Metal-Ligand and Metal-Metal Bonding

Year 2

RED

\[(n+1) \]

\[\text{p}_x \quad \text{p}_y \quad \text{p}_z \]

\[(n+1) \]

\[\text{s} \]

\[n \]

\[\text{d}_{xy} \quad \text{d}_{xz} \quad \text{d}_{yz} \quad \text{d}_{x-y}^2 \quad \text{d}_{z}^2 \]
Metal-ligand and metal-metal bonding of the transition metal elements

Synopsis

Lecture 1:
Recap of trends of the transition metals. Nomenclature (μ, η), coordination number and electron counting.

Lecture 2:
Why complexes form. 18-electron rule. Recap of molecular orbital theory. σ-donor ligands (hydride complexes). Construction and interpretation of octahedral ML_6 molecular orbital energy diagram

Lecture 3:
π–acceptor ligands, synergic bonding, CO, CN$^-$, N$_2$,

Lecture 4:
Alkenes and alkynes. Dewar-Duncanson-Chatt model.

Lecture 5:
$M(H_2)$ vs $M(H)_2$, $M_n(O_2)$ complexes, O$_2$, NO, PR$_3$.

Lecture 6:
π–donor ligands, metal-ligand multiple bonds, O$^{2-}$, R$_2$N$^-$, RN$^{2-}$, N$_3^-$. Electron counting revisited.

Lecture 7:
ML$_6$ molecular orbital energy diagrams incorporating π–acceptor and π–donor ligands. Relationship to spectrochemical series, and the trans-effect.

Lecture 8:
Bridging ligands, Metal-Metal bonds, δ-bonding.
Learning Objectives: by the end of the course you should be able to

i) use common nomenclature in transition metal chemistry.
ii) count valence electrons and determine metal oxidation state in transition metal complexes.
iii) Understand the physical basis of the 18-electron rule.
iv) appreciate the synergic nature of bonding in metal carbonyl complexes.
v) understand the relationship between CO, the ‘classic’ π-acceptor and related ligands such as NO, CN, and N₂.
vi) describe the Dewar-Duncanson –Chatt model for metal-alkene and metal-alkyne bonding.
vii) describe the nature of the interaction between π²-bound diatomic molecules (H₂, O₂) and their relationship to π-acceptor ligands.
ix) describe how H₂ (and O₂) can react with metal complexes to generate metal hydrides and oxides.
xi) describe the difference between π-acceptor and π-donor ligands, and why exceptions to the 18-electron rule occur mainly for the latter.
xii) qualitatively describe metal-ligand multiple bonding
xiii) understand the origin of the spectrochemical series.
xiv) calculate bond orders in metal-metal bonding species, and understand the strengths and limitations of the bond order concept.
xv) describe metal-ligand and metal-metal bonding using molecular orbital energy diagrams.

Bibliography:

Shriver and Atkins “Inorganic Chemistry” Ch 8, 9,16.
Cotton, Wilkinson, Murillo and Bochmann “Advanced Inorganic Chemistry” Ch 11, 16
Owen and Brooker “A Guide to Modern Inorganic Chemistry”
Mayer and Nugent “Metal-Ligand Multiple Bonds"

Further reading

O₂ Chem. Rev. 1994, 3 (various articles)

Associated Courses

AKDK Transition metal chemistry 1st year
JML Structure and bonding 1st year
CED Atomic structure 1st year
DWB Group theory 2nd year
AKDK Coordination chemistry 2nd year
SBD Organometallic chemistry 2nd year
JML Main group chemistry 2nd year
DWB Physical methods for structure determination 2nd year
TJD Processes at solid surfaces 3rd year
RNP Photochemistry and UV spectra 3rd year
PHW Bioinorganic chemistry 3rd year
RED Inorganic materials chemistry 3rd year
PHW f-block chemistry 3rd year
PAOB Asymmetric synthesis 3rd year
IJSF Metal mediated synthesis 3rd year
Catalysis option module
Why is metal ligand bonding important?

Catalysts – e.g. polymers, pharmaceuticals, bulk chemicals

![TiClCl][[(\eta^5 - C_5H_5)2TiCl2](Rh H)Ph3P PPh3]

Alkene polymerisation precatalyst

Hydrogenation precatalyst

Biochemistry – e.g. oxygen transport, photosynthesis, enzymes, medicines, poisons

!Fe protein

Oxygen binding

‘Organic’ chemistry methodology – e.g. M(CO)₃ arenes, Pd catalysed C-X (X = C, N, S, O) bond formation, metathesis.
This course is primarily concerned with the transition metals (‘d-block’ metals).

Recap

Important trends:

1. **Radius (Covalent/ionic):** Increases from right to left and down a group.

2. **Electropositivity:** Electropositive character increases from right to left and down a group.

The trends observed in 1 and 2 are a result of the effective nuclear charge (Z_{eff}) that is a consequence of *shielding* and *penetration*. $s > p > d > f$

The relatively very poor shielding of an electron in an f-orbital results in a steady decrease in the radii of the lanthanides (approximately 25%). This is known as the lanthanide contraction. With respect to the transition metals the result is that the radii of the 2$^{\text{nd}}$ and 3$^{\text{rd}}$ row transition metals are very similar. E.g. Co(III) (0.55), Rh(III) (0.67), Ir(III) (0.68). This has repercussions in metal-ligand bonding and hence chemical properties. In general when descending a group the 1$^{\text{st}}$ row transition metal is distinct in terms of its bonding and properties from the 2$^{\text{nd}}$ and 3$^{\text{rd}}$ row metals.

3. **Variety in oxidation state:** Earlier metals (group 4 to 7) exhibit the greatest variety in oxidation state. Higher oxidation states more commonly observed for 2$^{\text{nd}}$ and 3$^{\text{rd}}$ row metals.

 e.g. Fe(III), Ru(VIII), Os (VIII).

