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Background 
 
CHE Discussion Papers (DPs) began publication in 1983 as a means of making current 
research material more widely available to health economists and other potential users.  So 
as to speed up the dissemination process, papers were originally published by CHE and 
distributed by post to a worldwide readership.  
 
The new CHE Research Paper series takes over that function and provides access to current 
research output  via web-based publication, although hard copy will continue to be available 
(but subject to charge). 
 
Disclaimer 
 
Papers published in the CHE Research Paper (RP) series are intended as a contribution to 
current research. Work and ideas reported in RPs may not always represent the final position 
and as such may sometimes need to be treated as work in progress. The material and views 
expressed in RPs are solely those of the authors and should not be interpreted as 
representing the collective views of CHE research staff or their research funders. 
 
 
Further copies 
 
Copies of this paper are freely available to download from the CHE website 
www.york.ac.uk/inst/che/pubs. Access to downloaded material is provided on the 
understanding that it is intended for personal use. Copies of downloaded papers may be 
distributed to third-parties subject to the proviso that the CHE publication source is properly 
acknowledged and that such distribution is not subject to any payment. 
 
Printed copies are available on request at a charge of £5.00 per copy. Please contact the 
CHE Publications Office, email che-pub@york.ac.uk, telephone 01904 321458 for further 
details. 
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Abstract 
An inappropriate structure for a decision analytic model can potentially invalidate estimates of 
cost-effectiveness and estimates of the value of further research. However, there are often a 
number of alternative and credible structural assumptions which can be made. Although it is 
common practice to acknowledge potential limitations in model structure, there is a lack of 
clarity about methods to characterize the uncertainty surrounding alternative structural 
assumptions and their contribution to decision uncertainty.  
 
A review of decision models commissioned by the NHS Health Technology Programme was 
undertaken to identify the types of model uncertainties described in the literature. A second 
review was undertaken to identify approaches to characterise these uncertainties.  
 
The assessment of structural uncertainty has received little attention in the health economics 
literature. A common method to characterise structural uncertainty is to compute results for 
each alternative model specification, and to present alternative results as scenario analyses. 
It is then left to decision maker to assess the credibility of the alternative structures in 
interpreting the range of results.  
 
The review of methods to explicitly characterise structural uncertainty identified two methods: 
1) model averaging, where alternative models, with different specifications, are built, and their 
results averaged, using explicit prior distributions often based on expert opinion and 2) Model 
selection on the basis of prediction performance or goodness of fit. For a number of reasons 
these methods are neither appropriate nor desirable methods to characterize structural 
uncertainty in decision analytic models.   
 
When faced with a choice between multiple models, another method can be employed which 
allows structural uncertainty to be explicitly considered and does not ignore potentially 
relevant model structures. Uncertainty can be directly characterised (or parameterised) in the 
model itself.  This method is analogous to model averaging on individual or sets of model 
inputs, but also allows the value of information associated with structural uncertainties to be 
resolved. 
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1. Introduction 
 
Decision-analytic models are now established practice in formal decision-making processes.1-3  One 
of the requirements for decision-making is that uncertainty regarding the adoption decision must be 
appropriately characterised and quantified.  Uncertainty in decision analytic models presents in many 
forms.4  However, the issue of parameter uncertainty is the best researched with other types of 
uncertainty receiving less attention in the Health Technology Assessment (HTA) literature, of 
particularly structural uncertainty which remains the most illusive class of uncertainty to define. 
 
An inappropriate structure for a decision analytic model can potentially invalidate estimates of cost-
effectiveness and estimates of the value of further research.  Although it is common practice to 
acknowledge potential limitations in model structure, there is a lack of clarity about methods to 
characterize the uncertainty surrounding alternative structural assumptions and their contribution to 
decision uncertainty.  This paper reviews the ways in which structural uncertainty has been described 
in the Health Technology Assessment (HTA) literature and identifies methods that have been 
employed to characterise these types of structural uncertainties.  The results of these searches are 
presented and the potential relevance of these methods for the HTA decision-making process is 
assessed.   
 
 
2. Current perspectives for decision-making in the UK healthcare system 
 
Evidence-based medicine has been at the forefront of healthcare decision-making since the 
thalidomide scandal in the 1960s.5  There is stringent regulation on the licensing of pharmaceuticals, 
with an emphasis on evidence of efficacy and safety.  Decisions about the reimbursement of 
pharmaceuticals are increasingly informed by formal assessment of cost-effectiveness.6  
 
The increased emphasis on formal methods of evidence-based medicine5 has lead to the 
development of the guidelines industry.  Guidelines were originally intended as ‘clinical policy’ 
documents, however, they now act as much wider decision-making tools for the individual 
practitioner/patient consultation.  Guidelines, such as those produced by the National Institute for 
Health and Clinical Excellence (NICE), can also used to allocate scarce resources and act as an 
efficiency tool.7  
 
Spiralling costs and formal audit of clinical services has lead to an increased emphasis on explicit 
consideration of the budget constraints apparant in the modern UK National Health Servive (NHS).  
As part of this, NICE was established in 1999 to provide guidance on new and existing interventions.  
Since 2001 the guidance issued by NICE has been made compulsory.5, 8 
 
Within the context of informing NICE decisions, the NHS Health Technology Assessment Programme 
(HTA) commissions reports from independent assessment teams.  These assessment teams come 
from a small number of academic units and all have recognised capacity and expertise in secondary 
research.9  Because of its role in informing public policy there is a requirement for NICE assessment 
teams to employ robust methodology in the evaluation of technologies.10 
 
 
3. Requirements for the decision-making process 
 
In order to inform a decision-making process, an evaluation must address two questions; 1) is a 
technology cost-effective based on current evidence? and 2) would further research represent good 
value for money?10 
 
To address the first of these two questions, the analytical framework needs to have particular 
characteristics, specifically: 
 

• Comparison of the new technology with all relevant comparisons. For many technologies this 
should include a ‘do nothing’ strategy. 



