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Background 
 
CHE Discussion Papers (DPs) began publication in 1983 as a means of making current 
research material more widely available to health economists and other potential users.  So 
as to speed up the dissemination process, papers were originally published by CHE and 
distributed by post to a worldwide readership.  
 
The new CHE Research Paper series takes over that function and provides access to current 
research output  via web-based publication, although hard copy will continue to be available 
(but subject to charge). 
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Abstract 
 
Bayesian decision theory can be used not only to establish the optimal sample size and its allocation 
in a single clinical study, but also to identify an optimal portfolio of research combining different types 
of study design.  Within a single study, the highest societal pay-off to proposed research is achieved 
when its sample sizes, and allocation between available treatment options, are chosen to maximise 
the Expected Net Benefit of Sampling (ENBS).  Where a number of different types of study informing 
different parameters in the decision problem could be conducted, the simultaneous estimation of 
ENBS across all dimensions of the design space is required to identify the optimal sample sizes and 
allocations within such a research portfolio.  This is illustrated through a simple example of a decision 
model of zanamivir for the treatment of influenza.  The possible study designs include: i) a single trial 
of all the parameters; ii) a clinical trial providing evidence only on clinical endpoints; iii) an 
epidemiological study of natural history of disease and iv) a survey of quality of life.  The possible 
combinations, samples sizes and allocation between trial arms are evaluated over a range of cost-
effectiveness thresholds.  The computational challenges are addressed by implementing optimisation 
algorithms to search the ENBS surface more efficiently over such large dimensions. 
 
Keywords: Bayesian decision theory; expected value of information; research design; cost-
effectiveness analysis 
.
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1. Introduction 
 
Health-care systems typically face two conceptually separate, albeit concurrent, questions: firstly, 
should a health-care technology be adopted (reimbursed) in the light of current evidence about 
resource use and health outcomes?  Secondly, is additional research required to support the use of 
the technology, and if so how much and what type of research would be most useful?  Both questions 
are at the heart of much of the international debate about the appropriate regulation and 
reimbursement of health-care technologies.  In general, decisions to adopt (reimburse) or reject a 
technology can be made on the basis of existing information or conditional on providing additional 
evidence to inform this decision in the future.  In the United States the FDA requires claims for a 
technology to be “sufficiently substantiated”, based on some assessment of the benefits and costs of 
acquiring more information to support the claim (see Neumann et al., 2000).  In England and Wales 
the National Institute for Health and Clinical Excellence (NICE), which issues guidance to the NHS on 
the use of technologies, also issues guidance on the need for further research (NICE, 2004).  It has 
made adoption conditional on the production of further evidence and in some circumstances has 
made recommendations that a technology can only be used in research (Chalkidou, et al. 2007).  
 
Addressing the question of whether and what type of research is needed becomes more challenging 
when the full range of different types of study and different designs (e.g., sample sizes) which could 
be conducted are considered.  In most situations a variety of different types of study, informing 
different (groups of) parameters or endpoints, is usually possible.  For instance, while randomised 
controlled trials (RCTs) are useful to investigate those clinical endpoints vulnerable to section bias, 
other (not necessarily experimental) studies may be called upon to collect information about the 
natural history of a disease of interest or some measure of quality of life associated with particular 
clinical events.  To start to address these research decisions, a measure of the social value of the 
information generated by research is needed. 
 
1.1 Methodological background 
 
The Bayesian approach to value of information has a firm foundation in statistical decision theory (see 
e.g. Schlaifer, 1959; Howard, 1966; Berger, 1985; Pratt et al., 1995; Raiffa and Schlaifer, 2000; 
Parmigiani, 2002).  It provides a coherent framework to establish the social value of additional 
information, which has been successfully applied in other areas of research (e.g. Hammitt and Cave, 
1995; Thompson and Graham, 1996; Thompson and Evans, 1997) and more recently proposed in the 
evaluation of health-care technologies (see e.g. Claxton and Posnett, 1996; Felli and Hazen, 1998; 
Claxton, 1999; Yokota and Thompson 2004; Briggs et al., 2006).  In particular, an increasing number 
of applications in this area have incorporated an analysis of the value of perfect information (see e.g., 
Ades et al., 2004; Fenwick et al. 2006; Claxton and Sculpher, 2006; Philips et al., 2006; and Colbourn 
et al., 2007; Bojke et al., 2008).  However, the demonstration and application of value of sample 
information analysis are more limited (see e.g. Ades et al., 2004; Willan and Pinto, 2005; Brennan and 
Kharroubi, 2007ab; Eckermann and Willan, 2008) and to date no attempt has been made to explore 
all the dimensions of design space available using these methods. 
 
A Bayesian decision-theoretic approach can establish the population Expected Value of Perfect 
Information (EVPI) surrounding a decision to adopt or reject a technology.  Population EVPI places an 
upper bound on the social value of additional evidence and a necessary condition for deciding to 
conduct further research, i.e., if the population EVPI is greater than the expected costs of further 
studies.  The EVPI associated with specific (groups of) parameters relevant to the decision problem 
(EVPPI) can be established in a similar fashion.  This can be used to focus further research on those 
parameters where additional evidence will be most valuable and can indicate the types of studies 
which may be most useful.  However, fully informing the research decision requires a sufficient 
condition to be established.  The Expected Net Benefit of Sampling (ENBS) for a particular type of 
study and sample size is the difference between the expected value of sample information (EVSI) and 
the costs of sampling.  Therefore, the ENBS is a measure of the social value of a particular proposed 
research design.  It provides a sufficient condition for deciding to conduct more research, i.e., if ENBS 
is greater than zero.  It also provides the means to choose between different types of study and 
different designs (e.g., sample size and its allocation).  The research decision can then be 
characterised as choosing the type of study(ies) and design(s) which maximises the ENBS. 
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1.2 Design space 
 
In its simplest form, research design can be formulated as a sample size determination problem (see 
reviews from e.g. Pezeshk, 2003; Chaloner and Verdinelli, 1995): under this perspective, the design 
problem reduces to identifying the optimal size for each of the studies which could be conducted.  The 
optimal sample size for a single study will be the sample size that generates the greatest ENBS.  For 
studies which include a number of treatment arms (e.g., a RCT comparing a new technology to one or 
more alternatives) not only the optimal total number of patients to enrol needs to be sought, but also 
their optimal allocation to each treatment arm.  Equal between-arm allocation is often adopted based 
on a simplifying assumption of equal variance for each arm.  However, this assumption is seldom 
justified and, even if it were, the resource and opportunity cost of allocation to different arms is very 
unlikely to be the same.  Therefore, when only considering a single RCT, both optimal sample size 
and its allocation need to be established (Claxton and Thompson, 2001). 
 