Ionic vs covalent bonding

The 3d orbitals in the first row metals are not as diffuse as the 2$^{\text{nd}}$ and 3$^{\text{rd}}$ row 4d and 5d orbitals. This leads to a larger ionic component in the bonding of first row metal complexes. However in many cases the bonding in 3d metals can be described using covalent theories such as molecular orbital theory.

Compare this to the 4f orbitals of the lanthanides that are essentially core orbitals and cannot participate significantly in covalent bonding. The bonding in lanthanide complexes can be considered almost totally ionic and they are often considered to be more similar to the alkaline earth metals than the transition metals.
Nomenclature and electron counting

η – **hapticity** – the number of atoms of a ligand attached to a metal.

\[\eta^1 - \text{O}_2 \]
\[\eta^2 - \text{O}_2 \]
\[\eta^6 - \text{C}_6\text{H}_6 \]

μ – The number of metal atoms bridged by a ligand

\[\mu^2 - \text{CO} \]
\[\mu^3 - \text{CO} \]

e.g.

\[\eta^2, \mu^2 - \text{O}_2 \]
\[\eta^1 - \text{O}_2 \]
\[\mu^2 - \text{O}_2 \]
\[\eta^1 \text{ taken as default} \]
Metal oxidation state

Oxidation state = Charge on the complex - Sum of the charges of the ligands

Examples of formal charges on some ligands

<table>
<thead>
<tr>
<th>Charge</th>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>NO (linear)</td>
</tr>
<tr>
<td>0</td>
<td>CO, NR₃, PR₃, N₂, O₂, H₂, C₂H₄, H₂O, RCN, C₆H₆</td>
</tr>
<tr>
<td>-1</td>
<td>H, CH₃, F, Cl, Br, I, C₅H₅, CN, NO₂, NR₂, NO (bent)</td>
</tr>
<tr>
<td>-2</td>
<td>O, S, CO₃, NR, porphyrin</td>
</tr>
<tr>
<td>-3</td>
<td>N, P</td>
</tr>
</tbody>
</table>

Examples of formal charges on some ligands

\[\text{e.g. }
\begin{align*}
\text{Ti(CH}_3\text{)}_4 & : 0 - (4 \times -1) = +4 \text{ Ti(IV)} \\
[\text{CoCl}_6]^{3-} & : -3 - (6 \times -1) = +3 \text{ Co(III)} \\
[\text{Co(NH}_3\text{)}_6]^{3+} & : +3 - (6 \times 0) = +3 \text{ Co(III)}
\end{align*}
\]

Ignoring NO the charge (n-) can be determined by adding H⁺ until a neutral molecule is obtained

\[L^{n-} + n H^+ \rightarrow H_nL \]

\[\text{e.g. }
\begin{align*}
\text{Cl}^{n-} + n H^+ & \rightarrow HCl \quad n=1 \\
\text{CH}_3^{n-} + n H^+ & \rightarrow \text{HCH}_3(\text{CH}_4) \quad n=1 \\
\text{NR}^{n-} + n H^+ & \rightarrow \text{H}_2\text{NR} \quad n=2 \\
\text{CO} + n H^+ & \rightarrow \text{CO} \quad n=0 \\
\text{PPh}_3^{n-} + n H^+ & \rightarrow \text{PPh}_3 \quad n=0 \\
\text{RC(O)}^{n-} + n H^+ & \rightarrow \text{RC(O)H} \quad n=1
\end{align*}
\]

Electroneutrality principle

The electronic structure of substances is such to cause each atom to have essentially zero resultant charge. No atom will have an actual charge greater than ± 1. i.e. the formal charge is not the actual charge distribution.
e.g. Photoelectron spectroscopy (PES) is a technique that allows the experimental determination of orbital energies.

\[
\begin{array}{c}
\text{Ir(V)} \quad \text{Ir(III)} \quad \text{Ir(I)}
\end{array}
\]

PES shows that all three iridium complexes have similar d-orbital energies indicating that the formal oxidation state is not the actual charge on the metal.

\[
d\text{-electron count} = \text{group number} - \text{oxidation state}
\]

Electron Counting

\[
\begin{align*}
\text{Total Valence Electron Count} &= d\text{-electron count} + \text{electrons donated by the ligands} + \text{number of metal-metal bonds} \\
&\text{(ignore overall charge on complex)}
\end{align*}
\]

There are two methods that are commonly used and it is very important to avoid confusion.

\[
\begin{array}{c}
\text{M-L} \quad \rightarrow \quad \text{M}^- + \text{L}^- \quad \text{neutral (or radical) formalism}
\end{array}
\]

\[
\begin{array}{c}
\text{M-L} \quad \rightarrow \quad \text{M}^+ + \text{L}^- \quad \text{ionic formalism}
\end{array}
\]

To avoid confusion we will use the ionic formalism to determine the total number of valence electrons (electron count). However for some ligands O\textsubscript{2}, NO and organometallics (carbenes, carbynes) the neutral formalism is more appropriate.

Number of electrons donated by each ligand (using ionic formalism)

\[
\begin{align*}
2e & \text{ CO, RCN, NR}_3 \text{ (amines), PR}_3 \text{ (phosphines), N}_2, \text{ O}_2, \text{ C}_2\text{R}_4 \text{ (alkenes), H}_2\text{O, H}^-, \text{ CH}_3^- \text{ (or any alkyl or aryl group, R), F}^-, \text{ Cl}^-, \text{ Br}^-, \text{ I}^-, \text{ CN}^-, \text{NR}_2^- \text{ (bent), (}\eta^1\text{-C}_5\text{H}_5\text{)}^- \\
4e & \text{ R}_2\text{PCH}_2\text{CH}_2\text{PR}_2 \text{ (bis-phosphines), }\eta^4\text{-dienes, NR}_2^- \text{ (linear), (CH}_3\text{CO}_2^-\text{), NR}_2^2\text{ (bent), O}^2- \text{ (double bond), S}^2- \\
6e & \text{ (}\eta^5\text{-C}_5\text{H}_5\text{)}^-, \eta^6\text{-C}_6\text{H}_6, \text{ NR}_2^2\text{ (linear), O}^2\text{ (triple bond), N}^3-, \text{ P}^3-
\end{align*}
\]
Metal-metal bonds

