Bayesian Multivariate Modelling of Patient Level Healthcare Resource Use Data in RCTs

S. Conti, A. Manca, P. C. Lambert, K. R. Abrams

The University of York

Backdrop

- CEA informs allocation decisions in UK health policy
- RCTs typically offer (a wealth of) IPD on health-care resource use
- analyses often proceed from converting data into monetary figures
- by direct modelling of health-care resources
 1. a more efficient and transparent analytic perspective is enabled
 2. features of the underlying distributions are explicitly addressed
 3. relationships between the different cost drivers are accounted for
- The Bayesian approach provides sound and powerful model building, criticism and selection tools

Modelling Approach

- Patients \(r = 1, \ldots, n \) in arm \(t \in \{ C, T \} \) of a RCT consume health-care resource items \(i = 1, \ldots, I \)
 - individual resource uses \(R_{it} \) are recorded
 - their distributions are characterised by unknown parameters \(\phi_t \)
- Experience and tractability drive model choices for \(R_{it} \mid \phi_t \)
 - joint modelling of heterogeneous variables is not viable
 - conditioning facilitates the model structuring process
 - reliance on (arguable) Normal approximations is not required

ATLAS: a Test-Bed

- The ATLAS trial compared low versus high-dose ACE-inhibitor losartan in the study of chronic heart failure
- Focus is upon “Day Cases”, “Days in Hospital” and “Drug Use”, with \(n_C = 1571 \) and \(n_T = 1544 \)
 - discrete variables \(R_{i} \) are over-dispersed and strongly concentrated at zero
 \[\rightarrow (N, PoI, HPoI, NLBi, NHlBi, ZINtBi) \]
 - continuous variable \(R_i \) is strongly asymmetric – and negatively (!) log-skewed
 \[\rightarrow (N, LN, G, LSN, LST) \]

Model Formulation

- Conventional Bayesian diagnostics are based around residuals
 - RMSFs measure the fit of marginal predictive distributions
 - SMDs account for how well the observed relationships are modelled
- Various statistical tools for model selection are available off-the-shelf
 - AIC, BIC and DEC offer model adequacy and complexity
 - consistent scores to be expected in non-hierarchical contexts
 - models should not just be ranked at their score’s face value

Model Validation and Selection

- Review distributions were fitted with ‘vague’ priors
- Locations are linear in their conditioning variables (as in Normal case)
- reviewed distributions were fitted with ‘vague’ priors
- parametrisation meets constraints on variables (e.g. non-negativity)
- non-Normal distributions are fitted by means of MCMC simulation

Model Diagnostics

- Conventional Bayesian diagnostics are based around residuals
 - RMSFs measure the fit of marginal predictive distributions
 - SMDs account for how well the observed relationships are modelled

References