It is seldom the case that a single RCT is the only research possibility.  If more than one type of study 
can be conducted, then optimal sample size and its allocation can be established for each study 
independently.  If these are mutually exclusive alternatives then the research decision is simply to 
choose the optimally designed single study which offers the highest ENBS.  However, in many 
common circumstances, different types of study are not mutually exclusive and can be conducted 
concurrently.  The social value of a combination of studies (a portfolio) is not the sum of the ENBS of 
each but must be estimated simultaneously.  The portfolio optimisation problem becomes one of 
finding the allocation of patients between and within studies which provides the maximum ENBS.  The 
optimal portfolio size and allocation will generally be different to that implied by simple combination of 
independent designs.  The research decision problem becomes one of a choice between a number of 
alternative single studies or an optimally designed portfolio.  This choice can be based on the ENBS 
offered by each. 
 
The purpose of this paper is to demonstrate the principles and methods for the thorough assessment 
of all these dimensions of the design space.  Its aim is to show that Bayesian decision theory can 
provide a coherent and useful analytical framework to estimate the social value of research, establish 
optimal research designs and inform the research decision.  The paper proceeds by introducing an 
illustrative example of a simple decision model of zanamivir for the treatment of influenza, reporting 
estimates of cost and effect based on, the then, current information.  The necessary and sufficient 
conditions for conducting further research reported before optimal research designs are considered in 
more detail.  A single RCT with equal allocation is considered first, and then equal allocation is 
introduced. Subsequently other types of study are introduced, first optimised independently and then 
simultaneously as a portfolio.  The research decision is then reconsidered once the analyses of all 
these dimensions of design space have been explored.  In doing so, we adopt an optimisation 
algorithm which eases the computational challenges arising from using Bayesian decision theory to 
optimise over such large dimensions of design space. 
 
 
2. An illustrative example 
 
The principles and benefits of adopting a Bayesian decision theoretic approach to research decisions 
is illustrated using a simple example of the use of zanamivir in the treatment of influenza.  NICE 
conducted an appraisal of zanamivir in 2000 and issued guidance (NICE, 2000b) which imposed a 
number of restriction and conditions on its use.  In particular, treatment should only be offered when 
influenza is circulating in the community and for at-risk adults who present within 36 hours of the 
onset of influenza like illness.  At-risk adults were defined as those over the age of 65 or those with 
chronic respiratory disease, significant cardiovascular disease, immunocompromised and those with 
diabetes mellitus. 
 
The NICE appraisal of zanamivir was based on an independent assessment report (Burls et al., 2000, 
2002), to which the reader is referred for full details of the evidence available at that time, and the 
cost-effectiveness analysis.  In summary, the assessment report identified nine RCTs but the evidence 
for at-risk adults is based on sub-group analysis of eight of the all-adult trials and one trial which only 
recruited adults with chronic respiratory disease.  The trials reported time to alleviation of symptoms 
for the influenza positive population as well as the number of complications requiring antibiotics.   
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The assessment report included fixed effect meta-analysis for both these endpoints.  None of the 
trials included effect on hospitalisation or economic and quality of life data. 
 
A simple decision tree model was constructed to compare zanamivir with standard care.  The 
proportion of influenza positive patients presenting with influenza like illness (pip) was based on 
evidence from a sponsored submission (Glaxo-Wellcome, 2000).  The probability of complications 
requiring antibiotics and the probability of hospitalisation with standard care (pcs and phs) was based 
on observational data (Meier et al., 2000).  The reduction in symptom days (rsd) was based on the 
results of the fixed effect meta analysis.  The reduction in complications for those receiving zanamivir 
was based on the log-odds ratio from the same meta-analysis (LORc) and a similar effect on 
hospitalisation (LORh) was assumed.  The improvement in quality of life due to reduced symptom 
time (utl) was based on an assumed impact on all dimensions of EQ5D.  Resource use was based on 
published unit costs, hospital length of stay and number of GP visits (Netton and Dennett, 1998; Burls 
et al., 2000). 
 
Table 1: Parameters of the decision model for zanamivir vs. standard care 

Parameter Prior Likelihood Source 
Probability of influenza-positive 

(pip) 
( )66,34Β  ( )pipnBin Std ,  Glaxo-Wellcome 

submission (2000) 

Probability of complications 
under standard care (pcs) 

( )548,452Β  ( )pcsnBin Std ,  Study based on GPRD 
(Meier et al., 2000) 

Probability of hospitalisation 
under standard care (phs) 

( )975,25Β  ),( pcsnBin Std  Study based on GPRD 
(Meier et al., 2000) 

Complications 
LOR (LORc) 

(
)210168.3

,353.0
−×

−N
 

 

Normal proxy to Binomial (Ades 
et al., 2004, sec. 4.1) 

Fixed effects meta-
analysis in Burls et al. 

(2002) 

Hospitalisation 
LOR (LORh) 

(
)210168.3

,353.0
−×

−N
 

Normal proxy to Binomial (Ades 
et al., 2004, sec. 4.1) 

Fixed effects meta-
analysis in Burls et al. 

(2002) 

Reduction in symptom days 
(rsd) 

( )748.0,67.1N (
( ))11

363,
−− +

×

ZanStd nn
rsdN

 
Fixed effects meta-

analysis in Burls et al. 
(2002) 

Annual utility gain (utl) (
)310613.4

,242.0
−×

−N
 

(
( ) )1

185.0,
−+
×

ZanStd nn
utlN

 
Obtained from  Burls et al. 

(2002) 

 
A probabilistic reanalysis of this model was conducted, based only on the information which was 
publicly available in the assessment report at the time the guidance was issued.  The uncertainty 
surrounding the decision to adopt zanamivir for this patient group was characterised by assigning 
prior distributions to each of the key parameters and are detailed in Table 1.  Unit prices and resource 
use were assumed to be known.  Monte Carlo (MC) simulation was conducted to obtain the joint 
distributions of costs and effects and net benefit (Stinnett and Mullahy, 1998) for a range of cost-
effectiveness thresholds ( )λ .  Zanamivir is more costly but more effective than standard care with an 
expected incremental cost-effectives ratio of £51,700.  The cost-effectiveness acceptability curve is 
illustrated in Figure 1a (Van Hout et al. 1994; Fenwick et al., 2001) and indicates that when 

000,60£=λ  per QALY gained zanamivir is expected to be cost-effective but this decision is 
uncertain with an error probability of 0.534.  It should also be noted that the probability that zanamivir 
is cost effective at ICER=λ  is less then 0.5, indicating that the prior distribution of the expected 
incremental net benefit offered by zanamivir is positively skewed (Fenwick et al., 2001). 
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3. Is additional research required? 
 