Single bond counts 1 per metal
Double bond counts 2
Triple bond counts 3
Quadruple bond counts 4
Metal – metal bonding is more common for 2nd and 3rd row metals than for 1st row.

e.g.

\[
\text{Cr(CO)}_6 : 6 + (6 \times 2) = 18 \\
[\text{Co(NH}_3\text{)}_6^{3+} : 6 + (6 \times 2) = 18 \\
[\text{CoCl}_6]^{3-} : 6 + (6 \times 2) = 18 \\
\text{PtBr}_2(\text{PPh}_3)_2 : 8 + (2 \times 2) + (2 \times 2) = 16
\]

Coordination number	metal oxidation state	d-electron count	total valence electrons
\text{Cr(CO)}_6 | 6 | 0 | 6 | 18
\text{[Co(NH}_3\text{)}_6^{3+} | 6 | III | 6 | 18
\text{[CoCl}_6]^{3-} | 6 | III | 6 | 18
\text{PtBr}_2(\text{PPh}_3)_2 | 4 | II | 8 | 16
\text{Rh(CO)(H)(PPh}_3\text{)}_3 | 5 | I | 8 | 18
\text{TiCl}_4 | 4 | IV | 0 | 8
\text{Cr(\eta}^5\text{-C}_8\text{H}_8\text{)}_2 | 6 | 0 | 6 | 18
\text{Fe(\eta}^5\text{-C}_5\text{H}_5\text{)}_2 | 6 | II | 6 | 18
\text{[ReOCl}_5\text{]}^- | 6 | VI | 1 | 15 (17)
Why complexes form
(Thermodynamic stability of transition metal complexes)

1. The number and strength of metal-ligand bonds.
The greater the number of ligands, and the stronger the bonds, the greater the thermodynamic stability of the resulting complex. i.e. in general the more ligands the better. Larger metals can accommodate more ligands. In general coordination numbers are greater for the earlier transition metals (groups 4 – 7) compared to the later ones. Coordination numbers for lanthanide complexes are generally higher than for transition metals. d^8 square planar complexes are stable because 4 strong bonds are collectively stronger than 6 bonds that would be collectively weaker for this electron configuration.

2. Steric factors.
The number of ligands is limited by ligand – ligand repulsion. The size of metals and common ligands leads to transition metals generally accommodating a maximum of six ligands hence the vast number of 6 coordinate transition metal complexes. For similar reasons there are many 9 coordinate lanthanide complexes.

3. The charge on the complex.
Large positive and negative charges cannot easily be supported. Continually removing electrons from a complex will result in increasingly large ionisation energies, and increasing the number of electrons will lead to large electron-electron repulsive forces.

4. The electronic configuration.
Crystal field stabilisation energy, Jahn-Teller distortion.

Note that crystal field stabilisation energy (CFSE) contributes only approximately 10% to the overall thermodynamic stability.
Recap of molecular orbital theory

a) Orbitals must be of appropriate symmetry
b) Orbitals must overlap
c) Orbitals should be of similar energy
b) and c) determine the energy of the interaction. The interaction energy is stronger for orbitals that have good overlap and are close in energy.

When the MOs are made up of 2 component orbitals of different energies

The bonding orbital looks more like the lower energy component
The antibonding orbital looks more like the higher energy component

Electronic configuration: Transition metal valence orbitals and the 18 electron rule

Valence shell of transition metals nd + (n+1)s + (n+1)p orbitals (where n = 3-5). 5 + 1 + 3 = 9 orbitals. Two electrons per orbital = 18 electrons.
(Just a restatement of the Lewis octet rule with extra 10 d-electrons)

For Methane

For Methane
For a transition metal complex

For many complexes an electronic configuration of 18 valence electrons is the most thermodynamically stable, especially for diamagnetic organometallic complexes, however as noted earlier the electronic configuration is only one factor that contributes to the overall thermodynamic stability of a complex. There are many important exceptions to the 18 electron rule including:

- 1st row coordination complexes where the bonding is predominantly ionic.
- square planar d⁸ complexes (16 e⁻).
- early metal complexes with π-donor ligands.
- paramagnetic complexes.
Ligand classification

Metal-ligand bonding can be divided into three basic classes

1. **σ-donor**
e.g. H, CH$_3$ (or any alkyl or aryl group, R), H$_2$O, NH$_3$, NR$_2$ (bent)

2. **σ-donor, π-acceptor** (sometimes referred to as ‘π-acceptors’ or ‘π-acids’)
e.g. CO, CN, NO, H$_2$, C$_2$H$_4$, N$_2$, O$_2$, PR$_3$, BR$_2$

3. **σ-donor, π-donor** (sometimes referred to as ‘π-donors’)
e.g. F, Cl, Br, I, O, OR, S, SR, N, NR$_2$(linear), NR (bent and linear), P, η3-C$_3$H$_5$, η5-C$_5$H$_5$, η6-C$_6$H$_6$

In terms of bond strength the σ-bond is much more important than π-bonding (donor or acceptor)

1. **σ-donor**
In these compounds the bond between the ligand and metal is a σ-bond. A good example of a σ-donor is hydride (H$^-$). Some examples of transition metal hydrides are given below. Metal hydrides play a very important role in many catalytic reactions including hydrogenation and hydroformylation.

