

More Mole Calculations Answers

1. The reaction equation is:

 $Na_2CO_3 (aq) + H_2SO_4 (aq) \rightarrow Na_2SO_4 (aq) + CO_2 (g) + H_2O (I)$ So, 1 mole of H_2SO_4 neutralises 1 mole of Na_2CO_3

Moles of H_2SO_4 = volume (dm³) x concentration (mol dm⁻³) = (41.2 x 10⁻³) x 0.05 = 2.05 x 10⁻³ mol So, moles of Na₂CO₃ = 2.05 x 10⁻³ mol

Also, moles of Na₂CO₃ = volume (dm³) x concentration (mol dm⁻³) = (25.0 x 10⁻³) x concentration Therefore, 2.05 x 10⁻³ = (25.0 x 10⁻³) x concentration Or, concentration of solution = 2.05 x 10⁻³ / 25.0 x 10⁻³ = 0.082 mol dm⁻³

Number of moles in the whole 250.0 cm³ solution = volume (dm³) x concentration (mol dm⁻³) = $(250.0 \times 10^{-3}) \times 0.082 = 0.0205$ mol

Mass of Na₂CO₃ = M_r (g mol⁻¹) x moles (mol) =106.0 x 0.0205 = 2.17 g (M_r of Na₂CO₃ = (23.0 x 2) + 12.0 + (3 x 16.0) = 106.0)

% of Na_2CO_3 = mass of Na_2CO_3 (g) / mass of soda crystals (g) x 100 = 2.17 / 5.45 x 100 = 39.8% or 40% (rounding up)

The washing soda crystals are 40% sodium carbonate

2. The reaction equation is:

 $Na_2CO_3 (aq) + 2HCI (aq) \rightarrow 2NaCI (aq) + CO_2 (g) + H_2O (I)$

So, 2 moles of HCl neutralises 1 mole of Na₂CO₃

Moles of HCl = volume (dm³) x concentration (mol dm⁻³) = $(24.65 \times 10^{-3}) \times 0.100 = 2.465 \times 10^{-3}$ mol So, moles of Na₂CO₃ = $2.465 \times 10^{-3} / 2 = 1.233 \times 10^{-3}$ mol

Mass of Na₂CO₃ = M_r (g mol⁻¹) x moles (mol) =106.0 x (1.233 x 10⁻³) = 0.131 g (M_r of Na₂CO₃ = (23.0 x 2) + 12.0 + (3 x 16.0) = 106.0)

Mass of H₂O in the sample = 0.352 - 0.131 = 0.221 g Moles of H₂O = $0.221 / 18 = 12.278 \times 10^{-3}$ mol

Mole ratio of Na₂CO₃ : H₂O = 1.233×10^{-3} : $12.278 \times 10^{-3} = 1 : 9.958 = 10$ (rounding up). So, x = 10, Na₂CO₃.10H₂O

3. Here are the reactions:

 $Na_2CO_3 (aq) + HCl (aq) \rightarrow NaHCO_3 (aq) + NaCl (aq)$ $NaHCO_3 (aq) + HCl (aq) \rightarrow NaCl (aq) + CO_2 (g) + H_2O (l)$

Phenolphthalein changes from pink to colourless at the end of the first reaction, when the pH of the solution is 9, and so the reaction measured is:

 $CO_3^{2-}(aq) + H^+(aq) \rightarrow HCO_3^-(aq)$

Methyl orange changes from yellow to orange at the end of the second reaction, when the pH of the solution is 7, and so the reaction measured is:

 $HCO_3^-(aq) + H^+(aq) \rightarrow CO_2(g) + H_2O(I)$

So, in the first stage, the CO_3^{2-} (aq) in the mixture is converted into HCO_3^{-} (aq). Moles of HCl (aq) to convert CO_3^{2-} (aq) to HCO_3^{-} (aq) = volume x concentration = (28.3 x 10⁻³) x 0.08 = 2.26 x 10⁻³ mol Moles of CO_3^{2-} (aq) = 2.26 x 10⁻³ mol Concentration of CO_3^{2-} (aq) in the solution = moles / volume = 2.26 x 10⁻³ mol / 25.0 x 10⁻³ = 9.04 x 10⁻² mol dm⁻³ In the second stage, the volume of HCl (aq) needed to neutralise the total HCO_3^- (aq) is 31.3 cm³. Of this, 28.3 cm³ of HCl (aq) are required to neutralise the HCO_3^- (aq) formed from CO_3^{2-} (aq) in the first stage. The remaining 3.0 cm³ neutralises the HCO_3^- (aq) that is present in the original solution.

Moles of HCl (aq) to convert needed to react with HCO_3^- (aq) = volume x concentration = $(3.0 \times 10^{-3}) \times 0.08 = 0.24 \times 10^{-3}$ mol Moles of HCO_3^- (aq) = 0.24×10^{-3} mol Concentration of HCO_3^- (aq) in the solution = moles / volume = 0.24×10^{-3} (mol) / 25.0×10^{-3} (dm³) = 9.60×10^{-3} mol dm⁻³

4. Balancing the electrons in the two half-equations, means that we need to multiple the MnO_4^- (aq) equation by 2, and the H_2O_2 (aq) equation by 5. Combining the two half-equations [16H⁺ (left of the arrow) – 10H⁺ (right) = 6H⁺ (left)] gives:

$$2MnO_4^{-}(aq) + 6H^+(aq) + 5H_2O_2(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(I) + 5O_2(g)$$

Moles of MnO_4^- (aq) = volume x concentration = (48.3 x 10⁻³) x 0.0150 = 0.725 x 10⁻³ mol Moles of H_2O_2 (aq) = (0.725 x 10⁻³) x 5 / 2 = (0.725 x 10⁻³) x 2.5 = 1.81 x 10⁻³ mol Concentration of H_2O_2 (aq) = moles / volume = (1.81 x 10⁻³) / (25.0 x 10⁻³) = 0.0724 mol dm⁻³ Concentration of H_2O_2 (aq) in the original solution = 25.0 x 0.0724 = 1.81 mol dm⁻³

 Balancing the electrons in the two half-equations, means that we need to multiple the Fe²⁺ (aq) equation by 6. Combining the two half-equations gives:

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6Fe^{2+} \rightarrow 2Cr^{3+}(aq) + 6Fe^{3+} + 7H_2O(I)$$

Moles of $Cr_2O_7^{2-}$ (aq) = volume x concentration = $(29.3 \times 10^{-3}) \times 0.0193$ = 0.565 x 10⁻³ mol Moles of Fe²⁺ (aq) in 25.0 cm³ = $(0.565 \times 10^{-3}) \times 6 = 3.39 \times 10^{-3}$ mol Moles of Fe²⁺ (aq) in the whole 250.0 cm³ solution = $(3.39 \times 10^{-3}) \times 10 = 3.39 \times 10^{-2}$ mol Mass of Fe in the whole 250.0 cm³ solution = $(3.39 \times 10^{-2}) \times 55.8 = 1.89$ g % of Fe in the wire = $(1.89 / 2.45) \times 100 = 77.1\% = 77\%$ (rounding up)

 Balancing the electrons in the two half-equations means that we need to multiple the Fe²⁺ (aq) equation by 5. Combining the two half-equations gives:

 $MnO_{4^{-}}(aq) + 8H^{+}(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_{2}O(I) + 5Fe^{3+}(aq)$

Moles of MnO₄⁻ (aq) = volume x concentration = $(25.0 \times 10^{-3}) \times 0.0200$ = 5.00 x 10⁻⁴ mol Moles of Fe²⁺ (aq) = $(5.00 \times 10^{-4}) \times 5 = 2.50 \times 10^{-3}$ mol Mass of Fe²⁺ = $(2.50 \times 10^{-3}) \times 55.8 = 0.140$ g % of Fe²⁺ in the lawn sand = $(0.140 / 3.00) \times 100 = 4.67\% = 5\%$ (rounding up)