In absence of sunk costs or other irreversibilities (Eckermann and Willan, 2006; Griffin et al., 2007; 
Palmer and Smith, 2000) the technology which is expected to be cost-effective should be selected 
based on current information.  However, a second decision also needs to be made: is additional 
research required to support the use of the technology, and if so how much and what type of research 
would be most useful? 
 
3.1 Necessary condition for further research 
 
The Expected Value of Perfect Information (EVPI) surrounding the decision to adopt or reject a 
technology places an upper bound on the social value of additional evidence and a necessary 
condition for deciding to conduct further research, i.e., further research is potentially worthwhile only if 
the population EVPI is greater than the expected costs of further studies. 
A decision model with unknown parameters ϑ  yields (typically by MC simulation) a distribution for the 
net benefits ( )ϑtNB  of each treatment option Tt ,,1 K=  for a homogeneous patient population.  

After characterising the uncertainty around model parameters ϑ  by assigning prior probability 
distributions (see Table 1), the EVPI for an individual patient is defined as 
 

( ) ( )[ ]ϑϑ ϑϑ tTttTt
NBNBEVPI Ε−⎥⎦

⎤
⎢⎣
⎡Ε=

== ,,1,,1
maxmax

KK
.      (1) 

 
Given current information, the adoption decision can only be made before the uncertainty about model 
parameters ϑ  resolves for all evaluated treatment options, i.e., choose the alternative which 
maximises the expected net benefit ( )[ ]ϑϑ tNBΕ .  In principle, perfect information about ϑ  would 

allow maximisation of the actual net benefit ( )ϑtNB  for any particular value of ϑ , hence yielding 

( )ϑtt NBmax ; however, since the true values are unknown, such maximum values need to be 

averaged over the joint distribution of ϑ , which in turn leads to ( )[ ]ϑϑ tt NBmaxΕ .  Thus the EVPI is 
the difference in social pay-off when making decisions with perfect rather than current information 
(see Ades et al., 2004). 
 
While EVPI indicates the maximum social value of information about the decision problem, it does not 
indicate which type of evidence (which model parameters) might be most useful.  The EVPI 
calculation can be extended to calculate the EVPPI associated with selected (groups of) parameters 
(Ades et al., 2004).  Having divided model parameters ( )ψϕϑ ,=  into nuisance ( )ψ  and relevant 

( )ϕ  parameters of interest, 
 

( )[ ]{ } ( )[ ]ϑψϕ ϑϕψϕϕ tTttTt
NBNBEVPPI Ε−ΕΕ=

== ,,1,,1
max,max

KK
     (2) 

 
quantifies the maximum social value of acquiring information about ϕ  alone.  With perfect knowledge 
about parameters of interest ϕ , the decision-maker is able to identify the technology yielding highest 

expected net benefit (with respect to the residual uncertainty about ψ ) ( )[ ]ψϕϕψ ,max tt NBΕ   

However, as in the case of EVPI, the true value of ϕ  is unknown so that an additional expectation 

( )[ ]{ }ψϕϕψϕ ,max tt NBΕΕ  over the prior distribution of ϕ  needs to be evaluated.  It should be 

noted that EVPI does not additively decompose into its individual EVPPI components, due to the 
presence of interactions occurring within the model structure. 
 
Expressions (1) or (2) provides the EVPI or EVPPI for each time this decision is made (i.e., for an 
individual patient or individual patient episode).  These values need to be expressed for the current 
and future population that could benefit from further research.  If hQ  patients (or episodes) enter the 

decision problem at year Hh ,,1 K=  over the time horizon for the decision problem H , the  
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Population EVPI, or PEVPI at discount rate r , 
 

( )∑
= +

×=
H

h
h

h

r
QEVPIPEVPI

1 1
         (3) 

 
is obtained.  Both hQ  and H  are in principle also subject to uncertainty and proxy a complex and 
uncertain process of future changes (Philips et al., 2008). In this example we assume 7=H  years, 

000,136=hQ  and %.6=r  

 

Figure 1: Cost-Effectiveness Acceptability Curve (a) and Population Expected Values of Perfect 
Information (b) (vertical lines = ICER) 

 
Estimates of population EVPI and EVPPI over a range of cost-effectiveness thresholds are illustrated 
in Figure 1b.  At cost-effectiveness thresholds greater that £30,000 the population EVPI is likely to 
exceed the costs of further investigation and further research maybe worthwhile.  The EVPPI 
associated with reduction in symptom days on zanamivir is relatively high but a more precise estimate 
would require experimental design to avoid selection bias.  This suggests that a further randomised 
trial may be worthwhile.  However, there are other parameters associated with significant EVPPI 
(most notably the quality of life associated with influenza symptoms and the probability that a patient 
presenting with influenza like symptoms does in fact have influenza) which may not require 
experimental design and could be informed by an observational study or a survey of quality of life. 
 
3.2 Sufficient condition for further research 
 
The estimates of population EVPI and EVPPI only provide an upper bound on the social value of 
research.  However, fully informing the research decision requires a sufficient condition to be 
established based on the expected benefits and costs of particular proposed research designs. 
Sample information would allow an update of (imperfect) prior knowledge of model parameters into a 
posterior distribution for ϑ  conditional on the collected data.  This is formally done by combining each 
prior distribution with its likelihood by means of Bayes Theorem, as detailed e.g. in Gelman et al. 
(2004, ch. 2).  Thus proposed research, generating prospective data ( )Jxxx ,,1 K=  to be collected 
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from J  samples of ( )Jnnn ,,1 K=  patients, will inform parameters ϑ .  The expected social value 
of evidence generated by the design n  is then expressed by the Expected Value of Sample 
Information (Ades et al., 2004), 
 

( ) ( )[ ]{ } ( )[ ]ϑϑ ϑϑ tTttxTtx NBNBnEVSI Ε−ΕΕ=
== ,,1,,1
maxmax

KK
,     (4) 

 
which measures the additional value of the adoption decision when based on sample ( )n  rather than 
current information.  Analogously to (2), the information about ϑ  conveyed in x  would allow the 
decision-maker to establish which treatment yields highest expected net benefit ( )[ ]ϑϑ tx NBΕ .  Due 

to the sampling variability surrounding x , a further expectation over its predictive distribution is 
however needed (first term at the RHS of (4)).  At a particular cost-effectiveness threshold the EVSI 
converges to the EVPI as sample size increases and provides an upper bound to EVSI.  As with EVPI 
the EVSI needs to be expressed for the population of current and future patients who will benefit from 
this information.  The population EVSI for proposed research with sample sizes n  is given by 
 