Characterisation of metal hydrides
IR: $ν$(M-H)~1750 cm$^{-1}$ NMR: Hydride resonance at high field ($δ < 0$ ppm) Neutron diffraction needed to locate hydrogen nuclei.
Molecular orbital diagram of a ML₆ complex (where L is a σ-donor ligand)

Note that there are no linear combinations of ligand orbitals that have t₂g symmetry. Therefore the t₂g orbitals are non-bonding and completely metal based. The 2e₉ orbitals are σ* and have ligand character but are approximately 80% metal based (remember the antibonding orbital is mainly of higher energy starting orbital character). When we talk about splitting of metal ‘d-orbitals’ in crystal field theory we are ignoring the ligand character that is present in some of the ‘d-orbitals’, however it is still a good first approximation and the relative energies between d-orbitals are correct. We will see that when we include π-acceptors and π-donors that the t₂g orbitals are no longer pure metal orbitals but also contain some ligand character.
Notes on molecular orbital diagrams

1. The total number of molecular orbitals should be the sum of the number of precursor orbitals.

2. Only orbitals of the same symmetry can interact and the resulting molecular orbitals will have the same symmetry as the precursor orbitals

3. Where do the a_{1g}, e_g, t_{1u} linear combinations of atomic orbitals come from?
 Using group theory it is possible to determine the symmetry of the orbitals involved.
 i) determine the point group of the molecule (in this case O_h).
 ii) treat the ligand orbitals (in this case σ) as a single entity and apply each symmetry element of the point group noting how many of the individual orbitals move under each operation. This is the reducible representation.
 iii) determine which characters sum to the reducible representation thus obtaining the irreducible representation. (in this case for the octahedral array of σ-H orbitals it will be $a_{1g} + e_g + t_{1u}$).
 iv) repeat for the 3 x p and 5 x d orbitals (the 1 x s can be read off directly as having a_{1g} symmetry) or alternatively look at the right hand portion of the group table and read off the orbital symmetries.
 v) apply projection operators to determine the linear combinations of orbitals

4. The origin of symmetry labels $n x y z$
 Apart from being characters in group tables the labels can be used to describe the symmetry of orbitals.
 $n =$ orbitals of the same symmetry are numbered successively in order of increasing energy
 $x = a$ if singly degenerate and symmetrical to C_{2n} rotation about the principle rotation axis
 $x = b$ if singly degenerate and unsymmetrical to C_{2n} rotation about the principle rotation axis
 $x = e$ if doubly degenerate
 $x = t$ if triply degenerate
 $y = 1$ if symmetrical to reflection through a reference mirror plane
 $y = 2$ if unsymmetrical to reflection through a reference mirror plane
 $z =$ 'nothing' if there is no inversion centre
 $z = g$ if symmetrical to inversion
 $z = u$ if unsymmetrical to inversion

5. What group theory cannot tell us.
 i) What the orbitals look like
 i) The energy of the orbitals and the magnitude of the precursor orbitals interaction
Recap of crystal field splitting diagrams

By considering the repulsive interactions between electrons it is possible to qualitatively determine the ordering of metal d-orbitals. Crystal field theory is a purely electrostatic approach. Here the d-orbitals are pure. Compare the diagram below and ‘d-orbitals’ of MO diagram above for octahedral complexes.
σ-donor, π-acceptor (‘π-acceptors’ or ‘π-acids’)*

These include: CO, CN, NO(linear), H₂, C₂H₄, N₂, O₂, PR₃, CR₂

We can view the metal-ligand bonding as a σ-donor interaction (same as for H) with an additional π-interaction that arises from overlap between metal-based orbitals and empty orbitals on the ligand that can accept electron density.

Metal complexes of CO are a good example.

e.g. Some of the binary metal carbonyls

<table>
<thead>
<tr>
<th>Group</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(CO)₆</td>
<td>Cr(CO)₆</td>
<td>Mn₂(CO)₁₀</td>
<td>Fe(CO)₅</td>
<td>Co₂(CO)₉</td>
<td>Ni(CO)₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe₂(CO)₉</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo(CO)₆</td>
<td>Tc₂(CO)₁₀</td>
<td>Ru(CO)₅</td>
<td>Ru₂(CO)₉</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rh₂(CO)₈</td>
<td></td>
</tr>
<tr>
<td>W(CO)₆</td>
<td>Re₂(CO)₁₀</td>
<td>Os(CO)₅</td>
<td>Os₂(CO)₉</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ir₂(CO)₈</td>
</tr>
</tbody>
</table>

Some structures

![Metal carbonyl structures]

Note: Beware the formulation of complexes containing 3centre-2electron bonds such as those with bridging carbonyls. Many structures in text books and papers incorrectly include metal-metal bonds when none are present (see Chem. Commun., 2012, 48, 11481).
HOMO 5σ orbital is slightly bonding (or non-bonding) and has significant C 2s character. This is why CO bonds to a metal as a σ-donor through the C atom and not the O atom (better overlap).

In can be seen that the 2 x 2π LUMO orbitals (antibonding) are empty. It is these orbitals that can interact with metal d-orbitals accepting electron density.
The σ-donor interaction increases the electron density on the metal and decreases the electron density on the CO ligand. The π-acceptor interaction decreases the electron density on the metal and increases the electron density on the CO ligand. Both effects ‘reinforce’ each other. Sometimes referred to as synergic bonding.

π-acceptor ligands such as CO can relieve negative charge build-up at a metal centre.

E.g. stabilise complexes with metals in a low formal oxidation state.

Experimental evidence for bonding model

IR and Raman spectroscopy and single crystal X-ray diffraction.

Characterisation of metal carboxyls

$$\text{Cr-C} = 195.5 \text{ pm}$$
$$\text{C-O} = 114.0 \text{ pm}$$
$$\nu(\text{C-O}) = 1984 \text{ cm}^{-1}$$

Trends in ν(CO)

<table>
<thead>
<tr>
<th></th>
<th>ν(CO) cm$^{-1}$ (T$_{1u}$)</th>
<th>ν(CO) cm$^{-1}$</th>
<th>ν(CO) cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) isoelectronic series</td>
<td>Mn(CO)$_6^+$ 2094 Mo(CO)$_6$ 1987 Ni(CO)(PF$_3$)$_3$ 2073 Cr(CO)$_6$ 1984 Mo(CO)$_5$ 1966 Ni(CO)(PCl$_3$)$_3$ 2059 V(CO)$_5^-$ 1845 Mo(CO)$_4$ 1944, 1887 Ni(CO)(PMe$_3$)$_3$ 1923 Ti(CO)$_6^{2-}$ 1750 Mo(CO)$_3$ 1862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) as CO ligands are lost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) as other ligands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) coordination mode</td>
<td>Free</td>
<td>Terminal</td>
<td>μ_2-CO</td>
</tr>
<tr>
<td></td>
<td>$\nu_{CO} (\text{cm}^{-1})$ = 2143</td>
<td>1850-2120</td>
<td>1750-1850</td>
</tr>
</tbody>
</table>

