of the slope away from \(b\) for the \(j^{th}\) study. \(u_j\) and \(v_j\) are assumed to be dependent on each other and distributed multivariate normally.
Multiple regression analysis for fluorosis of aesthetic concern

This model builds on the mixed univariate model in Table 7.6. The groupings of cohorts of subjects within individual studies have been taken into account (separate intercept and slopes have been fitted to individual studies). Explanatory variables are included which explain a proportion of the variation between estimates. For this outcome, method of assessment, method of fluoridation (whether water was artificially or naturally fluoridated), and an interaction between level of fluoride and method of fluoridation are all highly statistically significant and included. The model parameters are summarized in the table below.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameter</th>
<th>P-value Individual Parameters</th>
<th>P-values Overall Variables</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>0.02</td>
<td>NA</td>
<td>-3.003</td>
<td>1.392</td>
<td>0.050 (0.005 to 0.501)</td>
</tr>
<tr>
<td>Fluoride level (centred by subtracting 1.2565)</td>
<td>Fluoride level</td>
<td>0.06</td>
<td>0.0002</td>
<td>-4.457</td>
<td>5.072</td>
<td>0.012 (0.00 to 0.9058)</td>
</tr>
<tr>
<td>Method of assessment</td>
<td>Clinical</td>
<td>0.20</td>
<td>0.0001</td>
<td>-1.255</td>
<td>0.928</td>
<td>0.285 (0.043 to 1.885)</td>
</tr>
<tr>
<td></td>
<td>Photograph</td>
<td>0.99</td>
<td>-0.012</td>
<td>2.555</td>
<td></td>
<td>0.989 (0.043 to 22.675)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.0001</td>
<td>6.941</td>
<td>2.255</td>
<td></td>
<td>1033.530 (54.449 to 19618.13)</td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method of Fluoridation</td>
<td>Natural</td>
<td>0.005</td>
<td>0.0001</td>
<td>2.026</td>
<td>0.469</td>
<td>7.583 (1.980 to 29.042)</td>
</tr>
<tr>
<td></td>
<td>Artificial</td>
<td>0.2713</td>
<td>-0.101</td>
<td>0.822</td>
<td></td>
<td>0.364 (0.062 to 2.152)</td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method of Fluoridation * Fluoride level (interaction term)</td>
<td>Natural * Fluoride level</td>
<td>0.02</td>
<td>0.0001</td>
<td>5.208</td>
<td>5.000</td>
<td>182.767 (2.283 to 14629.7)</td>
</tr>
<tr>
<td></td>
<td>Artificial* Fluoride level</td>
<td>0.27</td>
<td>-2.861</td>
<td>6.539</td>
<td></td>
<td>0.057 (8.598)</td>
</tr>
<tr>
<td></td>
<td>Not stated * Fluoride level</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Random Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.945</td>
</tr>
<tr>
<td>Between study (fluoride level)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.318</td>
</tr>
<tr>
<td>Covariance of intercept and slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.297</td>
</tr>
</tbody>
</table>
Meta-regression analyses with validity score forced into the model

Multivariate meta-regression analysis - dmft/DMFT score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Co-efficient</th>
<th>p-value</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.23 (0.18)</td>
<td><0.001</td>
<td>0.393</td>
<td></td>
</tr>
<tr>
<td>Baseline dmft/DMFT</td>
<td>3.6</td>
<td>0.36 (0.10)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.5</td>
<td>0.16 (0.06)</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Average temperature (°C)</td>
<td>13.3</td>
<td>0.08 (0.04)</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>Study duration (years)</td>
<td>10.7</td>
<td>0.16 (0.08)</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td>5.3</td>
<td>-0.14 (0.49)</td>
<td>0.778</td>
<td></td>
</tr>
</tbody>
</table>

