Using Bivariate Hierarchical Modelling to Assess the Generalisability by Location of Multinational Trial-Based Cost-Effectiveness Analysis Results

Andrea Manca1, Paul Lambert2, Seokyung Hahn3, Mark Sculpher1, Nigel Rice1

1. Centre for Health Economics, University of York, Heslington, York, UK
2. Centre for Biostatistics and Genetic Epidemiology, Department of Health Sciences, University of Leicester, UK.
3. Department of Health Sciences, University of York, UK.

Abstract

Background: Cost-effectiveness analysis (CEA) in health care is increasingly conducted alongside multicentre and multinational randomised controlled clinical trials (RCTs). Stochastic CEA is designed to account for between-patient sampling variability in cost-effectiveness data. In multi-location RCTs however between-location variability in cost-effectiveness is to be expected given that countries often differ in factors such as clinical practice, patient case-mix and the unit costs of delivering health care. A failure to acknowledge this feature of the data may lead to misleading conclusions in trial-based economic studies.

Objective: Using data from a recent multinational trial-based CEA, this paper explores the use of Bayesian bivariate hierarchical modelling to handle multinational cost-effectiveness data. This analytical framework explicitly recognises that (i) patient-level costs and outcomes within each country/centre are correlated and (ii) policy-makers are fundamentally country-specific. It is shown that bivariate hierarchical modelling can be used to obtain (a) more appropriate estimates of the population average incremental cost-effectiveness and associated measure of sampling uncertainty compared to standard CEA; and (b) country-level cost-effectiveness estimates which can be used to assess the generalisability by location of the study results, while controlling for between-counties differences in country-specific and patients’-specific characteristics.

Methods: Bayesian bivariate hierarchical modelling and shrinkage estimation.

Results: Standard CEA results displayed a large degree of variability across the 17 countries included in our analysis, producing potentially misleading results. Shrinkage estimation through Bayesian bivariate hierarchical modelling facilitated the appropriate prediction of country-specific cost-effectiveness estimates, while weighting the results based on the level of information available within each country.

Conclusions: Bivariate hierarchical modelling is a promising analytical approach which allows the analyst to obtain trial-wide and country-specific cost-effectiveness estimates. The approach presented in this paper represents a more general framework for the analysis of cost-effectiveness data, which has the potential to (a) explore the generalisability by location cost-effectiveness results; (b) facilitate the synthesis of pre-existing evidence; (c) accommodate prognostic factor adjustment and patient sub-group economic analysis; and (c) explore potential cross-level interactions.