Always think in terms of CO ligands competing for whatever electrons are available on the metal!
Non-classical carbonyls

<table>
<thead>
<tr>
<th></th>
<th>ν(CO)/cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(CO)₄²⁺</td>
<td>2248</td>
</tr>
<tr>
<td>Pt(CO)₄²⁺</td>
<td>2244</td>
</tr>
<tr>
<td>Ag(CO)₂⁺</td>
<td>2200</td>
</tr>
<tr>
<td>Au(CO)₂⁺</td>
<td>2217</td>
</tr>
<tr>
<td>Hg(CO)₂²⁺</td>
<td>2278</td>
</tr>
</tbody>
</table>

In these complexes electron density is not transferred from the metal to the ligand \(\pi\)-accepting orbitals. The major interaction is \(\sigma\)-donation from the CO \(5\sigma\) orbital to the metal giving weak M-CO bonding. The CO stretching frequency is > free CO mainly due to electrostatic perturbation. (see JACS 1996, 118, 12159)

Similar \(\pi\)-acceptor ligands

Other ligands that are expected to exhibit very similar bonding to CO are the isoelectronic ligands CN⁻ and NO⁺. (We will see later that NO can also coordinate in an alternative terminal mode). \(\text{N}_2\) is also isoelectronic with CO.

MO diagram of \(\text{N}_2\)

Compare HOMO \(5\sigma\) (\(\sigma^*\)) of CO and HOMO \(3\sigma_g\) (\(\sigma\)) of \(\text{N}_2\). Coordination of \(\text{N}_2\) decreases N-N bond strength. \(\text{N}_2\) can act as a \(\pi\)-acceptor using LUMO \(1\pi_u\) same as for CO.
Very few metal complexes of N\textsubscript{2} compared to CO. Another reason is that the energy difference between metal d-orbitals and the 3\(\sigma_g\) orbital of N\textsubscript{2} is greater than that for metal d-orbitals and the 5\(\sigma\) orbital of CO. (remember the closer in energy the precursor orbitals are, the stronger the bond). Therefore M-N\textsubscript{2} \(\sigma\)-bonds are weaker than M-CO \(\sigma\)-bonds. For similar reasons N\textsubscript{2} is also a poorer \(\pi\)-acceptor ligand than CO.

Other \(\pi\)-accepting ligands

Important examples include O\textsubscript{2}, H\textsubscript{2}, PR\textsubscript{3} and alkenes.

Complexes of dioxygen

![MO diagram of O\textsubscript{2}](attachment:MO_diagram_O2.png)

\(\eta^1\) vs \(\eta^2\) bonding in O\textsubscript{2} complexes
Characterisation – what is the oxidation state of O_2?

In any given complex, all we know for sure is that the O_2 molecule is bonded to the metal. Neutral dioxygen, superoxide (O_2^-) and peroxide (O_2^{2-}) are all well known forms of the 'O$_2$' unit, so any given complex could be {M-O$_2$}, {M$^+$-O$_2^-$} or {M$^{2+}$-O$_2^{2-}$}.

η^1 - bonding (more difficult)

η^2 - bonding

$M + O_2$

$M + O_2$ or $M^{2+} + O_2^{2-}$ electron transfer first $1\pi_{g\cap}$ now full.

(no back-donation as ‘accepting’ orbitals are full)

O$_2$ is very oxidising. Think of as electron transfer followed by binding of O_2^{2-} to M^{2+}. Theory suggests this may be best option.

$M + O_2$

$3\sigma_u(\sigma^*)$

$1\pi_g(\pi^*)$

$1\pi_u(\pi)$

$3\sigma_g(\sigma)$

O_2 O_2^- O_2^{2-}
Comparison of MO diagrams of dioxygen, superoxide, and peroxide

Vibrational frequencies and O-O bond lengths

<table>
<thead>
<tr>
<th></th>
<th>r(O-O) / pm</th>
<th>ν(O-O) / cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂⁺(AsF₆⁻)</td>
<td>122</td>
<td>1858</td>
</tr>
<tr>
<td>O₂</td>
<td>121</td>
<td>1555</td>
</tr>
<tr>
<td>O₂⁻(K⁺)</td>
<td>133</td>
<td>1146</td>
</tr>
<tr>
<td>O₂²⁻(Na⁺)₂</td>
<td>149</td>
<td>842</td>
</tr>
<tr>
<td>η¹-O₂</td>
<td>115-130</td>
<td>1130-1195</td>
</tr>
<tr>
<td>η²-O₂</td>
<td>130-152</td>
<td>800-930</td>
</tr>
</tbody>
</table>

As the electron density in the π* orbitals increases the O-O distance increases and the vibrational frequency decreases.

What happens if the σ* (3σ_u) orbital becomes occupied?

The Ta complex is reducing and has two electrons in a high-energy orbital HOMO. The Ta complexes have orbitals of the correct symmetry and can donate 4 electrons to a molecule of O₂ occupying 1π_g and 3σ_u of O₂ causing cleavage of the O-O bond.

Why is η¹-O₂ bent when CO is linear?