Multivariate Analysis - % fluorosis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameter</th>
<th>P-value individual parameters</th>
<th>P-values Overall Variables</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>0.9972</td>
<td>-0.069</td>
<td>0.273</td>
<td>0.93</td>
<td>(0.35, 2.85)</td>
</tr>
<tr>
<td>Fluoride level</td>
<td>Fluoride level (ppm)</td>
<td>0.0001</td>
<td>0.718</td>
<td>0.006</td>
<td>2.05 (1.76, 2.39)</td>
<td></td>
</tr>
<tr>
<td>Teeth type</td>
<td>Permanent</td>
<td>0.037</td>
<td><0.001</td>
<td>-0.797</td>
<td>0.142</td>
<td>0.45 (0.21, 0.95)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.001</td>
<td>-3.152</td>
<td>0.900</td>
<td>0.04</td>
<td>(0.001, 0.28)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>0.002</td>
<td>-5.234</td>
<td>2.631</td>
<td>0.01</td>
<td>(0.00, 0.13)</td>
</tr>
<tr>
<td>Method of assessment</td>
<td>Clinical</td>
<td>0.75</td>
<td><0.001</td>
<td>0.141</td>
<td>0.189</td>
<td>1.15 (0.49, 2.73)</td>
</tr>
<tr>
<td></td>
<td>Photograph</td>
<td>0.12</td>
<td>1.196</td>
<td>0.593</td>
<td>3.31 (0.72, 15.18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.0002</td>
<td>2.612</td>
<td>0.450</td>
<td>13.63</td>
<td>(3.61, 51.49)</td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>.</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td></td>
<td>0.8433</td>
<td>-0.028</td>
<td>1.150</td>
<td>0.97</td>
<td>(0.74, 1.28)</td>
</tr>
<tr>
<td>Random Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>1.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (fluoride level)</td>
<td></td>
<td></td>
<td></td>
<td>0.340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance of intercept & slope</td>
<td></td>
<td></td>
<td></td>
<td>-0.192</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multivariate Analysis - fluorosis of aesthetic concern

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameter</th>
<th>P-value individual parameters</th>
<th>P-values Overall Variables</th>
<th>Coefficient</th>
<th>Variance</th>
<th>Odds (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>0.0186</td>
<td>-3.221</td>
<td>1.681</td>
<td>0.04</td>
<td>(0.003, 0.56)</td>
</tr>
<tr>
<td>Fluoride level</td>
<td></td>
<td>0.052</td>
<td>-4.610</td>
<td>5.250</td>
<td>0.01</td>
<td>(0.00, 1.04)</td>
</tr>
<tr>
<td>Method of assessment</td>
<td>Clinical</td>
<td>0.2327</td>
<td><0.001</td>
<td>-1.189</td>
<td>0.964</td>
<td>0.30 (0.04, 2.21)</td>
</tr>
<tr>
<td></td>
<td>Photograph</td>
<td>0.9841</td>
<td>0.032</td>
<td>2.592</td>
<td>1.03 (0.04, 26.62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>0.0001</td>
<td>6.994</td>
<td>2.298</td>
<td>1090.2</td>
<td>(51.13, 23248.6)</td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of Fluoridation</td>
<td>Natural</td>
<td>0.0049</td>
<td><0.001</td>
<td>2.069</td>
<td>0.485</td>
<td>7.92 (1.94, 32.28)</td>
</tr>
<tr>
<td></td>
<td>Artificial</td>
<td>0.2821</td>
<td>-1.001</td>
<td>0.845</td>
<td>0.37 (0.06, 2.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Stated</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method of Fluoridation * Fluoride level (interaction term)</td>
<td>Natural * Fluoride level</td>
<td>0.0234</td>
<td>5.349</td>
<td>5.170</td>
<td>210.45 (2.14, 20698.16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artificial * Fluoride level</td>
<td>0.2743</td>
<td>-2.876</td>
<td>6.739</td>
<td>0.06 (0.00, 10.62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not stated * Fluoride level</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td></td>
<td>0.8227</td>
<td>0.051</td>
<td>0.052</td>
<td>1.05</td>
<td>(0.67, 1.67)</td>
</tr>
<tr>
<td>Random Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (intercept)</td>
<td></td>
<td></td>
<td></td>
<td>3.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between study (fluoride level)</td>
<td></td>
<td></td>
<td></td>
<td>1.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance of intercept & slope</td>
<td></td>
<td></td>
<td></td>
<td>1.417</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multivariate meta-regression analysis - bone fracture studies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Co-efficient (95% CI)</th>
<th>p-value</th>
<th>Between variance study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>1.06 (0.94, 1.18)</td>
<td>0.695</td>
<td>0.019</td>
</tr>
<tr>
<td>Study duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><5 (17)</td>
<td>1.02 (0.88, 1.17)</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10 (19)</td>
<td>1.02 (0.88, 1.17)</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>10 (4)</td>
<td>0.68 (0.55, 0.84)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not stated (15)</td>
<td>0.88 (0.73, 1.06)</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td>3.65</td>
<td>1.01 (0.96, 1.07)</td>
<td>0.695</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX M

Protocol Changes

Changes to the protocol were made with the consultation of and agreement from the advisory panel. The changes to the original protocol were mainly to clarify or simplify the intent of the inclusion criteria. The range of analyses undertaken was broader than had been described in the protocol. Due to extremely limited evidence, the inclusion criteria for Objective 3 were expanded to include studies of level C evidence, and limited to studies from the UK.