( ) ( )
( )∑

= +
×=

H

h
h

h

r
QnEVSInPEVSI

1 1
        (5) 

 
The estimation of ( )nEVSI  poses greater challenges than EVPI because both inner and outer 
expectations within the first term of (4) can be computationally burdensome, especially with non-multi-
linear decision models1 (Ades et al., 2004).  In this simple example, both log-odds ratios of 
complications and hospitalisation are modelled via a Normal approximation to Binomial likelihoods 
(see Table 1) and second-order Taylor series expansions were also invoked to ensure multi-linearity 
and are recommended in computations involving non-linear parameter transformations in otherwise 
linear net benefit functions (Ades et al., 2004,). 
 
The ( )nPEVSI  needs to be compared to the costs of sampling ( )nC , which includes resource and 
opportunity costs: 
 

( ) ( ) ( ) ( ) ( )[ ]{ }∑∑∑
≠
===

−Ε++⎥
⎦

⎤
⎢
⎣

⎡ +=
T

tt
t

ttt

T

t
t

T

t
ttf NBNBnnnEVSInccnC

111

ϑϑϑ .      (6) 

 
The first term of (6) includes the fixed and reporting resource costs, the second term includes 
expected benefits from the research which will be forgone by those patients enrolled in the study (the 
population that can benefit from the results of the research is ‘used up’) and the third term includes 
the expected net benefit forgone by those patients allocated to the treatment(s) which are not a priori 
cost-effective. 
The social value of proposed research is the difference between expected benefits ( )( )nPEVSI  and 

costs ( )( )nC  or the Expected Net Benefit of Sampling 
 

( ) ( ) ( )nCnPEVSInENBS −= ,        (7) 
 
This provides a sufficient condition for deciding to conduct more research, i.e., only if ( )nENBS  is 
greater than zero is further research justified.  It also provides the means to choose between different 
types of study and different designs (sample size and its allocation).  The research decision can now 
be characterised as choosing the type of study(ies) and design(s) which maximises the ENBS. 
 

                                                 
1 Multi-linearity of the net benefit function allows replacement of the inner expectations in (2)-(4) with expected prior or 

predicted posterior values    
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4. Research design space 
 
Ideally, the research design ∗n  yielding the highest ENBS over a range of sample sizes should be 
sought and implemented.  In principle this defines a relatively straightforward integer programming 
problem, where the objective function ( )⋅ENBS  is to be maximised over the examined design space 
D  of study sizes .n   Complications, however, arise in practice due to the nature of the objective 
function: in most situations exact ENBS evaluation is not possible due to the nested expectation and 
maximisation required in the definition (4) of PEVSI.  The problem of ( )⋅ENBS  not being generally 
available in closed form is usually circumvented by replacing (7) with a suitable approximation, 
ensuring that the maximum it produces would consistently estimate ∗n .  A number of approximation-
based solutions dealing with difficulties in PEVSI calculations recently appeared in the statistical 
literature: see in particular Brennan and Kharroubi (2007a), Oakley (2005) and O'Hagan et al. (2005).  
The most established and straightforward method (see Gilks et al., 1996, ch. 14), which is also 

adopted throughout the paper, relies on the empirical MC estimator ( )nENBS
∧

.  This is obtained from 
taking sample averages over both the predictive distribution of the data x  (for the outer expectation in 
(4)) and the posterior distribution of the model inputs ϑ  conditional on data x  (for the inner 
expectation). 
 
 
4.1 Designing a single study 
 
A simple research design which would inform the zanamivir vs standard care decision problem 
consists of a RCT allocating equal number of entrants to its arms (a fixed sample design) and 
simultaneously informing all model parameters.  In this case, the ENBS maximising design ∗n  
indicates how many patients should be enrolled in the trial for it to provide the highest social value.  
This initial simplicity of the design space ( )ℵ=D  allowed full enumeration of a sufficient range of 
sample sizes to identify the optimal sample size and the maximum ENBS at very high MC resolutions 
(506 iterations). 
 

 

Figure 2: PEVSI(n), C(n), ENBS(n) and n* (a), ENBS(n) and n* for three cost-effectiveness thresholds (b) 
and n* over a range of cost-effectiveness thresholds (c) 
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Figure 2 and the first two rows of Table 2 summarises the results of fully exploring this limited design 
space when fixed costs fc  are excluded for simplicity, as they do not influence optimal sample size 

(or its allocation) and reporting costs Stdc  and Zanc  for each arm are assumed equal at £600 per 

patient.   Figure 2a illustrates ( )nPEVSI , ( )nC  and ( )nENBS  for a range of sample sizes when 

000,50£=λ .  As expected ( )nPEVSI  increases with n  but at a declining rate, approaching PEVPI 
in the limit.  Therefore, the ENBS reaches a ‘non sharp’ maximum where the ENBS curve is relatively 
flat, i.e., sample sizes slightly greater or less than optimal have little impact on ENBS.  Figure 2b 
illustrates ENBS curves at three cost-effectiveness thresholds over the same range of sample sizes.  
The ENBS is highest when 000,50£=λ  reflecting the fact that the decision is most uncertain (see 
Figure 1a) and information is more valuable when 000,50£=λ  rather than 000,60£=λ  or 

000,40£=λ  (see Figure 1b).  Again, the ENBS curve is relatively flat at its maximum.  The optimal 
sample size also changes with the cost-effectiveness threshold.  This relationship is explored more 
fully in Figure 2c which plots the optimal sample size for a range of cost-effectiveness thresholds.  At 

000,30£<λ  the optimal sample size is zero and no further research is needed. When 000,30£>λ  
the optimal sample size increases with λ  reaching a maximum of 999 at 000,61£=λ  and declines 
thereafter because the increased opportunity costs incurred by enrolled patients starts to outweigh the 
marginally diminishing gains generated from additional sample information.  Figure 2b and 2c show 
that both the value of conducting research and its optimal design (in this case only sample size) 
depends critically on economic considerations represented by the cost-effectiveness threshold. 
 