Simply because O₂ has to accommodate an extra pair of electrons in the 1π_g (π*) orbital. These occupy 1πgx (to form the σ-bond through one lobe of the 1πgx orbital) leaving 1πgy to form a π-acceptor interaction.
NO revisited

NO typically adopts one of two terminal coordination modes (bent and linear)

Characterisation

<table>
<thead>
<tr>
<th>Compound</th>
<th>M-N-O angle/°</th>
<th>v(N-O)/cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(CN)₅(NO)²⁻</td>
<td>178</td>
<td>1935</td>
</tr>
<tr>
<td>Mn(CN)₅(NO)³⁻</td>
<td>174</td>
<td>1700</td>
</tr>
<tr>
<td>Co(NH₃)₅(NO)²⁺</td>
<td>119</td>
<td>1610</td>
</tr>
<tr>
<td>CoCl(en)₂(NO)⁺</td>
<td>124</td>
<td>1611</td>
</tr>
</tbody>
</table>

How many electrons does NO donate?

Linear:

i) 1 electron goes from NO to the metal, giving NO⁺ + M⁻.
ii) NO⁺ is then isolectronic with CO, and donates 2 electrons from NO to metal

2+1 = 3, so NO is a 3-electron donor.

Bent:

i) 1 electron goes from metal to NO, giving NO⁻ + M⁺.
ii) NO⁻ is then isolectronic with O₂, and donates 2 electrons from NO to metal

-1 + 2 = 1, so NO is a 1-electron donor

Strategy for determining bent or linear, electron count and oxidation state:

1) Remove NO (neutral) from complex and calculate electron count and oxidation state of remaining fragment.
2) Add 1 or 3 electrons per NO to increase electron count to 18 (or as close as possible without exceeding 18). You now have the total electron count at the metal and the M-NO geometry.
3) Determine the metal oxidation state of the complex including the NO ligand(s) and consider linear NO to be NO⁺ and bent NO to be NO⁻.

E.g.

<table>
<thead>
<tr>
<th>Compound</th>
<th>total valence electrons</th>
<th>metal oxidation state</th>
<th>d-electron count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(CO)₄(NO)</td>
<td>18</td>
<td>-I</td>
<td>8</td>
</tr>
<tr>
<td>Co(NH₃)₅(NO)²⁺</td>
<td>18</td>
<td>III</td>
<td>6</td>
</tr>
<tr>
<td>RuCl(NO)₂(PPh₃)₂</td>
<td>17</td>
<td>I</td>
<td>7</td>
</tr>
</tbody>
</table>
Complexes of dihydrogen (H-H = 74.1 pm in H$_2$)

Note: the σ and σ^* orbitals of H$_2$ perform the same roles as the σ and π^* orbitals in CO.

The antibonding σ^* H$_2$ orbital is of π-symmetry about an axis perpendicular to the H-H σ-bond and can interact with a metal orbital of π-symmetry.

If sufficient electron density is transferred from the metal to the σ^* orbital of H$_2$ the H-H σ–bond will break and give two M-H (metal-hydride) σ–bonds (oxidative addition).
e.g.

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \overset{\text{OC}}{\text{Rh}} \quad \overset{\text{R}}{\text{Ph}_3} + \text{H}_2 & \quad \rightarrow & \quad \text{Ph}_3\text{P} \quad \overset{\text{OC}}{\text{Rh}} \quad \overset{\text{H}}{\text{Ph}_3} \\
& \quad \text{oxidative addition} & & \text{Rh}^{\text{I}} \\
& & & \text{Rh}^{\text{III}}
\end{align*}
\]

Characterisation – Dihydrogen M(H\(_2\)) or dihydride M(H\(_2\)) complex?

<table>
<thead>
<tr>
<th>Technique</th>
<th>(\eta^2) H-H</th>
<th>dihydride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron diffraction</td>
<td>H-H~82 pm</td>
<td>H-H~160 pm</td>
</tr>
<tr>
<td>NMR</td>
<td>Low field, (J_{\text{HD}})~30Hz</td>
<td>High field, (J_{\text{HD}})~5Hz</td>
</tr>
<tr>
<td>IR</td>
<td>(\nu(\text{H-H}))~3000 cm(^{-1})</td>
<td>(\nu(\text{M-H})) v. low</td>
</tr>
<tr>
<td></td>
<td>(\nu(\text{M-H})) v. low</td>
<td>(\nu(\text{M-H}))~2150-1750 cm(^{-1})</td>
</tr>
</tbody>
</table>

Alkenes

\(\pi\)-acceptor ligands. Alkene complexes form basis of many catalytic reactions e.g. polymerisation, hydrogenation and metathesis.

Complexes of alkenes
Dynamics in alkene complexes
What determines energy barrier to rotation?
1. \(\sigma \)-bonding (dominant) interaction is not affected by rotation (no change in overlap)
2. \(\pi \)-bonding (minor) is broken, but other potential bonding orbitals at 90° to start point help lower activation energy.

PR\(_3\) complexes
PR\(_3\) can also act as \(\pi \)-acceptor ligands. In this case the orbitals are usually phosphorus \(\sigma^* \) orbitals. Complexes of PR\(_3\) ligands are very important catalysts for many reactions.
PR\(_3\) ligands can stabilise low oxidation states by \(\pi \)-acceptor interactions and high oxidation states by strong \(\sigma \)-donation.

\[
\text{P } \sigma^* \text{ orbital}
\]
\[
\text{Direction of charge transfer}
\]

Catalysis examples

Enantioselective synthesis of S-DOPA

\[
\text{Ph} = \text{NHC(O)Me} + \text{H}_2 \xrightarrow{\text{Solvent} = \text{MeOH}} \text{Ph} = \text{NHC(O)Me}
\]

S-DOPA precursor

Treatment of Parkinson's Disease

\[
\text{C}_7\text{H}_{15} = \text{linear aldehyde}
\]

Lots of bulk chemical uses, e.g. Perfumes, agrochemicals

The Rh-L bonding of Rh-CO, Rh-H\(_2\) (Rh-(H)\(_2\)), Rh-alkene, and Rh-PR\(_3\) all play an integral role in this, and many other, catalytic reactions.
σ-donor, π-donor (‘π-donors’)

Ligands that fall into this category include: F, Cl, Br, I, O, OR, S, SR, N, NR₂(linear), NR (bent and linear), P.