- 7. Moles of excess EDTA (aq) = volume x concentration = (16.4 x 10⁻³) x (1.115 x 10⁻²) = 1.83 x 10⁻⁴ mol Moles of total EDTA (aq) = volume x concentration = (50.0 x 10⁻³) x (1.00 x 10⁻²) = 0.50 x 10⁻³ mol Moles of EDTA that reacts with Al³⁺ = (0.50 x 10⁻³) – (1.83 x 10⁻⁴) = 3.17 x 10⁻⁴ mol Moles of Al³⁺ in 25.0 cm³ portion (1 mol of Al³⁺ reacts with 1 mol of EDTA) = 3.17 x 10⁻⁴ mol Moles of Al³⁺ in 250.0 cm³ portion = (3.17 x 10⁻⁴) x 10 = 3.17 x 10⁻³ mol M_r of aluminium sulfate hydrate = mass (g) / moles (mol) = 2.00 / (3.17 x 10⁻³) = 630.9 g mol⁻¹ M_r of Al₂(SO₄)₃ = (2 x 27.0) + (3 x 32.1) + (12 x 16.0) = 342.3 g mol⁻¹ M_r of nH₂O = 630.9 – 342.3 = 288.6 g mol⁻¹ n = 288.6 / 18.0 = 16.0 = 16 (rounding up)
- 8. Moles of total MnO_4^- (aq) = volume x concentration = (25.9 x 10⁻³) x 0.02 = 0.518 x 10⁻³ mol

Using the half equations: $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$ $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^-$ We can deduce that the number of moles of $Fe^{3+} = 5 \times 10^{-3}$ moles of $MnO_4^-(aq) = 5 \times (0.518 \times 10^{-3}) = 2.59 \times 10^{-3}$ moles of $MnO_4^-(aq) = 5 \times 10^{-3}$ moles of $MnO_4^-(a$

Hydroxylamine reacts with hydrochloric acid as follows:

 $H_2NOH + HCI \longrightarrow H_3N^+OH CI^-$

Concentration of the chloride salt in mol dm⁻³ = Concentration (g dm⁻³) / M_r (g mol⁻¹) = $3.60 / (4 \times 1.01) + 14.0 + 16.0 + 35.5) = 3.60 / 69.5 = 0.0518 \text{ mol dm}^{-3}$ Moles of H₃N⁺OH Cl⁻ = volume x concentration = (25.0 x 10⁻³) x 0.0518 = 1.30 x 10⁻³ mol

Ratio of Fe³⁺ : H₃N⁺OH Cl⁻ = 2.59 x 10^{-3} / 1.30 x 10^{-3} = 1.99 = 2 (rounding up)

9. The H⁺ and HO⁻ ions are attracted to cathode and anode, respectively

At the cathode: $2H^+ + 2e^- \rightarrow H_2$ At the anode: $4HO^- \rightarrow O_2 + 2H_2O + 4e^-$ The volume of hydrogen produced at the cathode is twice the volume of oxygen produced at the anode (as $4H^+ + 4e^- \rightarrow 2H_2$)

Coulombs (C) = Amperes (A) x Seconds (s) = $0.0250 \times 6.50 \times 60 \times 60 = 585 \text{ C}$ (60 minutes in an hour, and 60 seconds in a minute)

One mole of electrons = 96 500 C Moles of electrons = $585 / 96 500 = 6.06 \times 10^{-3}$ mol

As two moles of electrons are required to produce H₂, Moles of H₂ = $6.06 \times 10^{-3} / 2 = 3.06 \times 10^{-3}$ mol

The molar volume of a gas at s.t.p. = 22.4 dm³ Volume of H₂ = 22.4 x (3.06×10^{-3}) = 0.0679 dm³ = 67.9 cm³ Volume of O₂ = 67.9 / 2 = 34.0 cm³