1. The objectives of the review were re-phrased into questions
 Objective 1:
 Original: 1. Assessment of the effects of fluoridation of public water supplies in preventing caries (is a causal relationship likely?).
 New: What are the effects of fluoridation of drinking water supplies on the incidence of caries?

 Objective 2:
 Original: If fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies (i.e. fluoridated toothpaste, educational programmes, and increased self awareness of health issues?).
 New: If water fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

 Objective 3:
 Original: Determination of whether fluoridation results in a reduction of caries across social groups and between geographical locations.
 New: Does water fluoridation result in a reduction of caries across social groups and between geographical locations, bringing equity?

 Objective 4:
 Original: Assessment of the negative health effects of fluoridation.
 New: Does water fluoridation have negative effects?

 Objective 5:
 Original: Comparison of the effects of natural and artificial fluoridation to investigate any possible differences
 New: Are there differences in the effects of natural and artificial water fluoridation?

Searching:
The protocol describes searching of electronic databases. In addition, other forms of searching were conducted, including searching the World Wide Web, hand searching, and a request for submissions on a web site dedicated to the review. Update searching was undertaken, which was also not described in the protocol.

Inclusion criteria (all changes are marked in Italics)
Changes to the quality inclusion criteria are shown below.

Level A (Highest quality of evidence, minimal risk of bias)
Original:
1. Prospective (planned) studies that started at either initiation or discontinuation of water fluoridation and have a follow up of at least two years for positive effects and at least 5 years for negative effects
2. Studies address at least three possible confounding factors and make corrections in the analysis where appropriate
3. Studies with the lowest bias where primary outcomes were blinded to examiners for fluoridation status of participants.
New:
- Prospective studies that started within one year of either initiation or discontinuation of water fluoridation and have a follow up of at least two years for positive effects and at least 5 years for negative effects.
- Studies either randomised or address at least three possible confounding factors and adjust for these in the analysis where appropriate.
- Studies where fluoridation status of participants was unknown to those assessing outcomes.

The major change in the definition of Level A evidence was to allow the start of the study up to a year before or after the change in fluoridation status of the study area. This was allowed because it was thought that no significant change would have occurred in one year, and to allow sufficient time for study procedures to be implemented.

Level B (Evidence of moderate quality, moderate risk of bias)

Original:
1. Studies that started less than one year after fluoridation was initiated or discontinued and had a prospective follow up of outcomes
2. Studies that measured and made corrections for less than three but at least one confounding factor
3. Studies that failed where primary outcomes were not blinded to examiners for fluoridation status, but made other provisions to prevent measurement bias

New:
- Studies that started within 3 years of the initiation or discontinuation of water fluoridation, with a prospective follow up for outcomes.
- Studies that measured and adjusted for less than three but at least one confounding factor.
- Studies in which fluoridation status of participants was known to those assessing primary outcomes, but other provisions were made to prevent measurement bias.

The main change to the definition of Level B evidence was to increase the allowed time period between change of fluoridation status of the study area and start of the study. It was felt that the original criteria of one year was too strict, in light of the change made to the definition of Level A evidence. The change in wording of the third point under Level B was to improve clarity, but not meaning.

Level C (Lowest quality of evidence, high risk of bias)

Original:
1. Studies of other designs (prospective or retrospective, concurrent or historical control) that meet other inclusion criteria
2. Studies that failed to account for confounding factors
3. Studies that did not prevent measurement bias

New:
- Studies of other designs (e.g. cross-sectional), prospective or retrospective, using concurrent or historical controls, that meet other inclusion criteria.
- Studies that failed to adjust for confounding factors.
- Studies that did not prevent measurement bias.

The major changes in the definition of Level C evidence were to improve clarity, but not meaning.

Objective Specific Criteria: (all changes are marked in Italics)

Objective 1
Original: Assessment of the effects of fluoridation of public water supplies in preventing caries

Participants:
1. Populations receiving fluoridated water (either naturally or artificially)
2. Populations receiving non fluoridated water
Intervention:
A defined fluoride-concentration present in drinking water, either controlled or naturally occurring

Outcomes:
Number of decayed, missing or filled teeth (DMFT, dmft, deft) and/or number of decayed, missing or filled surfaces (DMFS, dmfs) or percentage of caries free teeth or caries free subjects in those receiving fluoridated compared to non-fluoridated water

Study designs:
Prospective studies comparing two populations, one receiving fluoridated the other non-fluoridated water

New: Does fluoridation of drinking water supplies prevent caries?