We can view the metal-ligand bonding as a σ-donor interaction (same as for H) with an additional π-interaction that arises from overlap between metal-based orbitals and full orbitals on the ligand that can donate electron density.

Note: there is no synergic bonding occurring here.

Metal - ligand multiple bonds

e.g.

Metal-ligand multiple bonds contain a σ-bond and one or two π-bonds.

Complexes of O and N donor ligands usually have metals in high formal oxidation states with a low d-electron count.

For π-donation to occur there must be an empty metal d-orbital to accept the electrons.
A very important ligand that exhibits multiple bonding is the oxide ligand (O\(^{2-}\))

\[
\begin{align*}
\text{O} & \quad \text{M} \\
\text{O} & \quad \text{M} \\
\text{O} & \quad \text{M} \\
\end{align*}
\]

4 electron donor (O\(^{2-}\))

\[
\begin{align*}
\text{O} & \quad \text{M} \\
\text{M} & \quad -
\end{align*}
\]

6 electron donor

Electrophilic O

Look at M-O bond lengths to determine bonding

\[
\begin{align*}
\text{Mo} & \quad \text{O} \\
\end{align*}
\]

18 e\(^{-}\)

double bond

Metal oxides are used as source of oxygen for the oxidation of organic compounds e.g. catalytic epoxidation of alkenes.

\[
\begin{align*}
\text{NaOCl} & \quad (\text{bleach}) \\
\text{O} & \quad \text{Mn} \\
\end{align*}
\]

Other common multiple bonds are the amido (NR\(_2\)), imido (NR\(^{2-}\)) and nitrido (N\(^3-\)) ligands.
Can we use N₂ as a source of nitrogen in organic chemistry?

Electron counting of π-donor complexes can be difficult. As a rule of thumb invoke as many multiple bonds as possible to get as close to (but not over) 18.

<table>
<thead>
<tr>
<th></th>
<th>total valence electrons</th>
<th>metal oxidation state</th>
<th>d-electron count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tBuO)₃WN</td>
<td>12 (18)</td>
<td>VI</td>
<td>0</td>
</tr>
<tr>
<td>(η-C₅H₅)₂V(NPh)</td>
<td>17</td>
<td>IV</td>
<td>1</td>
</tr>
<tr>
<td>ReMe₄(O)</td>
<td>13(15)</td>
<td>VI</td>
<td>1</td>
</tr>
</tbody>
</table>
What effect do \(\pi \)-acceptors and \(\pi \)-donors have on the chemistry of metal complexes?

MO diagram of \(O_h \) complex with \(\pi \)-donor ligands

Note the effect on the \(t_{2g} \) d-orbitals in comparison to the \(\sigma \)-only case. These \(t_{2g} \) orbitals have risen in energy, closer to the \(e_g \) level, resulting in a reduction of \(\Delta_{\text{oct}} \) (10 Dq).
MO diagram of O_h complex with π-acceptor ligands

Note the effect on the t_{2g} d-orbitals in comparison to the σ-only case. The t_{2g} has been lowered in energy with respect to the e_g level resulting in an increase in Δ_{oct} (10 Dq).
Summary

\[
\begin{array}{c c c}
\text{e}_g & \text{e}_g & \text{e}_g \\
\downarrow & \uparrow & \\
\text{t}_{2g} & \text{t}_{2g} & \\
\sigma-\text{only} & \pi-\text{donor} & \\
\end{array}
\]

\[\Delta_{\text{oct}}\]

\(\pi\)-acceptor \(\Delta_{\text{oct}}\) \(\pi\)-acceptor > \(\sigma\)-only > \(\pi\)-donor

\(\pi\)-donors and the 18-electron rule

\(\pi\)-acceptor ligands usually obey the 18-electron rule, those with \(\pi\)-donors do not necessarily do so.

For \(\pi\)-donor ligands the metal \(t_{2g}\) orbitals are now slightly antibonding (\(\pi^*\)) therefore it is less energetically favourable to fill them.

E.g. \(\text{CrCl}_6^{3-}\) with 15 total valence electrons is stable.

Spectrochemical series

The spectrochemical series is a list of ligands in order of increasing ligand field strength. Electrostatic model cannot account for the order.

\[
\text{CO} > \text{CN}^- > \text{PPh}_3 > \text{NH}_3 > \text{H}_2\text{O} > \text{OH}^- > \text{F}^- > \text{Cl}^- > \text{S}^{2-} > \text{Br}^- > \text{I}^- \\
\]

\(\pi\)-acceptor \(\sigma\)-only \(\pi\)-donor

Increasing \(\Delta_{\text{oct}}\)

\(\Delta_{\text{oct}}\) increases with increasing \(\pi\)-acidity of the ligands

E.g. Field strength determine spin state of metal complexes

\[
\begin{array}{c c}
[\text{CrCl}_6]^{4-} & [\text{Cr(CN)}_6]^{4-} \\
\uparrow & \\
\text{High spin} & \text{Low spin} \\
\end{array}
\]

The kinetics of ligand substitution is also affected. High spin complexes have electron density in antibonding M-L \(\sigma^*\) orbitals. Therefore the M-L bonding is weaker in comparison to low spin complexes.
Trans-effect and Trans-influence

These phenomena will be discussed in more detail later in *Coordination Chemistry*. The trans-effect and trans-influence help to rationalise the stability and substitution chemistry of transition metal complexes, particularly square planar Pd and Pt complexes.