2    CHE Research Paper 9 
 

• A consistent perspective on costs and benefits. Many have argued for a societal perspective; 
however for many decision-makers, such as NICE, a third party or payer perspective is 
adopted e.g. the NHS. 

• A clear objective function must be specified.  For NICE the objective is to maximise health 
(represented by quality-adjusted life-years (QALYs)) given the budget constraint.   

• All relevant evidence must be incorporated. 
 
The second question requires that any uncertainty regarding an adoption decision must be explicitly 
characterised.  This then provides a route to quantifying the cost of making a wrong decision and 
hence the value of acquiring additional information 
 
In many circumstances trial data alone is of limited value in meeting these requirements.11  Phase III 
trials usually compare to placebo or ‘do-nothing’ whereas cost-effectiveness can only be established 
by comparing the new intervention to all forms of current practice.  Phase III trials are also usually 
quite short and, therefore, cannot be used to measure costs and effects over an adequate time period 
without any form of extrapolation.  It is also unlikely that there is only one trial available that is relevant 
to address a given decision problem.  Where there are multiple sources of data, methods to 
synthesise this data must be employed in order to incorporate all relevant evidence.  
 
 
4. Role of decision analytic modelling in decision-making 
 
Decision analysis has previously been described as a method to “guide the decision-maker to 
compare relevant alternatives and select the most appropriate solution for the decision situation”.12  In 
the context of healthcare decision-making, decision analysis provides a statistical or mathematical 
process that brings together multiple sources of evidence on a range of parameters in order to 
quantify the costs and outcomes of all possible competing interventions.  
 
Decision analysis provides a systematic and explicit approach to decision-making under conditions of 
uncertainty.13  It is intended to assist conventional decision-making rather than replace it.  Models can 
also help to avoid subjective decisions, either about the data within the model or concerning any 
model uncertainties.14  The majority of decisions about the cost effectiveness of an intervention are 
based on uncertain information.  A decision model can explicitly represent this uncertainty and 
quantify it through the use of probabilistic sensitivity analysis (PSA).11  
 
PSA can be conducted for as many uncertain parameters as the model may contain, concurrently.15,16  
Uncertainty about a parameter is represented by a probability distribution.  The choice of distribution 
is informed by the type and shape of the data observed, for example cost data are usually 
represented by gamma distributions and probability data by beta distributions.17, 18  Markov Chain 
Monte Carlo (MCMC) simulation methods15,16 are then used to simulate the expected costs and 
outcomes of the various interventions, by sampling from the distributions that feed into the estimation.  
In this way, PSA enables uncertainty surrounding all input parameters to be propagated through the 
decision model in order that uncertainty surrounding the decision itself can be quantified.  Since 
probabilistic analysis allows the quantification of the probability of making the wrong decision, these 
results can also be used to estimate the expected costs of the uncertainty surrounding a decision 
based on current evidence.  These costs can thus be interpreted as the expected value of perfect 
information (EVPI), since having perfect information can eliminate the possibility, and hence costs, of 
making the wrong decision.19 
 
Because of the limitations of trial based analysis and the requirements of the decision-making process, 
decision analytic models are increasingly being used to guide policy decisions regarding the optimum 
allocation of health care expenditures.10  The process of decision analytic modelling is now seen as 
central to the process of HTA in general, and it plays a key role in the NICE technology appraisal 
process.10  In the period 2004-2005, 39 out of 61 NICE appraisals considered an independent 
decision analytic model (in addition to manufacturer models) as evidence to inform the decision-
making process. 
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5. Issues of uncertainty in decision analytic models 
 
Although analysts seek to develop models and incorporate data that most accurately inform the costs 
and outcomes associated with a particular disease and intervention, some degree of uncertainty is 
present in the majority of models; uncertainty about the true parameter values, the type of model used 
and the model results.  More formally the dimensions of uncertainty have been categorised as 
parameter, heterogeneity, methodological and structural.4  
 
Within health technology assessment, analysts have tended to focus almost entirely on quantifying 
and assessing the impact of parameter uncertainty.  As a consequence, methods for dealing with 
parameter uncertainty are well-developed and are becoming an integral part of current best practice.20  
Issues of heterogeneity have similarly been discussed at length in the HTA literature and it is common 
practice to employ methods to adjust for patient characteristics, geographical location or to compute 
cost-effectiveness results for particular sub-groups of patients or locations.21  Many issues of 
methodological uncertainty have also been resolved by guidelines encouraging the harmonisation of 
economic evaluation techniques.22  Structural uncertainty, however, has received relatively little 
attention, although many guidelines for good practice in decision modelling recognize the need to 
explore structural assumptions 23-25 and the evidence supporting the chosen model structure.  
 
 
6. Defining structural uncertainty 
 
Structural uncertainty remains the most problematic class of uncertainty to define.  Indeed, it is often 
simply used to classify those types of uncertainties that do not easily fit into the categories of 
parameter, methodological or heterogeneity. 
 
In order to examine how structural uncertainty has been described and resolved in the HTA literature, 
a review of decision models commissioned by the NHS HTA programme from 1997 to 2005 was 
undertaken (www.hta.org)  
 
Of the 241 HTA reports that were published in the period 1997-2005 (August), 90 (37%) include some 
form of decision analytic model.  Of these 90 reports, only 14 (15.5%) suggest or discuss issues of 
structural uncertainty.  The type of structural uncertainty and methods employed in each of these 
reports are shown in Table 1 below. 
 
The discussion of structural uncertainty has been somewhat limited in the models reviewed here.  
Despite these limitations it is evident that models produced more recently seem more likely to have 
formally considered issues related to structural uncertainty.  Indeed, 12 (85%) of the 14 reports were 
published between 2004 and 2005.  This could reflect the fact that the issue of structural uncertainty 
is gaining more exposure in HTA generally.  
 