10. The dissociation equation is: BaF₂ (s) \rightleftharpoons Ba²⁺ (aq) + 2F⁻ (aq)

> So, $K_{sp} = [Ba^{2+}][F^{-}]^2 = 1.00 \times 10^{-6}$ Assuming $[Ba^{2+}]$ is x, as we have two F⁻ ions for every Ba^{2+} ion, we can rewrite the equation as:

 $1.00 \times 10^{-6} = (x)(2x)^2 = (x)(4x^2)$

1.00 x $10^{-6} = 4x^3$ x³ = 1.00 x $10^{-6} / 4 = 2.50 x 10^{-7}$ x = $\sqrt[3]{2.50 x 10^{-7}} = 6.30 x 10^{-3}$ [Ba²⁺] = 6.30 x 10^{-3} mol dm⁻³ [BaF₂] = 6.30 x 10^{-3} mol dm⁻³

Moles of BaF₂ = concentration x volume = $(6.30 \times 10^{-3}) \times (50.0 \times 10^{-3}) = 3.15 \times 10^{-4} \text{ mol}$ Grams of BaF₂ = moles x M_r = $(3.15 \times 10^{-4}) \times 175 = 0.0551 \text{ g}$ [M_r of BaF₂ = 137 + (19.0 x 2) = 175]

11. The reaction equation is:

 $\begin{array}{l} \mathsf{CH}_3\mathsf{CO}_2\mathsf{H}\ (\mathsf{aq}) + \mathsf{CH}_3\mathsf{CH}_2\mathsf{O}\mathsf{H}\ (\mathsf{aq}) \ \rightleftharpoons \ \mathsf{CH}_3\mathsf{CO}_2\mathsf{CH}_2\mathsf{C}\mathsf{H}_3\ (\mathsf{aq}) \ + \mathsf{H}_2\mathsf{O}\ (\mathsf{I}) \\ \\ \mathsf{The\ equilibrium\ constant,\ K_c,\ is\ equal\ to:} \\ \mathsf{K}_c = [\mathsf{CH}_3\mathsf{CO}_2\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_3] \ / \ [\mathsf{CH}_3\mathsf{C}\mathsf{O}_2\mathsf{H}] \ [\mathsf{CH}_3\mathsf{C}\mathsf{H}_2\mathsf{O}\mathsf{H}] \end{array}$

As 0.50 mol of CH_3CO_2H (aq) was used initially, and 0.16 mol remains at equilibrium then:

Moles of CH_3CO_2H (aq) that reacted = 0.50 – 0.16 = 0.34 mol

So, moles of CH_3CH_2OH (aq) that reacted = 0.34 mol

So, moles of $CH_3CO_2CH_2CH_3$ (aq) that was produced = 0.34 mol

	Initial moles	Change in moles	Moles at eqm.
ethanol	2.50	-0.34	2.16
ethanoic acid	0.50	-0.34	0.16
ethyl ethanoate	0.00	+0.34	0.34

Concentration at equilibrium = moles / volume = moles / 1 dm^3 Concentration of ethanol = 2.16 mol dm⁻³ Concentration of ethanoic acid = 0.16 mol dm⁻³ Concentration of ethyl ethanoate = 0.34 mol dm⁻³

 $K_c = [CH_3CO_2CH_2CH_3] / [CH_3CO_2H] [CH_3CH_2OH] = 0.34 / (0.16 x 2.16) = 0.34 / 0.35 = 0.97 dm^3 mol^{-1}$

12. The reaction equation is:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Total moles of gas = 18 + 54 + 48 = 120 mol

The fraction of N₂ is: $x(N_2) = 18/120$ So, the partial pressure of N₂ = $p(N_2) = 200 \times (18/120) = 30$ atm The fraction of H₂ is: $x(H_2) = 54/120$ So, the partial pressure of H₂ = $p(H_2) = 200 \times (54/120) = 90$ atm The fraction of NH₃ is: $x(NH_3) = 48/120$ So, the partial pressure of NH₃ = $p(H_2) = 200 \times (48/120) = 80$ atm