The *trans effect* is a *kinetic* phenomenon and describes the influence of a non-labile group on the rate of substitution of a ligand *trans* to it.

\[
\begin{align*}
\text{CO, CN}^- & > \text{PPh}_3^- > \text{NO}_2^- > \text{I}^- > \text{Br}^-, \text{Cl}^- > \text{NH}_3, \text{OH}^-, \text{H}_2\text{O} \\
\text{π-acceptor} & \quad \text{π-donor} \quad \text{σ-only}
\end{align*}
\]

* e.g.

\[
\begin{align*}
\text{PtCl}_4^{2-} & \quad \text{NH}_3 & \quad \text{Cl--Pt--NH}_3 & \quad \text{Cl} \\
& \quad \text{NO}_2^- & \quad \text{Cl--Pt--NO}_2 & \quad \text{Cl} \\
(1) & & & \\
\text{PtCl}_4^{2-} & \quad \text{NO}_2^- & \quad \text{Cl--Pt--NO}_2 & \quad \text{Cl} \\
& \quad \text{NH}_3 & \quad \text{H}_3\text{N--Pt--NO}_2 & \quad \text{Cl} \\
(2) & & & \\
\text{NH}_3 & \quad \text{Cl--Pt--NH}_3 & \quad \text{Cl} & \quad \text{H}_3\text{N--Pt--NH}_3 & \quad \text{Cl} \\
(1) & & (2)
\end{align*}
\]

cis-platin \quad trans-platin

testicular cancer treatment

The order of substitution is important
Metal-metal bonding
Complexes with metal-metal bonds

Bonding in ‘Bare’ M₂ dimers (e.g. V₂)

\[(n+1)p\quad \rightarrow \quad \sigma^*\]

\[(n+1)s\quad \rightarrow \quad \pi^*\quad \delta^*\]

\[nd\quad \rightarrow \quad \pi\quad \sigma\]

e.g. V₂ configuration \(\sigma^2\pi^4\delta^4\) B.O. = 5

W₂ configuration \(\sigma^2\pi^4\delta^4(\sigma^2)\) B.O. = 6?

\(\delta\)-bonds are generally weaker than \(\pi\)-bonds due to poor overlap between precursor orbitals.

M-M bonding energy increases down a group which is in contrast to the \(p\)-block.

Note: Bond order in complexes is usually less that 5 because metal orbitals are required for the M-L bonds.
There is a competition between metal-metal and metal-ligand bonding. One orbital can't (usually) do both, so if it's involved in metal-ligand bonding, it's effectively 'factored out' of the metal-metal bond.

The δ-bond has an orientation dependence and is weak. Sterics can enforce a staggered geometry. Low activation energy to rotation.
M\(_2\)X\(_6\) and M\(_2\)X\(_9\) structures (triple bonds)

The \(d\)-orbitals other than the \(d_z^2\) are hybrids (needed for metal-ligand bonding), the predominantly \(d_xz\) orbital has some \(d_x^2-y^2\) mixed in, the \(d_yz\) orbital some \(d_xy\) and vice versa. Also due to the tilting it should be noted that the \(\pi\) and \(\pi^*\) have some \(\delta\) and \(\delta^*\) character respectively. As can be seen for \(M\(_2\)L\(_6\)\) the eclipsed conformation gives the best overlap, however most compounds of this type are in fact staggered due to steric reasons (c.f. ethane).

note: 2 \(d\) orbitals per metal are now 'factored out'
Bond order and electron counting limitations
In compounds containing bridging ligands the apparent bond order may be misleading.

e.g.

<table>
<thead>
<tr>
<th>d-orbitals</th>
<th>Configuration</th>
<th>rM-M / pm</th>
<th>Magnetism</th>
</tr>
</thead>
<tbody>
<tr>
<td>increase in size</td>
<td>(\sigma^2(\delta/\pi)^4)</td>
<td>310</td>
<td>Paramagnetic</td>
</tr>
<tr>
<td>Cr>Mo>W</td>
<td>(\sigma^2(\delta/\pi)^4)</td>
<td>253-288</td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>(\sigma^2(\delta/\pi)^4)</td>
<td>242-250</td>
<td>Diamagnetic</td>
</tr>
</tbody>
</table>

For \(\text{Cr}_2\text{Cl}_9^{3-}\) two \(\text{CrCl}_3\) fragments are held together by the three bridging chlorides. There is no direct Cr-Cr bond and hence it is paramagnetic with 6 unpaired electrons. For tungsten there is good overlap and a triple W-W bond with no unpaired electrons. For molybdenum the distance rM-M (which is determined by crystal X-ray diffraction) depends on the cation present in the crystal structure giving variable bonding and magnetism.

Also see cases for 3c-2e bonding (Chem. Commun., 2012, 48, 11481)

e.g. \(\text{Fe}_2(\text{CO})_9\) is diamagnetic and all the bridging CO molecules are equivalent. The Fe-Fe distance is within the VDW radii.
\(\text{Fe}_2(\text{CO})_9\) is often drawn as below left (including in many text books). A Fe-Fe bond is invoked to obtain 18 electrons at each Fe and a diamagnetic complex.

![Chemical structure]

But theory clearly shows there is no Fe-Fe bond (in fact there is a repulsive interaction). The total number of electrons is very easy to determine, but the problem is to represent how the electrons are assigned to ligand and metal in a drawing to make chemical sense. The above structure represents each CO as a ‘ketone’, where each Fe-C\(_{\text{bridging}}\) bond is 2c-2e due to complete \(\pi\)-back donation into a CO antibonding orbital (above right). But MO theory shows there are only sufficient orbitals to form 2 ketone-like bridging CO's. The bonding is more accurately represented below where each Fe is 18 electron without an Fe-Fe bond.

![Chemical structure]

However, this drawing does not show that all the bridging CO's are equivalent (The structure is a resonant hybrid).
Quintuple Bonds

Very recently the concept of metal-metal multiple bonds was extended by the synthesis of the Cr(I) complex shown below. The Cr-Cr distance is 184 pm, which is very short and indicative of significant multiple bonding.

Remember that the metal has 9 valence orbitals. What if the ligands formed bonds with the s or p orbitals and not just the d-orbitals? The s-orbitals are closer in energy to the d and ligand based orbitals and may be available for bonding. The p-orbitals are too high.

Simplistically, the ligand forms a bond with the Cr 4s orbitals leaving the 5 d-orbitals available for Cr-Cr bonding. The real situation is more complicated, because of orbital mixing, which also results in a trans-bent geometry and not linear, which would be expected for a pure quintuple bond.