The structural uncertainties discussed in the 12 reports were: the length of treatment effect, time 
horizon of the model, inclusion of specific events or comparators and statistical issues relating to 
modelling survival.  Thus, on the basis of this review we can classify structural uncertainty of the 
following general types: (i) inclusion/exclusion of potentially relevant comparators; (ii) 
inclusion/exclusion of potentially relevant events; (iii) statistical models to estimate specific 
parameters and (iv) clinical uncertainty or lack of clinical evidence.  Each of these types is described 
in more detail below. 
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Table 1: Structural uncertainty described in HTA decision models 
 

HTA Report 
 

Type of structural uncertainty 
Methods employed to 

characterise uncertainty 
 
Cuzick, 199926 

 
Alternative assumptions regarding parameters 
relating to HPV test 

 
Berry, 200227 

Alternative assumptions regarding correlation 
between sensitivity and specificity and time 
frame of the model 

 
Alternative model scenarios were 
presented 

 
Clegg, 200328 

Describes testing for the robustness of the model structure, but does not undertake 
any analysis 

 
Garside, 200429 

 
Different life times of the model 

 
Kaltenhaler, 200430 

Alternative assumptions regarding background 
risk and LFT results 

 
Alternative model scenarios were 
presented 

 
Claxton, 200431 

Alternative assumptions regarding 
effectiveness of screening 

 
Scenarios not formally presented 

 
Jones, 200432 

Alternative assumptions about the length of 
treatment and inclusion/exclusion of events 

 
Main, 200433 

Different life times of the model and length of 
treatment 

 
Green, 200534 

Alternative assumptions about QOL and long 
term costs 

 
McCormack, 
200535 

Alternative assumptions about method of 
surgical repair and additional effect of 
complications 

 
Stevenson, 200536 

Including/excluding fractures not clinically 
identified 

 
Wilson, 200537 

Alternative assumptions regarding correlation 
between survival curves 

 
Robinson, 200538 

 
Inclusion/exclusion of additional strategies 

 
Tillin, 200539 

Different life times of the model, replacement 
and failure rates. 

 
Alternative model scenarios were 
presented 

 
6.1 Inclusion/exclusion of relevant comparators 
 
Guidelines on good modelling practice advocate the use of a broad range of feasible mutually 
exclusive strategies.40  The selection of comparators should be informed by current evidence or 
opinion and, if relevant, should include a ‘do nothing’ strategy.40 
 
In reality the choice of comparators is often governed by the scope of the model and the analyst may 
not necessarily choose this scope.  The scope is often a direct consequence of the question(s) 
specified by the decision-maker.  If the question is “to compare intervention A and intervention B, for 
the treatment of disease X”, then this implies a much narrower scope of comparators than the 
question “compare all interventions available for the treatment of disease X”. 
 
The construction of a model should always bear in mind its intended audience or customer,40 however 
when reviewing all available evidence to inform a decision, a decision-maker (such as NICE) may be 
faced with 2 alternative models with different sets of comparators.  In some situations the most cost-
effective option may be different according to which model is believed to be accurate.  Even if the 
excluded comparators are not cost-effective, excluding them will change EVPI estimates. 
 
The model by Robinson et al38 explored the inclusion of additional potentially relevant strategies as 
alternate scenarios.  Although inclusion of additional strategies did not affect the base case results, 
when combined with other sensitivity analysis, the inclusion of additional strategies did change the 
adoption decision.  Unfortunately in this model EVPI was not calculated, although one can suppose 
that these alternate scenarios would have produced quite different EVPI estimates.  
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6.2 Inclusion/exclusion of relevant events – related/unrelated events 
 
All decision models are simplifications41 of an actual disease and healthcare consumption process.  
Simplification is a necessity in order for the modelling process to inform the decision-maker in a timely 
manner.  However, the process of simplification will inevitably require certain assumptions to be made 
(i.e. the extent to which potential events can be ignored since they are unlikely to differ between 
interventions).  These assumptions should be supported by evidence and choices between alternative 
assumptions should be justified and made transparent.40 
 
A key part of the development of any model is the decision about which events, stages or health 
states should be included or excluded from the model. It is also important to recognise that the 
information (current evidence or clinical opinion) used as the basis for these decisions is not static, 
and new information relevant to the model development may arise at a later stage.  In certain 
instances a decision may have been made to exclude a particular event on the basis that it was 
deemed to be unrelated to the interventions under consideration at the time the model was being 
developed.  However, it may be that subsequent evidence becomes available that contradicts this 
assumption.  It would then be important to determine whether the inclusion of this event would alter 
the results from the model. 
 
In the model by Jones, et al32 non vascular deaths were included and excluded from the sub-group 
models for stroke, myocardial infarction (MI), Transient Ischemic Attack (TIA)  and Peripheral Artery 
Disease (PAD).  Alternative assumptions about the length of treatment were also explored in scenario 
analysis.  Including or excluding non vascular deaths had a profound effect on the cost-effectiveness 
results particularly for the TIA and stroke models assuming a lifetime treatment duration.  In both 
subgroups ASA-MR-dipyridamole was the most cost effective strategy in the model excluding 
treatment effect on vascular deaths and dominated in the model including the treatment effect on 
vascular deaths. EVPI was not calculated in the models.  However, like the previous example, 
because of the sensitivity of the adoption decision to the inclusion and exclusion of events, we can 
suppose that these alternate models would have produced quite different EVPI estimates. 

