Statistical methods for reliably updating meta-analyses

Mark Simmonds

Centre for Reviews and Dissemination
University of York, UK

With:
Julian Elliott, Joanne McKenzie, Georgia Salanti,
Adriani Nikolakopoulou, Julian Higgins
Conflict of interest

This project was funded by:
Cochrane Methods Innovation Fund

I am the co-creator of one of the methods considered
I have no financial or other conflicts of interest in relation to this presentation
Updating meta-analyses

• When should we update a Cochrane review and meta-analysis?
 – Every two (or more/fewer) years?
 – As soon as new studies emerge?
 – When new data might alter our conclusions?

• Updating is time-consuming

• Conclusions can change over time
 – Risk of error if:
 – We make conclusions based on limited/poor data
 – We stop updating too soon

• Are the results robust?
Cumulative meta-analysis: false conclusions

Type I error
- It works!
- OK, maybe not
- It’s a failure!
- OK, maybe not

Type II error
- Doesn’t look promising
- Give up now?
- Definitely stop now
- Oh wait...
Controlling error

• Control Type I and Type II error
 – Sequential Meta-Analysis
 Higgins et al. Statistics in Medicine 2011: 30 903-921
 – Trial Sequential Analysis
 Wetterslev et al. J Clinical Epidemiology 2008: 61 64-75

• Control Type I error
 – Law of Iterated Logarithm
 – “Shuster-Pocock” method
 Shuster and Neu. Research Synthesis Methods 2013: 4 269-279

• Other methods
 – Fully Bayesian analysis
 – Consequences of adding new studies
 – Power gains from adding new studies
Simulation study

- Simulated meta-analyses varying:
 - True treatment effect: 0 or 0.1
 - Number of studies: 5 to 50
 - Heterogeneity: I^2 0 to 90%

- Fixed total sample size of 9000
 - 90% power to detect effect of 0.1 if $I^2 = 50\%$
False positive rates – Type I error

- 20 trials / updates
- \(I^2 = 25\% \)
False positive rates – Type I error
Cumulative power

- 20 trials / updates
- $I^2 = 25\%$
Cumulative power
76 Cochrane Reviews

- 76 Reviews: 286 meta-analyses
 - 68% binary data
 - Median 9 trials (IQR 6 to 14)

- 62% had a statistically significant result using conventional analysis
Conclusions of analyses

The diagram illustrates the percentage of analyses for different methods under two conditions: not statistically significant and statistically significant. The methods include:

- Standard MA
- Trial Sequential Analysis
- Sequential Meta-Analysis
- Shuster-Pocock
- Law Iterated Logarithm

The colors represent different conclusions:
- Red: Does not stop
- Green: Favourable
- Blue: No effect

The percentage of analyses for each method under each condition is shown in the bars.
Conclusions of analyses
Realistic updating

- At most 4 updates
- After 50, 70, 90 and 100% of trials published
Conventional review updates

• Too many inappropriate positive conclusions
 – Elevated Type I error rate
 – But not vastly elevated for most real updated reviews?

• Many analyses showing “significant” results are based on too little evidence
Do we need sequential methods?

• Is the problem with standard reviews serious enough in real Cochrane reviews?

• Do the methods needlessly delay a statistically significant result?

• Should we avoid “statistical significance” altogether?
Practical conclusions for Cochrane reviews

• Remember that results may change over time

• Be cautious about interpreting “statistical significance”
 – Particularly with small sample sizes

• Consider the required sample size and statistical power

• Sequential methods may be useful in some reviews
 – Big effects but small sample sizes
 – Frequently updated or automated reviews