 
4.2 Optimisation algorithms 
 
The limited design space ℵ=D  considered above makes an exhaustive search for ∗n  using 
estimates of ENBS at very high MC resolutions feasible.  However, such an exhaustive search is 
unlikely to be possible when the other dimensions of the design space described are considered 
because the computational burden increases geometrically with the dimensions that need to be 
explored, e.g., considering optimal allocation of each possible sample between two arms of a trial 
means increasing the dimension of D  from 1 to 2.  One way of mitigating this “curse of 
dimensionality” is to replace the previous exhaustive search with a more efficient search for the 
maximum ENBS and the associated optimal sample size.  A number of more efficient searches or 
optimisation algorithms are available which when started at a randomly chosen point will evaluate 
ENBS at candidate sample sizes iterating to the sample size that provides the maximum ENBS.  The 
improved adaptive Nelder-Mead simplex method (see e.g. Nocedal and Wright, 1999, ch. 9) was 
adopted for its robustness and parsimony in general multi-variate optimisation settings. 
 
This optimisation algorithm searches for the global maximum on the ENBS surface.  If the surface is 
smooth with a single global maximum then a single optimisation routine would be required to identify 

the maximum ENBS and optimal sample size.  However, although ( )nENBS
∧

 from MC simulation is a 

consistent estimator of (7) the estimated surface ( )⋅ENBS , is rough, and its roughness depends on 
the MC resolution used in its estimation.  This rough surface does not preserve the convergence 
properties underpinning most optimisation algorithms and a single optimisation routine will not 
necessarily locate ∗n .  However, the Sample Average Approximation (Shapiro, 2000) indicates that 

the estimated optimal design ( )nENBSn Dn

∧

∈= maxargˆ  converges to the optimal design 

( )nENBSn Dn∈
∗ = maxarg  at an exponential rate with the MC resolution.  This suggests that a 

number ( )L  of optimisation routines are required, each started at random sample sizes.  This multiple 

optimisation provides a sample of estimated optimal sample sizes Lnn ˆ,,ˆ1 K  and associated 

( )⋅
∧

ENBS  values.  This sample of estimates provides credible ranges for ∗n  and ( )∗nENBS , with the 

average optimal sample size ( )Lnn
l l∑= ˆ  and average maximum ENBS 
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⎟
⎠
⎞

⎜
⎝
⎛ = ∑

∧

LENBSENBS
l l  providing central estimates.  By selecting the number of optimisations and 

the MC resolution used to estimate each candidate ENBS, a credible range for optimal design can be 
established for feasible computing times.  A narrower range can be achieved with higher MC 
resolutions but at the cost of additional computation time.  Of course, a sufficient number of 
optimisations needs to be conducted to ensure the credible range includes the optimum (this will tend 
to be greater for lower MC resolutions as the surface will be rougher). 
 

 

Figure 3: Estimates of maximum ENBS (equal allocation) (a) and optimal sample allocation (b) (filled 
circles = mean values) 

 
An indication of the performance of this approach to optimisation in terms of computation time, 
credible intervals and central estimates for ∗n  and ( )∗nENBS  is possible by comparison with the 

results of an exhaustive search at very high MC resolutions (taken to represent ‘true’ values of ∗n  
and ( )∗nENBS .  Optimisation was applied to the ℵ=D  RCT design described above and the 
results are illustrated in Figure 3a when using L=1,000, each started at random over the 
range{ }000,1,,1 K  and with a MC resolution of 105 for each of the candidate estimates of ENBS.  An 
informal comparison of Figures 2b and 3a shows the optimisation performs well, locating optimal 
sample size and the maximum ENBS.  These results are reported in more detail in Table 2 and 
confirm that the credible ranges included ∗n  and ( )∗nENBS  and that the means of the samples of 
estimates were close to these ‘true’ values at each of the three cost-effectiveness thresholds.  The 
credible range for ∗n  clearly tends to be wider than the relatively narrow ranges for ( )∗nENBS   This 
is due to the relative flatness of the ENBS surface around its maximum which, when combined with 
MC noise, reduces the precision of inferences about ∗n  but enables accurate estimation of the 
relatively stable ( )∗nENBS .  As might be expected, the sampling variability of the estimates appears 
to be greater at cost-effectiveness thresholds where decision uncertainty is greater (those closer to 
the ICER).  Overall, optimisation appears to provide reliable estimates of ∗n and ( )∗nENBS ; give an 
indication of the credible range of possible values; and substantially reduce computation time with a 
optimisation to exhaustive search ratio of 1/8user computing time. 
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In the simple ℵ=D  research design considered above, the ENBS can be expected to reach a single 
global maximum.2  However, for higher-dimensional design problems there may not necessarily be a 
single maximum on the ENBS surface, so a single optimisation routine may locate a local rather then 
global maximum even on a smooth surface.  Therefore, using a number of optimisation routines each 
started at random points in the design space also ensures that the global rather than a local maximum 
will be located.  The presence of a local maximum would be indicated by a bi- or multi-modal 
distribution of the estimated maximum ENBS.  It should be noted that the distribution of the estimates 
of maximum ENBS were unimodal for all the dimensions of design space explored below, indicating 
that in this example at least the ENBS surface had a single maximum for all the deigns explored. 
 
 
Table 2: Summary results for a single trial design 
Rows 1-2: equal allocation (high MC resolution); 3-6: equal allocation (optimisation); rows 7-10: optimal allocation 
(optimisation). 
 

  
578 882 988 

 £515,000 £2,086,700 £1,600,400 

600 875 943 

(95% bounds) (500 – 726) (762 – 1,008) (812 – 1,058) 

 £516,600 £2,092,100 £1,592,000 

(95% bounds) (£505,200 – 
£527,500) 

(£2,074,500 – 
£2,111,900) 

(£1,577,400 – 
£1,606,500) 

 576 963 976 

(95% bounds) (432 – 724) (811 – 1119) (828 – 1127) 

 £529,700 £2,092,400 £1,618,400 

(95% bounds) (£518,600 – 
£536,700) 

(£2,076,800 – 
£2,103,500) 

(£1,608,300 – 
£1,626,000) 

 
 
4.3 Optimal sample allocation 
 
So far the exploration of research design space has been restricted to a single RCT allocating an 
equal number of entrants to its arms and informing all parameters.  The problem is simply to identify 
the sample size that maximises ENBS, i.e., a single dimension of design.  However, evaluation of the 
alternative designs available requires consideration of both the total number of patients to enrol and 
how they should be allocated between each of the alternative interventions available.  The benefits of 
allocating the sample to different arms of a trial will tend to differ because the variance of the net 
benefit of each intervention considered is unlikely to be the same.  Even if the benefits are similar, the 
costs of allocating the sample to different arms will differ because even if the reporting costs are the 
same (as in this case) the opportunity costs (net benefit forgone) of allocation will differ when 

ICER≠λ .  Therefore the assumption of equal allocation is unlikely to be justified (Claxton and 
Thompson, 2001). 
 