 
6.3 Statistical models used to estimate specific parameters  
 
Decision models are using increasingly sophisticated statistical techniques to derive estimates of 
parameters, particularly when estimates are available from more than one source.  As an example, 
meta-analysis techniques42 are used as part of many systematic review processes to combine 
evidence from multiple sources and to explore the impact of study heterogeneity.  Two general types 
of meta-analysis model exist, the fixed or random effects model.  The fixed effect model assumes that 
the included studies are all estimating a common effect size, that is we assume that there is no 
between-study heterogeneity.  If there is reason to believe that the studies may differ, in terms of the 
underlying effect size that they are estimating, a random effects model may be more appropriate.42  A 
random effects model, therefore, accounts for both within- and between-study variation.42  In many 
circumstances fixed and random effects models will give the same result and we are uncertain about 
which is the most appropriate model to use to estimate treatment effect. 
 
Another issue of statistical uncertainty is the estimation of correlation between parameters in the 
model. Where parameters in the model are interdependent, attempts should be made to correlate 
these within the model, for example sensitivity and specificity trade offs in diagnostic test accuracy.43  
In the model by Berry et al27 scenarios were presented to explore just this issue.  Pairs of sensitivity 
and specificity values were predicted from the clinical trial data and used in the model as opposed to 
the uncorrelated distributions.  The cost-effectiveness results were not sensitive to the alternate 
structural assumptions.  Neither decision uncertainty nor EVPI was calculated in this model, instead 
probabilistic analysis results were used to calculate confidence intervals for results. 
 
In Wilson et al37 a weakness in the industry model was identified; time to failure (TTF) and survival 
curves were independently calculated and that no attempt had been made to correlate the two curves.  
Scenarios were therefore presented allowing the TTF and survival curves to be correlated.  Cost-
effectiveness results were similar, with imatinib regarded as cost-effective after approx 5-years in both 
models.  A further model scenario was presented which incorporated alternative estimates of survival 
as well as allowing TTF and survival curves to be correlated.  In this scenario, imatinib is not regarded 
as cost-effective until 10-years and even then its cost-effectiveness is in the balance with an 
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incremental cost-effectiveness ratio of £29,789.37  As with the model by Berry et al27 neither decision 
uncertainty nor EVPI was calculated. 
 
6.4 Clinical uncertainty or lack of clinical evidence 
 
In many situations a decision model may be commissioned on the basis of a lack of clinical evidence 
(in particular RCT evidence) to inform a decision.  In these circumstances some of the relationships in 
the model may not have data to inform them and expert opinion may be sought to enable the model to 
be developed.  However, expert opinion, in the absence of sufficient clinical data to inform this, may 
be contradictory, that is 2 different clinical experts may present 2 different expert opinions.  The HTA 
models by Tillin et al,39 McCormack et al35 and Garside et al29 all explored issues of clinical 
uncertainty (length of treatment effect, strategy following recurrence, effect of complications) through 
the use of scenario analysis.  
 
Garside, et al29 concluded that the model results were relatively insensitive to alternative clinical 
assumptions.  Likewise Tillin et al39 concluded that alternative assumptions regarding relapse and 
replacement did not change the cost-effectiveness of the alternative strategies.  Adopting a 5-year as 
opposed to 25-year time horizon did change the cost-effectiveness results considerably.  Decision 
uncertainty and EVPI were not calculated for these two models and it is therefore unclear how 
sensitive these would be to alternative structural assumptions.  
 
McCormack et al35 found that changing the assumption about which type of surgical repair to use 
following relapse reduces the cost-effectiveness of the totally extrapentoneal (TEP) strategy slightly 
as does changing the assumptions about the effect of serious complications.  Decision uncertainty is 
increased slightly for the alternative assumption regarding relapse but actually decreases when 
serious complications for operative mortality are included. EVPI was not calculated for these 
alternative scenarios, although one can suppose that given the limited effect on decision uncertainty, 
the value of further research to resolve these uncertainties would be minimal. 
 
 
7. Methods used to characterise structural uncertainties in HTA models 

 
Of the 14, two of the reports did not include any application of methods to characterise specific 
structural uncertainties.28,31 Of the 12 reports in which structural uncertainties were analytically 
evaluated, methods were limited to running alternative scenarios representing the different 
assumptions or model structures.  The differences between results from alternative scenarios and the 
base case models were then discussed.  No attempt was made to combine estimates from the 
alternative models.  
 
This method, emerged from the statistics literature.44  In the absence of a ‘best’ model the analyst is 
required to compute results for each alternative model specification, and to present alternative results 
as sensitivity analyses.45  The alternative models and their results are then presented to the decision-
maker.  Analysts may choose to present one particular model as the most likely or conservative 
estimate, which is usually stated as the base-case analysis.  Alternatively the analyst may leave the 
decision-maker to choose which model he/she thinks is most credible.  The limitations of each model 
will be made available to the decision-maker.  The decision-maker will use this information to 
generate an implicit weight for each of the models.  The model with the highest weight will be 
regarded as the ‘true’ model and all other models discarded.  By discarding models, this method fails 
to include all relevant evidence, a requirement of the decision-making process.   
 
Although this method can be useful, in as much as it illustrates the potential impact of structural 
uncertainties, there are a number of potential problems.  The weights applied to each model are 
subject to the decision-makers’ interpretation of the limitations as presented.  This process of 
interpretation is, on the whole, internalised, and as such is difficult to replicate given an alternative set 
of decision-makers.  Related to this is the issue of multiple decision-makers contributing to a single 
decision, as is the case with the appraisal committee that make recommendations for NICE in the UK.  
Each member of the committee may apply different weights to each of the alternative models.  There 
may be circumstances in which there is no agreement about which model has the most weight and 
thus represents the ‘best’ model. 
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Most importantly, by removing the uncertainty associated with choosing between multiple alternative 
models from the actual modelling process, presenting scenarios can offer little help in truly quantifying 
structural uncertainty.  It cannot, therefore, inform decision-makers about the decision to undertake 
further research to resolve this uncertainty.46  An assessment of alternative model structures must 
therefore quantify the uncertainty in a meaningful way.46 
 
 
8. Review of methods to characterise structural uncertainty 
 
Given the types of structural uncertainties that have been discussed in the HTA literature and the 
limitations of the scenario analyses that have been used to characterise these, methods were sought 
to explore these uncertainties in a more quantifiable and explicit manner.  The characteristics and 
principles of the methods identified is discussed along with their performance in terms of meeting the 
requirements of the decision-making process. 
 