Participants:
- Populations receiving fluoridated water (naturally or artificially)
- Populations receiving non-fluoridated water

Intervention:
- A change in the level of fluoride in the water supply of at least one of the study areas, within three years of the baseline survey.

Outcomes:
- Any measure of dental decay

Study designs:
Prospective studies comparing at least two populations, one receiving fluoridated the other non-fluoridated water, with at least two points in time evaluated.

The changes in the inclusion criteria for Objective 1 were changed as follows. Under intervention, the words were changed to indicate that there had to be a before and after fluoridation period studied. This is more specific than the original wording, and clarified the intent. The outcomes were changed to include any measure of dental decay that was presented by a study to allow for other measures. The study design wording was also changed to clarify that two points in time had to be studied.

Objective 2:
Original: If fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies

Participants:
1. Populations receiving fluoridated water (either naturally or artificially) who receive fluoride from other artificially supplemented sources (e.g. food, toothpaste, fluoride tablets, bottled drinks)
2. Populations receiving non-fluoridated water who receive fluoride from other artificially supplemented sources

Intervention:
Fluoride at any concentration present in drinking water

Outcomes:
Number of decayed, missing or filled teeth (DMFT, dmft, deft) and/or number of decayed, missing or filled surfaces (DMFS, dmfs) or percentage of caries free teeth or caries free subjects in the four different participant groups

Study designs:
Prospective studies comparing the four populations outlined above, to investigate the differences in levels of tooth decay between the populations

New: If fluoridation is shown to have beneficial effects, what is the effect over and above that offered by the use of alternative interventions and strategies?

Participants:
- Populations receiving fluoridated water (naturally or artificially) in addition to other interventions.
- Populations receiving non-fluoridated water in addition to other interventions.

Intervention:
- A change in the level of fluoride in the water supply of at least one of the study areas, within three years of the baseline survey.
Outcomes:
- Any measure of dental decay.

Study designs:
- Prospective studies comparing at least two populations, to investigate the differences in levels of tooth decay between the populations in the presence of other sources of fluoride, e.g. fluoridated toothpaste. Where specific information on the use of other sources of fluoride is not supplied, populations in studies conducted after 1975 in industrialised countries were assumed to have been exposed to fluoridated toothpaste.

The population criteria were changed only to make it more clear that the effects of having fluoridated or non-fluoridated water in addition to other interventions were being studied. Intervention and Outcomes wording were changed as in objective 1, for clarification that two points in time, before and after fluoridation/discontinuation of fluoridation had to be studied.

The study design criteria was altered to allow for the possibility that person-level use of fluoride was not adequately measured.

Objective 3
Original: Determination of whether fluoridation results in a reduction of caries across social groups and between geographical locations bringing equity
Participants:
1. Populations receiving fluoridated water (either naturally or artificially), from different social groups and geographic locations
2. Populations receiving non fluoridated water, from different social groups and geographic locations

Intervention:
Fluoride at any concentration present in drinking water, either controlled or naturally occurring

Outcomes:
Number of decayed, missing or filled teeth (DMFT, dmft, deft) and/or number of decayed, missing or filled surfaces (DMFS, dmfs), or percentage of caries free teeth or caries free subjects in those receiving fluoridated compared to non-fluoridated water compared between different social groups and geographic locations within the two participant groups

Study designs:
Prospective studies comparing two populations, one receiving fluoridated the other non-fluoridated water, across different social groups and geographic locations

New: Does fluoridation result in a reduction of caries across social groups and between geographical locations?
Participants:
- Populations from different social groups and geographic locations receiving fluoridated water (naturally or artificially).
- Populations from different social groups and geographic locations receiving non-fluoridated water.

Intervention:
- Fluoride at any concentration present in drinking water, either controlled or naturally occurring

Outcomes:
- Any measure of dental decay.

Study designs:
- Any study design comparing two populations, one receiving fluoridated the other non-fluoridated water, across different social groups and geographic locations.

The outcome measure criteria was altered as in other objectives. The study design was altered to allow for the lack of sufficient before-after study designs.