In this example, the problem is to establish the total sample size and its allocation between the two 
arms which provide the maximum ENBS, ( )∗∗∗ = ZanStd nnn , .  The design space increases from one 

( )ℵ=D  to two dimensions ( )2ℵ=D  and the computational burden makes the type of exhaustive 
search at high MC resolutions illustrated in Figure 2 infeasible.  The optimisation algorithm described 
above was implemented and the results for three values of λ  are illustrated in Figure 3b and reported 

                                                 
2 This is because PEVSI increases with sample size ultimately at a declining rate and although the costs of sampling also 

increases at a declining rate it does so more slowly than the PEVSI.  This is because two of the three elements of (6) 
increase at a constant rate and the third (EVSI forgone) necessarily decreases at the same rate as the PEVSI. 
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in Table 2.  Informal inspection of Figure 3b suggests that in this example the optimal allocation does 
not differ markedly from equal allocation (the rising diagonal) – the joint density of the estimated ∗

Stdn  

and ∗
Zann  combinations is diffuse and covers equal allocation.  This might be expected as the variance 

of the net benefit of the two arms are similar, and the only difference in sampling costs is the expected 
net benefit forgone (third term in (6)).  However, when ICER>λ  the optimal allocation does suggest 
that more of the sample should be allocated to standard care, i.e., when the prior decision favours 
zanamivir it is additional information about standard care rather than zanamivir which is more likely to 
revise this decision3.  These additional benefits of allocation to standard care outweigh the additional 
opportunity costs of sampling (the expected net benefit forgone). 
 
Optimal allocation allows designs to be adopted which either provide more benefit for a particular total 
sample size and/or reduce the costs of sampling.  Therefore, the maximum ENBS must be greater 
with optimal allocation but the total sample size may not necessarily be higher as more efficient use is 
made of a smaller sample when allocated efficiently.  The results reported in Table 2 confirm this.  The 
estimated maximum ENBS is higher at each of the three cost-effectiveness thresholds, although not 
markedly so, reflecting the similarity between optimal and equal allocations. The optimal total sample 
size appears higher when 000,50£=λ  but not necessarily at other values of λ .  The credible 
intervals for the total optimal sample size are wider than with equal allocation, reflecting the greater 
complexity of the design space.  The credible ranges for the maximum ENBS, however, are narrower 
indicating that the ENBS surface with optimal allocation is ‘flatter’ and therefore estimates are more 
stable at the maximum.  This is because there are more combinations of ( )ZanStd nn ,  which result in 
ENBS values which are similar and close to their maximum. 
 
 
5. Designing a portfolio of studies 
 
A single RCT which simultaneously informs all the parameters is not the only type of research which 
could be conducted.  Only some of the parameters (reduction in symptom days and the log-odds 
ratios for complication and hospitalisation) require experimental design to avoid selection bias.  Other 
parameters associated with significant EVPPI (see Figure 1b) may not require experimental design 
and could be informed by other designs.  For example, a survey of quality of life could be undertaken 
to estimate the quality of life associated with influenza symptoms.  An observational epidemiological 
study could be designed to estimate the probability that a patient presenting with influenza like 
symptoms does in fact have influenza, as well as the base line probabilities of complication and 
hospitalisation.  If more than one type of study can be conducted, then optimal sample size and its 
allocation can be established for each type of study independently.  If these are mutually exclusive 
alternatives then the research decision is simply to choose the optimally designed single study with 
offers the highest ENBS. However, if they are not mutually exclusive but can be conducted together 
the ENBS of the combination (portfolio) is not the sum of the ENBS of each but must be estimated 
simultaneously. 

                                                 
3 The prior distribution of incremental net benefit of zanamivir compared to standard care is positively skewed, but some 

parameters contribute to this skewness more than others. In this example it is those parameters which require some of the 
sample to be allocation to zanamivir (e.g., LORc, LORh and rsd) which contribute most to the positive skew.  Other 
parameters which can be updated by allocating sample to standard care alone contribute least.  Clearly the distribution of 
predicted posterior values must also be positively skewed, but its skewness will depend on which parameters are being 
updated and with ‘how much’ sample information.  Therefore, when proportionately more of the sample is allocated to 
zanamivir the distribution of predicted posterior values tends to be more positively skewed and less so when more sample 
is allocated to standard care arm.  When λ>ICER the mean incremental net benefit is positive, so it is only predicted 
posterior values on the left of this distribution which could revise the prior decision which is in favour of zanamivir and 
generate value to research.  If this distribution is less positively skewed (more sample allocated to standard care) then such 
values are more likely and the EVSI will be greater.  Conversely when λ<ICER the mean incremental net benefit is negative 
and only predicted posterior values on the right of this distribution could revise the prior decision which is in favour of 
standard care.  If this distribution is more positively skewed (greater allocation to zanamivir) then such values are more 
likely and the EVSI is greater.  The general point is that the benefits of allocating the sample to different arms of a trial do 
not just depend on the differences in the variance of net benefit but also on the effect of sample information on its shape.  
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5.1 Individual study designs 
 
Three alternative types of study can be considered: a simple RCT which only provides information 
about the clinical endpoints (rsd, LORc and LORh) which are vulnerable to selection bias; an 
epidemiological study updating pip, pcs and phs, and a survey of quality of life providing estimates of 
utl.  The maximum ENBS and optimal sample size can be established for each study independently of 
the others.  Therefore, one search over two dimensions of design space (optimal sample size and 
allocation) for the clinical trial, ZanStdTrl nnn += , and two separate one-dimensional searches for 

optimal sample size for the epidemiological study Epin  and survey of quality of life Utln  is required. 