8.1 Search strategies 
 
A systematic search was conducted to look for papers relating to the identification, assessment or 
quantification of structural uncertainty in quantitative models, not just restricted to decision analytic 
models.  As very little on structural uncertainty has been published in the health economics/HTA 
literature, the searches were not restricted to medical or economics databases.  Because of the 
enormity of the available literature, as a result of widening the database search, searches were 
restricted to identifying key words in the title.  In addition, citations from relevant papers were also 
obtained, this method is known as ‘pearl growing’.47  No date restrictions were placed on the searches.  
Only English language papers were included.  
 
The search strategy used and databases searched are shown below: 
 
Search strategy: 

Science Citation Index 1980-2004: 
 
model*)  
 
and (robustness or uncertain* or forecast* or accura* or fit for purpose or predict* or inference)  
 
and (structur* or develop* or 
construct* or specification or selection)  
[title] 

 
Databases searched: 

NHS Economic Evaluation Database (public version) 
NHS Economic Evaluation Database (admin version) 
EconLit 
OHE Health Economic Evaluations Database 
ScienceDirect 

 
8.2 Papers included in the review 
 
The systematic searches identified 40 potentially relevant papers. Although the searches were limited 
to key words contained within the title of a paper, a number of review papers were identified.  The 
bibliographies of these papers were checked and potentially relevant articles were obtained.  In total, 
68 full papers were obtained and screened for inclusion in the review.  Of these, 41 papers looked at 
methods to characterise and quantify structural uncertainty and thus were included in the review.  A 
list of included and excluded studies and a brief summary of papers is available in Appendix 1. 
 
8.3 Available methods to characterise structural uncertainty 
 
As anticipated, aside from scenario analysis45 very little has been carried out in the health economics 
literature to address the issue of structural uncertainty.  The problem of structural uncertainty is often 
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regarded as secondary to parameter uncertainty, in which methods have developed significantly.  
General discussion of the causes of structural uncertainty is also absent from the health economics 
literature.  Outside of HTA, in areas such as mathematics, statistics, operational research and 
environmental modelling, authors have recognised the potential errors arising from model uncertainty 
and the possibility that model results will be biased when analysts ignore such issues.48-50  It is in 
these other disciplines that nearly all of the methods to deal with structural uncertainty have been 
developed (Appendix 1).44  Two methods to address the issue of structural uncertainty are apparent, 
these are: 
 
8.3.1 Weighting the plausibility of the structural assumptions using priors 
 
Model averaging51 is a method which has not been used in the health technology literature.  This 
requires the analyst to build alternative models, with different assumptions, and then average across 
these models weighting each by the plausibility (prior)52 of their assumptions.  Weights are commonly 
based on expert opinion, or for statistical models more formal methods such as an analytic hierarchy 
process.53  Although the combination of these types of models may not necessarily improve predictive 
performance in the true sense,54 from a decision-making perspective it does help to deal with the 
issue of structural uncertainty more explicitly then simply presenting alternative scenarios.  Decision-
makers are not themselves faced with multiple models to which they have to attach subjective 
weights.  In addition, all relevant evidence is considered. 
 
Bayesian methods for model averaging appear to be well developed.55  The problem of averaging 
across models can be viewed in a Bayesian sense as one in which a decision-maker needs to make 
the best possible use of information on a model structure he/she has available.56  The most widely 
used method of Bayesian model averaging (BMA) works on the premise that given alternative ways of 
modelling an intervention effect or other parameter ( κΜ ), with ∆ as the quantity of interest (such as 
net benefit), the posterior distribution of ∆ given the data (D) is:  
 

∑
=

ΜΜ∆=∆
K

K
DprDprD

1
)(),()Pr( κκ  

57 
 
Thus, ∆ is an average of the posterior distributions for each of the models considered, weighted by 
their posterior model probability.57  In some circumstances, the number of models available can be 
unfeasibly large. Madigan and Raftery58 proposed the Occam’s window method to reduce the number 
of possible models to average across.  If a particular model performs significantly worse (in terms of 
prediction performance) than the model which makes the best predictions, it should be discarded.  
This results in the exclusion of more complex models which are less well supported by the data than 
simpler models.  However, methods that exclude models on the basis of poor performance do not 
meet the requirement to include all relevant evidence. 
 
BMA methods have been applied frequently in the operational research and forecasting literature59 
and, more recently, when faced with alternative models to fit survival data50,60,61,111,62 and 
environmental prediction.63,64  The increased use of the technique (and indeed use of Bayesian 
analysis in general) is primarily due to the increased computer power now available to undertake 
MCMC.65  When applying BMA techniques to HTA decision models, there is an issue of determining 
the posterior distribution of ∆ given D, when D may not be available.  It is often the case that a model 
is required in the absence of any real information on D.   
 
Non Bayesian methods for model combination have also been proposed. Shannon and Banks66 
discuss the combination of classification trees using maximum likelihood estimation (MLE).  In this 
method a central tree is defined and a distance parameter, representing the amount of rearrangement 
between alternative models.  Using this distance parameter the MLE of the central classification tree 
is estimated.  This MLE represents the ‘best’ tree structure.66  As with BMA techniques, estimating the 
MLE for many of the structural uncertainty problems described in the HTA literature would not be 
possible. 
 
As an alternative to BMA and MLE, more general techniques of model averaging have been 
described in the BMA literature.48  Previous work looking at the technique has focussed on taking the 
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mean of results of all possible models, weighted by the likelihood that particular model specifications 
are correct.48  These weights can be subjective assessments or based on criteria such as minimum 
variance.67  Model averaging can easily be applied to HTA models in this basic form, without the use 
of Bayesian methods to update priors or measures of goodness of fit.  Model averaging can simply 
take the weighted average of the possible scenarios at each iteration of the model.  Average EVPI 
can also be calculated as an average of scenarios at each iteration of the model.  
 