 $K_p = p(NH_3)^2 / p(N_2) \times p(H_2)^3 = 80^2 / (30 \times 80^3) = 2.9 \times 10^{-4} \text{ atm}^{-2}$

13. The reaction equation is: HNO₂ (aq) + NaOH (aq) \rightleftharpoons NaNO₂ (aq) + H₂O (I)

 $pK_a \text{ of } HNO_2 = -logK_a = -log(4.5 \times 10^{-4}) = 3.35$

Moles of $HNO_2 = (40.0 \times 10^{-3}) \times 1 = 40 \times 10^{-3} \text{ mol}$ Moles of NaOH = $(20.0 \times 10^{-3}) \times 1 = 20 \times 10^{-3} \text{ mol}$ So, 50% of HNO₂ reacts to form the salt (NaNO₂) and 50% is left behind

pH = pK_a + log[salt]/[acid] = $3.35 + \log [20 \times 10^{-3}] / [20 \times 10^{-3}]$ = $3.35 + \log 1 = 3.35 + 0 = 3.35$

14. The mass of the solution is 500 g Heat capacity of solution = mass of solution x specific heat capacity of solution = 0.500 kg x 4200 J kg⁻¹ K⁻¹ = 2100 J K⁻¹ Heat capacity of copper calorimeter = mass of calorimeter x specific heat capacity of copper = 0.500 kg x 400 J kg⁻¹ K⁻¹ = 200 J K⁻¹

Increase in temperature = 2.50 °C Heat evolved = (heat capacity of solution + heat capacity of copper) x Δ T = (2100 + 200) x 2.50 = 2300 x 2.50 = 5750 J

Moles of water formed = moles of NaOH = moles of HCl Moles of water formed = $(250 \times 10^{-3}) \times 0.400 = 0.100 \text{ mol}$ Heat evolved per mole of water = 5750 / 0.100 = 57 500 J mol⁻¹ Standard enthalpy of neutralisation = $-57.5 \text{ kJ mol}^{-1}$

15. For compound A:

Moles of carbon = 71.1 / 12.0 = 5.93 mol of C Moles of nitrogen = 10.4 / 14.0 = 0.743 mol of N Moles of oxygen = 11.8 / 16.0 = 0.738 mol of O Moles of hydrogen = 6.7 / 1.01 = 6.63 mol of H

Dividing the numbers by the lowest number (0.74) gives C_8H_9NO Also, C_8H_9NO has an $M_r = (12.0 \times 8) + (1.01 \times 9) + 14.0 + 16 = 135.1 \text{ g mol}^{-1}$ Which is consistent with the given M_r

For compound B: Moles of carbon = 77.1 / 12.0 = 6.43 mol of C Moles of nitrogen = 15.1 / 14.0 = 1.08 mol of N Moles of hydrogen = 7.5 / 1.01 = 7.43 mol of H

Dividing the numbers by the lowest number (1.08) gives C_6H_7N Also, C_6H_7N has an $M_r = (12.0 \times 6) + (1.01 \times 7) + 14.0 = 93.07 \text{ g mol}^{-1}$ Which is consistent with the given M_r

Bromine water is decolourised and forms a white precipitate on reaction with aniline ($C_6H_5NH_2$) or phenol (PhOH). So, C_6H_7N is likely to be aniline, which, being an aromatic amine is basic.

Hydrolysis of A (C_8H_9NO) gives $C_6H_5NH_2$. So, A must contain the $C_6H_5NH_-$ fragment. This leaves a C_2H_3O group, likely to be $-COCH_3$, as the amide $C_6H_5NHCOCH_3$ would be hydrolysed to $C_6H_5NH_2$ (B) and CH_3CO_2H .

 $A = C_6H_5NHCOCH_3$ $B = C_6H_5NH_2$