 

Figure 4: Estimates of maximum ENBS and optimal sample sizes (filled circles = mean values) 

 
The optimal design of each of these independent studies is illustrated in Figure 4 when 000,50£=λ  
and details are provided in Table 3 at three cost-effectiveness thresholds.  Of these three studies the 
clinical trial provides the highest ENBS with an optimal sample size much larger than the RCT 
updating all parameters in Figure 2.  This is due to the lower reporting costs of this simpler design 
(£300 rather than £600) and the fact that the clinical endpoint of reduction in symptom days is 
associated with the highest value of information.4 5  It should be noted that the credible range for the 
optimal sample size of this design is greater than previously, reflecting the relative ‘flatness’ of the 
ENBS surface.6  The survey of quality of life generates the next highest ENBS but at the lowest 
optimal sample size.  This is for three reasons: it is associated with high PEVPPI (see Figure 1b); it 
has a diffuse prior which means that relatively small amounts of sample information are valuable 
(PEVSI increases rapidly with Utln ); and the reporting costs are assumed to be relatively high (£500).  
Consequently the ENBS curve has a more pronounced maximum and the credible range for the 
estimates of optimal sample size is relatively narrow.  The epidemiological study generates a lower 
                                                 
4 Sample size is higher and the ENBS surface is ‘flatter’ for 2 reasons: i) When the marginal sampling costs are lower optimal 

sample size will always be higher and the ENBS surface will always be flatter at its maximum other things (i.e., EVSI) being 
equal. ii) This trial design excludes those parameters with diffuse prior distributions where a relatively small amount of 
information is valuable and PEVSI increases rapidly with n .  The parameter rsd is associated with the highest value of 
information but its prior distribution already has substantial informational content so the PEVSI increases more slowly with 
sample size.  The combined effect of both leads to a higher optimal sample size on a ‘flatter’ ENBS surface. 

5 Only the estimated optimal total sample sizes from multiple optimisations rather than the optimal allocation between 
standard care and zanamivir can be represented in two dimensions in Figure 4.  Due to computational burden an 
exhaustive search at very high MC resolution is only possible and illustrated for the single dimensional designs of an 
epidemiological study and a survey of quality of life. 

6 See fn. 5. 
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ENBS but at a higher sample size.  This should be expected given the lower PEVPPI associated with 
these parameters (see Figure 1b), relatively low reporting costs (£200) and less diffuse prior 
distributions. 
 
Table 3: Summary results for different types of studies 
Rows 1-4: clinical trial (optimal allocation); 5-8: epidemiological study; rows 9-12: utility survey; rows 13-16: 
independent research portfolio. 
 

  

 1,203 2,074 2,263 

(95% bounds) (1,055 – 1,366) (1,896 – 2,260) (2,060 – 2,458) 

 
£69,600 £1,577,800 £1,207,700 

(95% bounds) (£65,500 – £63,200) (£1,569,200 –
£1,585,900) 

(£1,200,100 – 
£1,216,000) 

 0 453 392 

(95% bounds) N.A. (393 – 504) (339 – 444) 

 
0 £731,100 £199,900 

(95% bounds) N.A. (£726,200 – 
£735,900) 

(£196,500 – 
£202,800) 

 147 236 239 

(95% bounds) (115 – 171) (208 – 267) (203 – 270) 

 
£121,000 £1,335,200 £838,000 

(95% bounds) (£117,500 – 
£123,700) 

(£1,328,600 – 
£1,341,800) 

(£831,800 – 
£844,000) 

 
 

1,350 2,763 2,894 

(95% bounds) (1,170 – 1,537) (2,497 – 3,031) (2,602 – 3,172) 

£433,800 £2,129,700 £1,692,100 

(95% bounds) (£432,300 – 
£435,400) 

(£2,126,700 – 
£2,132,500) 

(£1,689,900 – 
£1,694,600) 

 
If all the four studies considered and reported in Tables 2 and 3 are regarded as mutually exclusive 
then the research decision is simply to choose the optimally designed single study which offers the 
highest ENBS.  In these circumstances it would be the RCT which simultaneously informed all the 
parameters (see Table 2).  This optimally designed study provides an estimated maximum ENBS 
which is greater than the ENBS of any one of the other three studies considered individually (see 
Table 3) at each cost-effectiveness threshold.  However, the three studies reported in Table 3 are not 
necessarily mutually exclusive and could be conducted simultaneously.  The ENBS for this 
combination is not the sum of the individual ENBS but the ENBS for the combined optimal samples 
sizes for each study and is reported in the last row of Table 3.  The ENBS for the combination of 
studies when designed independently is greater than the ENBS for the single RCT informing all 
parameters when 000,50£=λ  or 000,60£=λ .  However, at a lower cost-effectiveness threshold 
of 000,40£=λ  the single RCT would be better than the combination of the three independently 
designed studies. 
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5.1 Optimal portfolio design 
 
While relatively straightforward to implement, the strategy of designing each study independently 
before combining them to construct a portfolio of research will generally fail to identify the optimal 
combination which maximises ENBS.  Identifying individual research designs independently is sub-
optimal because it neglects the relationships between studies designed to investigate different but 
related aspects of the same decision problem, i.e., it assumes the contribution provided by each study 
(the parameters they investigate) to the value of information is additive.  Therefore the optimal design 
of a portfolio of research can be regarded as finding the total sample size which when allocated 
optimally between different studies and/or arms of studies will maximise ENBS.  In this example it 
requires simultaneously searching for ( )∗∗∗∗∗ = UtlEpiZanStd nnnnn ,,, .  The computational scale of this 
problem and the need for optimisation should be apparent – the dimensions of the design space is 
now 4 ( )4ℵ=D .  Despite the scale of this problem the optimisation procedures outlined above can 
be used to provide central estimates of total sample size, its allocation, maximum ENBS and the 
associated credible intervals.  Computational burden can be made feasible by the selection of 
sufficient number of optimisation routines at a manageable MC resolution.  Therefore the feasibility of 
exploring the design space is not really a question of whether it is feasible or not but more a question 
of what precision is affordable. 

 

Figure 5: Optimal sample sizes and allocations from individual (a) and optimal portfolio (b) research 
designs 

 
The results of optimisation over these 4 dimensions of design space are illustrated in Figure 5 and 
reported in more detail in Table 4.  Figures 5a and 5b illustrate the optimal sample allocations with 
their credible intervals when studies are respectively designed independently and simultaneously.  An 
informal comparison confirms that that a portfolio of research made up of combining independently 
designed studies will not necessarily be the same as an optimal portfolio which simultaneously 
allocates sample between different studies and the arms of studies.  There are similarities: for 
example, the relative size of total sample allocated to the clinical trial, epidemiological study and the 
survey of quality of life are similar.  Also within the clinical trial optimal allocation to the two arms is 
similar to previous results (see Table 2) where a greater proportion is allocated to standard care when 

ICER<λ  but more to zanamivir when ICER>λ 7.  However these differences in allocation are 
smaller with independent design rather then simultaneous optimisation across these studies.  One 
noticeable difference, at 000,40£=λ , is that optimal sample size for the epidemiological study is 
                                                 
7 See fn. 5. 
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zero, indicating it should be excluded from the portfolio of research when designed independently of 
the others.  However, when designed simultaneously the sample size is positive and it should be 
included in a portfolio of research. 
 