Model averaging, although using all available evidence on alternative model structures, does not fully 
incorporate the additional uncertainty introduced when choosing between alternative model structures.  
The structural uncertainty is essentially ignored when models are averaged across. 

 
8.3.2  Model selection 
 
An alternative to model averaging, often employed in statistical sciences, is to choose the ‘best’ model 
on the basis of some measure of prediction performance, fit or criteria.68-76  Applications of model 
selection have employed both Bayesian and frequentist methods and criteria. 
 
The model selection versus model averaging debate is still ongoing in the statistical, mathematical 
and economics literature.  Gutierrez-Pena77 argues that it may not always be possible (or desirable) to 
average across models and focuses on finding the model which maximises utility (representing the 
consequences of a particular action from the space of decisions given a particular state of the world) 
given a particular data set.77  Bunn78 regard the combination of models as model failure because a 
single comprehensive model cannot be determined or agreed.  However, even in areas outside of 
HTA where statistical models can be ranked according to some criterion, it may not be advantageous 
to determine the ‘best’ model.  By choosing the ‘best’ model, useful evidence may be discarded79 
violating he requirements of the decision-making process.  Uncertainty relating to the choice of ‘best’ 
model is also ignored. 
 
In terms of their suitability for characterising structural uncertainty in HTA decision models, many of 
the methods to assess model performance49 such as Residual Mean Squared Error (MSE), Finite-
Prediction-Error (FPE),49 minimum variance criteria80 and subjective probabilities78, 81 are not directly 
applicable.  These involve the quantification of a statistic that describes goodness of fit, prediction 
performance, or probability of error.54  In HTA decision modelling, where there are many competing 
objectives, it is not possible to identify one particular parameter whose performance must be 
maximised by a fitted model.  In those circumstances where the structural uncertainty relates to the 
choice of statistical model, selection can still be difficult when there is only a small amount of data.81 
 
Kashyap82 and Zellner83 describe an alternative Bayesian approach to model selection in which the 
relative likelihood of each model being correct is determined by a set of posterior probabilities derived 
from the alternative models.  This technique, as with the other performance measures, requires the 
data to act as ‘judge, juror and executioner’ that is the data determines the structure of the model, 
populates and validates the model.  
 
8.4 Suitability of methods to characterise structural uncertainty to decision analytic 
models 
 
As discussed in sections 8.3.1 and 8.3.2, model selection and model averaging are neither 
appropriate nor desirable methods to characterize structural uncertainty in decision analytic models.  
When faced with a choice between multiple models, another method can be employed which allows 
structural uncertainty to be explicitly considered and does not ignore potentially relevant model 
structures.  Uncertainty can be directly characterised (or parameterised) in the model itself.  Although 
this method itself has not been discussed in the literature to date, it is analogous to model averaging 
on individual or sets of model inputs,48 but it has additional benefits. 
 
To parameterise structural uncertainty, uncertain parameters are added to the model to represent the 
choice between multiple model scenarios.  At each iteration of the model, a value from the uncertain 
parameter will be drawn and then linked via an ‘if’ function to one of the multiple model scenarios.  
Therefore, an alternative model scenario is chosen at each iteration of the model and structural 
uncertainties are represented in much the same way as parameter uncertainties. 
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These uncertain parameters can be specified using a number of different distributions, such as beta 
or uniform.  The distribution chosen will depend on the number of scenarios and the weights attached 
to each scenario.  Often little is known about the distribution of the uncertain parameters, therefore 
efforts should be made to assign the most appropriate distribution.  Expert opinion can be sought for 
this. 
 
Like model averaging, alternative structural assumptions can be given equal or unequal weights 
depending on what prior knowledge is known about the likelihood of the scenarios representing the 
‘true’ scenario.  However, unlike model averaging where the objective is to simply synthesise all 
evidence on the structure of a decision model to assess if a treatment is cost-effective, by 
parameterising the uncertainty directly in the model, estimates of the value of further research on the 
uncertain parameters can also be made.  Simulation output from the ‘parameterised model’ can 
provide the decision-maker with the maximum monetary value of conducting further research to 
eliminate these structural uncertainties.  In the HTA models reviewed above that have estimated 
parameter uncertainty through the use of probabilistic sensitivity analysis, parameterising structural 
uncertainty simply requires specifications of an additional distributions, or sets of distributions to 
represent the choice between alternative structural assumptions. 
 
 
9. Discussion 
Decision analytic models represent an explicit way to synthesise evidence currently available on the 
outcomes and costs of alternative health care interventions and are, therefore, a powerful tool for 
decision-making.  The results derived from a decision analytic model will depend on how the model 
structure has been defined and the data used to populate the model.  Recent developments in the 
analysis of uncertainty in HTA models have typically focused on parameter uncertainty.4  Such 
analyses are, of course, based on the premise that the model has been correctly specified. 
 
To date, presenting alternative model assumptions as scenario analysis is the only method that has 
been used to address structural uncertainties in the HTA literature.  Whilst scenarios can be useful, in 
as much as they illustrate that structural uncertainty is a potential issue, a decision-maker is still faced 
with the choice of multiple models.  Any uncertainty he/she then has about choosing the ‘true’ model 
is not explicitly incorporated into the modelling process.  
 
