The return of the 5 year plan

Mathematical programming for allocation of health care resources

David Epstein, Karl Claxton, Mark Sculpher (CHE)
Zaid Chalabi (LSHTM)

Medical Research Council
Health Services Research Collaboration
This study

- Builds on existing decision framework
- Applying mathematical programming to a stylised but relevant policy problem
 - Profile of costs over time
 - Equity concerns are constraints
 - Allowing examination of equity-efficiency trade offs
Data

- Data from 6th wave UK NICE appraisals
 - Flu treatments (adults, elderly, residential elderly, children)
 - Rituximab (<60 years old, elderly)
 - Long acting insulin (type 1 diabetics, type 2 diabetics)
- Data available for each treatment:
 - costs for each year 1-15 (compared to 'current care')
 - total QALYs (compared to 'current care')
 - Prevalence and incidence
- Assume decision can be reviewed at 5 years
Maximise total (discounted) health benefits

subject to
- Total cost \leq overall budget
- Interventions can be MIXED or PURE
Optimal solution

% receiving intervention vs Budget (£million)

Flu 1

Flu 2, 3 & 4

0 100 200 300 400

0 100
Optimal solution

% receiving intervention vs. Budget (£million)

Flu 1
Flu 2, 3 & 4
Optimal solution

% receiving intervention

Budget (£million)

Flu 1
Diab 1
Flu 2,3 & 4
Diab 2
Optimal solution
Shadow Price of budget constraint

- £10500 / QALY
- £42900 / QALY

Shadow Price (QALYs / £m) vs. Budget (£million)
Opportunity Loss of budget rules

<table>
<thead>
<tr>
<th>Budget rule</th>
<th>Health gain (QALY)</th>
<th>Opp Loss (QALY)</th>
<th>Budget spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No constraint</td>
<td>7317</td>
<td>0</td>
<td>£180m</td>
</tr>
</tbody>
</table>
Opportunity Loss of budget rules

<table>
<thead>
<tr>
<th>Budget rule</th>
<th>Health gain (QALY)</th>
<th>Opp Loss (QALY)</th>
<th>Budget spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No constraint</td>
<td>7317</td>
<td>0</td>
<td>£180m</td>
</tr>
<tr>
<td>Equal phrasing</td>
<td>3586</td>
<td>3731</td>
<td>£103m</td>
</tr>
</tbody>
</table>
Opportunity Loss of budget rules

<table>
<thead>
<tr>
<th>Budget rule</th>
<th>Health gain (QALY)</th>
<th>Opp Loss (QALY)</th>
<th>Budget spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No constraint</td>
<td>7317</td>
<td>0</td>
<td>£180m</td>
</tr>
<tr>
<td>Equal phasing</td>
<td>3586</td>
<td>3731</td>
<td>£103m</td>
</tr>
<tr>
<td>All in 1st 5 years</td>
<td>4879</td>
<td>2438</td>
<td>£75m</td>
</tr>
</tbody>
</table>
Indivisibility and horizontal equity

- Optimum solution allows mixed treatment options for some patient groups
- Requirement for horizontal equity is a constraint
- Can explore the opportunity loss of this equity concern on one or more programmes or populations
<table>
<thead>
<tr>
<th></th>
<th>Health gain (QALY)</th>
<th>Opp. Loss (QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No equity constraint</td>
<td>3586</td>
<td>0</td>
</tr>
<tr>
<td>Equity popn. 1 (type 1 diabetes)</td>
<td>3066</td>
<td>520</td>
</tr>
<tr>
<td>Equity popn. 2 (age<60, lymphoma)</td>
<td>3547</td>
<td>19</td>
</tr>
<tr>
<td>Equity popn 1 and popn 2</td>
<td>3066</td>
<td>520</td>
</tr>
</tbody>
</table>
Equity between populations

- Usually acceptable to differentiate on basis of age
- Other more controversial examples might be gender or social class
Equity between populations

<table>
<thead>
<tr>
<th></th>
<th>Health gain (QALY)</th>
<th>Opp. Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>No equity constraint</td>
<td>3586</td>
<td>0</td>
</tr>
<tr>
<td>Equity: programme 1 (lymphoma: older = younger)</td>
<td>3579</td>
<td>7</td>
</tr>
<tr>
<td>Equity: programme 2 (diabetes: type 1 = type 2)</td>
<td>3126</td>
<td>460</td>
</tr>
<tr>
<td>Equity prog 1 and prog 2</td>
<td>3122</td>
<td>464</td>
</tr>
</tbody>
</table>
Conclusions

- **What has been done?**
 - Used linear programming to assist a policy-relevant decision

- **What does it show?**
 - Shadow price varies with overall budget
 - The profile of cost over time is important
 - Different equity concerns have different implications for efficiency

- **Further work**
 - Uncertainty
 - Fixed costs and other non-linear functions
 - Repeat decisions
 - Resource as well as budget constraints
End of presentation