Simultaneous allocation within and between studies allows optimal portfolios to be identified which 
either provide more benefit for a particular total sample size and/or reduce the costs of sampling.   
 
Table 4: Summary results for an optimal portfolio 
Rows 1-2: clinical trial (optimal allocation); 3-4: epidemiological study; rows 5-6: utility survey; rows 7-10: optimal 
research portfolio. 
 

    

 1,349 1,901 1,991 

(95% bounds) (1,179 – 1,529) (1,709 – 2,096) (1,823 – 2,167) 

 387 511 259 

(95% bounds) (243 – 538) (291 – 677) (173 – 360) 

 170 203 198 

(95% bounds) (127 – 219) (151 – 260) (153 – 254) 

 1,906 2,614 2,449 

(95% bounds) (1,687 – 2,134) (2,376 – 2,850) (2,251 – 2,655) 

 £524,200 £2,180,400 £1,756,700 

 
Therefore, the maximum ENBS must be greater with optimal design but the total sample size may not 
necessarily be higher as more efficient use is made of a smaller sample when allocated optimally.  In 
this case the overall total sample size of the optimal portfolio is lower than the combination of 
individually designed studies at 000,50£=λ  or 000,60£=λ  (i.e., it makes more efficient use of a 
smaller sample) but is greater when 000,40£=λ   The ENBS for the optimal portfolio reported in 
Table 4 confirms that the ENBS for an optimally designed portfolio always exceeds the ENBS for the 
combination of individually designed studies reported in Table 3 at each of the cost-effectiveness 
thresholds. 
 
 
6. Discussion 
 
A Bayesian decision theoretic approach to both adoption and research decisions means that a 
rational and consistent approach to both is possible.  The decision to adopt a technology can be 
based on expected net benefits (whilst explicitly taking account of any sunk costs and other 
irreversibilities) rather than traditional rules of inference.  Similarly research design issues cannot be 
resolved using simple universal rules of precedent either, e.g., the traditional power calculation is 
based on established benchmarks of power and statistical significance and can be seen as essentially 
arbitrary.  Efficient research design is an empirical and partly economic question determined by the 
characteristics of the decision problem, the prior information available and the monetary valuation of 
health outcome which will be applied once the research is completed and an adoption decision must 
be made.  In other words, the efficient design of research cannot be separated from the objectives 
and constraints on service provision. 
 
To date most applications of Bayesian decision theory and value of information analysis have been 
restricted to establishing the expected value of perfect information, so can only provide a necessary 
condition for conducting further research and cannot address the question of efficient research 
design.  The demonstration and application of an analysis of the expected value of sample information 
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has been more limited and restricted to considering the value and optimal sample size of a single 
study to inform a decision to adopt or reject a technology.  The analysis reported above demonstrates 
that Bayesian decision theory can be used to more fully inform the research decision by exploring 
more dimensions of research design space when considering the question of whether more evidence 
is needed to support a decision to adopt or reject a health technology.  The research decision is not 
simply a binary question of whether to conduct further research or not, nor is it restricted to the more 
complex question of the optimal size of a single study.  The research decision requires an 
examination of much wider dimensions of design space, including how patients should be allocated 
between the arms of a single study as well as the range of possible combinations of different types of 
studies that could be conducted to inform particular uncertain parameters. 
 
In this particular example, even when considering a single study with fixed sample design, the optimal 
allocation of patients between the arms of the proposed trial is important even when the direct costs of 
allocation between different arms are the same.  In this sense optimal allocation is a more 
fundamental question than the issues which arise in sequential trial designs.  As well as an efficiently 
designed single trial informing all parameters (with optimal sample size and allocation) the research 
decision space also includes: i) conducting a simpler (and cheaper) clinical trial providing evidence 
only on clinical endpoints; ii) an epidemiological study of natural history of disease; and iii) a survey of 
quality of life.  The research decision not only requires consideration of each of these independent 
alternatives but also their possible combinations.  The example demonstrates that where a number of 
different types of study informing different parameters in the decision problem could be conducted, the 
simultaneous estimation of ENBS across all dimensions of the design space is required to identify the 
optimal sample sizes and allocations within such a research portfolio. 
 
The computational challenges of exploring these wider dimensions of design space are considerable.  
However, the use of more efficient algorithms to search the ENBS surface for its maximum rather then 
exhaustively search over such large dimensions makes this task feasible and substantially reduces 
computation time.  In this example, multiple optimisation routines were used which appear to provide 
reliable estimates of optimal sample size, allocation and maximum societal payoff to research.  
Usefully they also provide a credible range for optimal samples sizes and social payoff.  The 
computational burden of exploring design space can be made feasible by the selection of sufficient 
number of optimisation routines at a manageable MC resolution.  Indeed, it is not really a question of 
whether it is feasible to explore these additional dimensions of design space, but rather a question of 
what precision is affordable. 
 
There are other dimensions of possible design space that have not been explored in this example.  
Most importantly the question of sequential design has not been considered.  Sequential issues arise 
in two respects.  Firstly, it has been assumed that the proposed trials are a fixed sample rather than 
sequential design, where the results from earlier trial entrants are available and able to inform the 
allocation of subsequent patients.  A substantial body of literature exists, which examines the optimal 
allocation of entrants in sequential clinical trials (see e.g. Zelen, 1969; Bather, 1981; Armitage, 1985; 
and Whitehead, 1997) but traditional approaches to this problem, which favour patient allocation into 
the most effective arm in the light of its interim results, tend to neglect the dynamics of the marginal 
benefits and costs of sample information and hence fail to address the issue of socially efficient 
design.  Secondly, in constructing the portfolio it was assumed that all studies would be conducted 
concurrently so the results from one could not inform the design of another.  It is possible to consider 
the order in which different studies could be conducted (Griffin et al., 2008).  For example, it might be 
better to conduct a survey of quality of life before designing and conducting a clinical trial.  However, it 
should be apparent that the dimensions of this design space are considerable, requiring estimates of 
social payoff for every possible subsequent sequence and possible design conditional on every 
predicted posterior for each initial sample size.  This becomes even more burdensome when there are 
sequential issues within and between the studies under consideration.  There are ways to reduce the 
scale of this type of problem using dynamic programming.  However, using Bayesian decision theory 
and value of information analysis to fully explore the design space which arises from these types of 
sequential problems is an area for future investigation. 
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