Model selection is a method commonly applied in mathematics and statistics.  However this method is 
not directly applicable to HTA decision-making.  This is primarily because of the focus on model 
selection through prediction performance or goodness of fit.  This is a criteria not commonly used to 
assess decision analytic models.  Decision models are not intended to predict the data and so 
measures of goodness of fit are often not available.  However, for alternative models used to estimate 
specific parameters such as survival, there may be actual data available to generate such measures.  
Similar tests are performed when choosing between parametric distributions such as weibull and 
exponential.84 
 
A more formal method to account for structural uncertainty has been proposed, model averaging.  
This prevents the problem of a decision-maker being faced with multiple models and incorporates all 
relevant evidence, but does not reflect the uncertainty introduced when there are multiple ways to 
model a given decision problem. 
 
Parameterising structural uncertainty directly in a decision model is analogous to methods for 
characterising parameter uncertainty, and as such structural uncertainties can be characterised by 
propagating uncertain distributions in the model using Monte Carlo simulation methods.15  In addition 
to providing an unbiased estimate of decision uncertainty, the output of these simulations can also be 
used to calculate partial EVPI.  Decision-makers can utilise this information when deciding if to 
commission further research.  No other method of characterising structural uncertain provides any 
information on the value of reducing structural uncertainties that are apparent for a particular decision 
problem.  It remains to be seen how feasible it is to apply this method to decision models.  
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Appendix 1: Papers included in review of methods to characterise structural uncertainty 
 
Author (s), date Title Discipline Focus Relevant 

Augustin, et al. 2004 50 The practical utility of incorporating model selection 
uncertainty into prognostic models for survival data. 

Statistics Looks at methods to account for model 
selection uncertainty in survival analysis  

Baldelli, 199985 Uncertainty modelling in aerospace flexible structures Aerospace modelling Representing parametric uncertainties in the 
modes of a flexible structure X 

Bates, et al, 1969 54 The combination of forecasts Operational research Discusses issues relating to the combination of 
forecasts  

Berger, et al, 1996 71 The intrinsic Bayes factor for model selection and 
prediction. 

Statistics Bayes factor for multiple model comparison 
and prediction  

Besag, et al, 1995 86 Bayesian computation and stochastic systems Statistics Use of Monte Carlo Markov Chain methods X 
Blockley, 1983 87 Model uncertainty in structural reliability - comment Engineering Interval probability theory for structural 

reliability calculations X 

Bracke, 200288 Decision support system for overall welfare assessment in 
pregnant sow: A model structure and weighting procedure 

Agricultural modelling Simulation model to assess welfare of sows X 

Bunn, 1975 79 A Bayesian approach to the linear combination of 
forecasts 

Operational research Discusses Bayesian approaches to combining 
forecasts  

Bunn, 1988 78 Combining forecasts Operational research Discusses the rationale for combining 
forecasts  

Bunn, et al, 1982 81 Synthesis or selection of forecasting models Operational research Discusses methods to select the most 
accurate model, based on prediction 
performance indicators 

 

Buntine, 1992 89 Learning classification trees Statistics Building decision tress and how to update 
information using Bayesian methods 

X 

Carlin, et al, 1995 65 Bayesian model choice via Markov chain Monte Carlo 
methods 

Statistics Framework for Bayesian model choice  

Carlin, et al, 1992 74 Predicting working memory failure - a subjective 
Bayesian- approach to model selection 

Statistics Bayesian approach to hypothesis testing  

Chatfield C, 1995 48  Model uncertainty, data mining and statistical inference 
(with discussion). 

Operational research Discusses type of model uncertainty  

Chatfield, 199659 Model uncertainty and forecast accuracy Operational research General overview of ‘model uncertainty’ 
Proposes use of Bayesian model averaging 
techniques. 

 

Clemen, 1989 56 Combining,forecasts: a review and annotated 
bibliography. International 

Operational research Review of methods to combine forecasts  

Conrad Lamon, et al, 2000 
63 

Accounting for model uncertainty in prediction of 
chlorophyll a in Lake Okeechobee 

Environmental 
modelling 

Application of Bayesian model averaging 
techniques to prediction 
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Dawid, et al, 1981 90 Conjugate Bayesian-inference for structural models Statistics Use of Bayesian inference X 
Dickinson JP, 1973 67 Some statistical results on the combination of forecasts Operational research Looks at implications of combining forecasts  
Dickinson, 1975 80  Some comments on the combination of forecasts Operational research Looks at implications of combining forecasts 

using a minimum variance criterion 
 

Dilks, et al, 1992 91 Development of Bayesian Monte-Carlo techniques for 
water- quality model uncertainty 

Environmental 
modelling 

Representing parameter uncertainty X 

Ditlevsen, 1982 92 Model Uncertainty in Structural Reliability Engineering Dealing with model uncertainty in structural 
reliability analysis 

X 

Draper, 1995 51 Assessment and propagation of model uncertainty Statistics Bayesian approaches to model uncertainty  
Duong, 1988 53 Model selection and ranking - an AHP approach to 

forecasts combination 
Mathematics Model selection in statistical inference 

problems 
 

Engle, et al, 1986 49 Model selection for forecasting Mathematics Discusses various criteria to measure the 
performance of a model 

 

Freedman, 198893 In the impact of variable selection in fitting regression 
equations 

Econometrics Selection of parameters for regression models X 

Geisser, 1965 94 A Bayes approach for combining correlated estimates Statistics Bayesian random effects meta-analysis X 
George, 1999 75 Bayesian model selection Statistics Reviews Bayesian model selection and 

discussed BMA in the context of decision 
theory 

 

Gewke, 1998 95 Simulation methods for model criticism and robustness 
analysis 

Statistics Use of Bayes factor and uncertainty about 
prior distributions 

X 

Granger, et al, 2000 96 Economic and statistical measures of forecast accuracy Operational research Looks at applications of forecasting to game 
theory 

X 

Green PJ, 1995 55 Reversible jump Markov chain Monte Carlo computation 
and Bayesian model determination 

Statistics Use of Bayesian methods in model choice and 
averaging 

 

Groenewald, et al, 1988 97 Model selection - using normal priors and predictive 
sample re- use 