Objective 4:
Original: Assessment of the negative health effects of fluoridation
Participants:
1. Groups receiving fluoridated water (either naturally or artificially)
2. Groups receiving non fluoridated water
Intervention:
A defined fluoride concentration present in drinking water, either controlled or naturally occurring

Outcomes:
Dental fluorosis, skeletal fluorosis, hip fractures, cancer, congenital malformations, mortality and any other adverse effects reported in the literature compared between those receiving fluoridated compared to non-fluoridated water

Study designs:
1. Prospective study design which follows up 2 or more exposure groups with different levels of exposure to fluoride and continues for several years to allow comparison of possible adverse effects in the different groups
2. Retrospective study design comparing risks of adverse effects in two or more exposure groups
3. Retrospective design comparing odds of exposure to differing levels of fluoride in groups of people experiencing adverse effects which may be linked to water fluoridation compared to those without the condition under study
4. Geographical study comparing average exposure of the population to fluoride with the rate of the adverse effect for several populations to look for a relationship between the two

New: Does fluoridation have negative effects?

Participants:
- Populations receiving fluoridated water (either naturally or artificially).
- Populations receiving non-fluoridated water.

Intervention:
- Fluoride at any concentration present in the water supply, either naturally occurring or artificially added.

Outcomes:
- Dental fluorosis, skeletal fluorosis, hip fractures, cancer, congenital malformations, mortality and any other possible negative effects reported in the literature.

Study designs:
- Any study design comparing the incidence of any possible adverse effect between two populations, one with fluoridated water and the other with non-fluoridated water.

Under participants, the word groups were changed to populations for clarity. The wording of the criteria for intervention and outcomes were changed for clarity. The wording of the study design criteria was simplified to allow any study design.

Objective 5:
Original: Comparison of the effects of natural and artificial fluoridation to investigate any possible differences

Participants:
1. Populations receiving artificially fluoridated water
2. Populations receiving naturally fluoridated water
3. Populations receiving non-fluoridated water

Intervention:
Fluoride at any concentration from a naturally and an artificially fluoridated water source

Outcomes:
Positive effects: Number of decayed, missing or filled teeth (DMFT, dmft, deft) and/or number of decayed, missing or filled surfaces (DMFS, dmfs), or percentage of caries free teeth or caries free subjects in those receiving artificially fluoridated compared to naturally fluoridated and non-fluoridated water
Negative effects: Dental fluorosis, skeletal fluorosis, hip fractures, cancer, congenital malformations, mortality and any other adverse effects reported in the literature compared between those receiving artificially fluoridated compared to naturally fluoridated and non-fluoridated water

Study designs:
1. Prospective study design which follows up 2 or more exposure groups, at least one of which receives artificially fluoridated and another receives naturally fluoridated water,
with different levels of exposure to fluoride and continues for several years to allow
comparison of possible adverse effects in the different groups

2. Retrospective study design comparing risks of adverse effects in two or more exposure
groups, at least one of which receives artificially fluoridated and another receives
naturally fluoridated water.

3. Retrospective design comparing odds of exposure to differing levels of fluoride, at least
one of which receives artificially fluoridated and another receives naturally fluoridated
water, in groups of people experiencing adverse effects which may be linked to water
fluoridation compared to those without the condition under study

4. Geographical study comparing average exposure of the population to fluoride with the
rate of the adverse effect for several populations to look for a relationship between the
two

New: Are there differential effects of natural and artificial fluoridation?

Participants:
- Populations receiving artificially fluoridated water.
- Populations receiving naturally fluoridated water.
- Populations receiving non-fluoridated water.

Intervention:
- Fluoride at any concentration from a naturally or an artificially fluoridated water source.

Outcomes:
- Possible positive effects: *Any measure of dental decay.*
- Possible negative effects: Dental fluorosis, skeletal fluorosis, hip fractures, cancer,
congenital malformations, mortality and *any other possible negative effects reported in
the literature.*

Study designs:
- *Any study design comparing populations exposed to different water fluoride
concentrations, results obtained from areas using artificially and naturally fluoridated
water supplies were compared to investigate any differences in effect.*

The outcomes for dental decay were changed as in the other criteria, the wording for
outcomes of possible negative effects and study design were changed for clarity and
simplicity, as in criteria for other objectives

Other changes to the protocol include:
The Review Manager software package was not used; other packages including StatsDirect,
Stata and Microsoft Access were used instead. The protocol states that reasons for
heterogeneity will be investigated and explanations provided. This was done using meta-
regression as an exploratory analysis of heterogeneity, but had not been specified in the
protocol. Cost-effectiveness is briefly mentioned in the protocol, as a part of a comparative
analysis of positive and negative effects. Evaluating cost-effectiveness was not one of the
identified objectives, and under advice from the advisory panel was not pursued. Publication
bias was to have been evaluated using funnel plots and an assessment of studies appearing
only as abstracts. However, the data were not suitable for producing funnel plots (e.g. too
few studies of a given age group/outcome combination). The number of studies presented as
abstracts but not as papers was negligible, and therefore not useful in estimating publication
bias.