

Enthalpy Answers

1. Given that:

$$CH_4(g) \longrightarrow C(s) + 2 H_2(g) \Delta H_r = 74.8 \text{ kJ mol}^{-1}$$

What is the ΔH_f of CH_4 (g)?

The required reaction is the reverse of formation, so as we are going in the opposite direction, it requires the opposite sign.

2. Calculate the ΔH_f of methane (CH₄ (g)), using the following ΔH_C data:

$$CH_4(g) = -882 \text{ kJ mol}^{-1}$$
; $C(s) = -394 \text{ kJ mol}^{-1}$; $H_2(g) = -286 \text{ kJ mol}^{-1}$

Construct a Hess's Law cycle:

$$C (s) + 2 H_2 (g)$$
 $CH_4 (g)$ $CH_4 (g)$ $CO_2 (g) + 2 O_2 (g)$

We want ΔH_f which is the reaction going across the top (blue arrow). To get there we go down the black arrow and back up the orange arrow. We travel in the direction of the black arrow, but in the opposite direction for the orange arrow.

So, we get:
$$C(s) + 2 H_2(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(l)$$

 $- CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(l)$
 $= (-394 + 2 \times (-286)) - (-882) \text{ kJ mol}^{-1}$
 $= -84 \text{ kJ mol}^{-1}$

3. Calculate the ΔH_c of propane (C₃H₈ (g)), given the following:

$$C_3H_8$$
 (g) = -104 kJ mol⁻¹; CO_2 (g) = -394 kJ mol⁻¹;

$$H_2O(I) \Delta H_f = -286 \text{ kJ mol}^{-1}$$

Construct a Hess's Law cycle:

$$C_3H_8(g) + 5 O_2(g)$$
 3 $CO_2(g) + 4 H_2O(l)$ + 5 $O_2(g)$ 3 $C(s) + 4 H_2(g)$

We want ΔH_C which is the reaction going across the top (blue arrow). To get there we go down the black arrow and back up the orange arrow. We travel in the direction of the orange arrow, but in the opposite direction for the black arrow.

So, we get:
$$-3 \text{ C (s)} + 4 \text{ H}_2 \text{ (g)} \longrightarrow \text{ C}_3\text{H}_8 \text{ (g)}$$

+ $3 \text{ C (s)} + 4 \text{ H}_2 \text{ (g)} + 5 \text{ O}_2 \text{ (g)} \longrightarrow 3 \text{ CO}_2 \text{ (g)} + 4 \text{ H}_2\text{O (l)}$
= $-(-104) + 3 \times (-394) + 4 \times (-286)) \text{ kJ mol}^{-1}$
= $-2222 \text{ kJ mol}^{-1}$

4. Calculate the ΔH_f of ethanol (C₂H₅OH (I)), given the following:

$$\Delta H_{\rm C}$$
 of C₂H₅OH (I) = -1371 kJ mol⁻¹
C (s) = -394 kJ mol⁻¹
H₂(g) = -286 kJ mol⁻¹

Construct a Hess's Law cycle:

$$2 \text{ C (s)} + 3 \text{ H}_2 \text{ (g)}$$
 $+ 3 \text{ O}_2 \text{ (g)}$
 $+ 3 \text{ O}_2 \text{ (g)}$
 $+ 3 \text{ H}_2 \text{ O (I)}$

We want ΔH_f which is the reaction going across the top (blue arrow). To get there we need to go down the black arrow and back up the orange arrow. We travel in the direction of the black arrow, but in the opposite direction for the orange arrow.

So, we get:
$$2 \text{ C (s)} + 3 \text{ H}_2 \text{ (g)} + 3 \text{ O}_2 \text{ (g)} \longrightarrow 2 \text{ CO}_2 \text{ (g)} + 3 \text{ H}_2 \text{O (l)}$$

$$- C_2H_5OH (g) + 3 O_2 (g)$$
 \longrightarrow 2 CO₂ (g) + 3 H₂O (l)
= (2 x (-394) + 3 x (-286)) - (-1371) kJ mol⁻¹
= -275 kJ mol⁻¹

5. Given the bond enthalpies:

$$C-C = 348 \text{ kJ mol}^{-1}$$
; $C-H = 412 \text{ kJ mol}^{-1}$; $O=O = 496 \text{ kJ mol}^{-1}$; $C-O = 336 \text{ kJ mol}^{-1}$; $C=O = 743 \text{ kJ mol}^{-1}$; $O-H = 463 \text{ kJ mol}^{-1}$

Find the ΔH_r of the following reaction:

$$CH_3COOH(I) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 2 H_2O(I)$$

For this question we need to take a different approach. The ΔH_r will be equal to the total number of bonds broken minus the total number of bonds made (as breaking bonds requires energy and making bonds gives out energy).

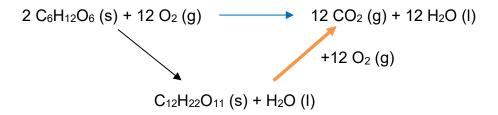
Bonds made
4 C=O
4 O–H

A C=O and an O–H bond are both made and broken, thus cancelling each other out, so we get:

Bonds broken		Bonds ma	<u>ade</u>
3 C-H	3 x (412)	3 C=O	3 x (743)
1 C-O	336	3 O–H	3 x (463)
1 C-C	348		
3 O=O	3 x (496)		

Total broken = 3408 Total made = 3618

Bonds broken – Bonds made = $3408 - 3618 = -210 \text{ kJ mol}^{-1}$


6. Given the following:

 ΔH_C of maltose (C₁₂H₂₂O₁₁ (s)) = -5670 kJ mol⁻¹

Calculate the ΔH_C of glucose (C₆H₁₂O₆ (s)):

$$2 C_6 H_{12} O_6 (s) \longrightarrow C_{12} H_{22} O_{11} (s) + H_2 O (l) \Delta H_r = +54 \text{ kJ mol}^{-1}$$

Construct a Hess's Law cycle:

We want ΔH_C which is the reaction going across the top (blue arrow). To get there we go down the black arrow and back up the orange arrow. We travel in the direction of both arrows.

So, we get:
$$2 C_6H_{12}O_6$$
 (s) \longrightarrow $C_{12}H_{22}O_{11}$ (s) + H_2O (I) $+ C_{12}H_{22}O_{11}$ (s) + H_2O (I) \longrightarrow 12 CO_2 (g) + 12 H_2O (I) $= 54 + -5670$ kJ mol⁻¹ $= 5616$ kJ mol⁻¹

But this is for

2
$$C_6H_{12}O_6$$
 (s) \longrightarrow 12 CO_2 (g) + 12 H_2O (I), and the ΔH_C of glucose ($C_6H_{12}O_6$ (s)) only requires one, so we halve this value to give -2808 kJ mol⁻¹.