Statistics Applying model selection criteria  

Gutierrez-Pena, et al, 2001 
77 

A Bayesian predictive approach to model selection Mathematics Discusses predictive model selection criterion  

Hasselman, 2001 98 Quantification of uncertainty in structural dynamic models Engineering Application of methods to evaluate the 
accuracy of structural dynamic models 

X 

Hoeting JA, et al, 1999 57 Bayesian model averaging: a tutorial Statistics Discusses Bayesian model averaging in detail  
Kashyap, et al 1977 82 A Bayesian comparison of different classes of dynamic 

models using empirical data 
Computer simulation Bayesian methods of comparing different 

types of dynamical structures  
 

Kittler, et al, 2002 72 Model selection by predictive validation Computer simulation Focuses on model selection through model 
validation 

 

Lange, 1989 99 A multi-criteria decision approach to structural modelling 
with uncertainty conditions 

Statistics Problems and solutions to uncertainty 
conditions in large scale systems models 

X 

Laud, et al, 1995 69 Predictive model selection Statistics Bayesian methods for model selection  
Madigan, et al, 1994 58 Model selection and accounting for model uncertainty in 

graphical models using Occams window 
Statistics Choosing what model to include in a Bayesian 

model averaging framework 
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McCabe, et al, 2000 45 Testing the validity of cost-effectiveness models Health Technology 
Assessment 

Guidelines of good practice in decision models  

McDowell, et al, 2002 100 Bayesian analysis and inference from QSAR predictive 
model results 

Environmental 
modelling 

Assessing accuracy of QSAR models using 
sensitivity and specificities and using 
sequential models to improve accuracy 

X 

McKay, et al, 2004 101 Evaluating prediction uncertainty in simulation models Statistics General background on types of model 
uncertainty, goes onto discuss parameter 
uncertainty in detail 

X 

McKay, et al 1997 44 Model uncertainty in stochastic simulation models Statistics Review and application of methods to handle 
all  types of model uncertainty 

 

Morris, 1974 102 Decision analysis expert use Management science Discusses use of expert opinion in decision-
making 

X 

Morris, 1977 103 Combining expert judgements: A Bayesian approach Management science Discusses issue of combining evidence from 
multiple sources of expert opinion 

X 

O'Hagan A, 1995 70 
 

Fractional Bayes factors for model comparison (with 
discussion) 

Statistics Discusses and applies Bayesian methods for 
model comparison, in particular frictional 
Bayes factor 

 

Ossen, et al, 1998104  
 

Weight space analysis and forecast uncertainty Operational research Methods for deriving weights to improve 
forecast uncertainty in neural networks 

X 

Raftery,et al, 2003 64 Using Bayesian model averaging to calibrate forecast 
ensembles 

Statistics Discusses the use of Bayesian model 
averaging 

 

Raftery, et al, 1994 105 Accounting for model uncertainty in survival analysis 
improves predictive performance 

Statistics Discussion and application of BMA in survival 
analysis 

 

Roberts, 1965105 Probabilistic prediction Statistics Application of predictive distributions X 
San Martini, et al, 1984 73 Predictive model selection criterion Statistics Applying model selection criteria   
Sauerbrei, et al, 2003 106 Incorporating model selection uncertainty into prognostic 

models for survival data 
Statistics Discussion and application of BMA in survival 

analysis 
 

Sayed, et al, 1999 107 Design criteria for uncertain models with structured and 
unstructured uncertainties 

Engineering Discussion and application of weighted game-
type cost criterion for evaluating model 
uncertainties  

X 

Schoemaker, 1991 108 When and how to use scenario planning: A heuristic 
approach with illustrations 

Operational research Looks at use of scenario analysis in decision-
making 

X 

Shannon, et al, 1999 66 Combining classification trees using MLE Statistics Maximum Likelihood Estimation applied to 
choice of classification tree 

 

Shen, et al, 2004 76  Inference after model selection Statistics Discussion and application of optimal 
approximation methods for model selection.  

 

Snowling, et al, 2001 46 Evaluating modelling uncertainty for model selection Environmental 
modelling 

General discussion of structural (model) 
uncertainty 

 

Tuljapurkar, 1992 109 Stochastic population forecasts and their uses Operational research Discussion and application of stochastic 
forecasting methods 

X 
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Van Noortwijk, 1995 110 A Bayesian failure model based on isotropic deterioration Operational research Accounting for uncertainty in predicting the 
failure of hydraulic structures using Bayesian 
methods  

X 

Viallefont V, et al, 2001 62 Variable selection and Bayesian model averaging in case-
control studies 

Statistics Application of BMA to take account of 
uncertainty in choosing covariates for a case-
control study 

 

Volinsky, et al, 1997 60 Bayesian model averaging in proportional hazard models: 
Assessing the risk of a stroke 

Statistics Looks at the use of Bayesian model averaging 
applied to clinical data 

 

Wagenmakers, 2003 68 Review of  “Model selection and multimodel inference: A 
practical information-theoretic approach” 

Mathematics Review of a book looking at model selection  

Wang, et al, 2004 111 Comparison of Bayesian model averaging and stepwise 
methods for model selection in logistic regression 

Statistics Looks at BMA for model selection in logistic 
regression compared to stepwise procedure 

 

West M, et al, 1989 112 Bayesian forecasting and dynamic linear models Statistics Theory and application of forecasting and 
dynamic models 

X 

Wilson, 1993 113 Feeder cattle forecasting models - an econometric study 
of development and performance 

Agricultural modelling Measuring forecasting ability for 2 models 
predicting future price of feeder cattle 

X 

Zellner, 1971 83 An introduction to Bayesian Inference in Econometrics Econometrics Use of Bayesian methods in econometrics  
Zhao, et al, 2002 114 The impact of forecasting model selection on the value of 

information sharing in a supply chain 
Operational research Information requirement of a supply chain 

management process 
X 

 
 
 
 




