The woods decay, the woods decay and fall,
The vapours weep their burthen to the ground,
Man comes and tills the field and lies beneath,

And after many a summer dies the swan.

Me only cruel immortality
Consumes; I wither slowly in thine arms,
Here at the quiet limit of the world,
A white-hair’d shadow roaming like a dream
The ever-silent spaces of the East,
Far-folded mists, and gleaming halls of morn.

Tennyson
Questions of fact and questions of value?

- When costs displace health (Δc_h)
 \[
 \Delta h - \frac{\Delta c_h}{k} \geq 0 \quad \text{or} \quad \frac{\Delta c_h}{\Delta h} \leq k
 \]
 Health gained
 Health forgone

- When costs displace consumption (Δc_c)
 \[
 \Delta h - \frac{\Delta c_c}{v} \geq 0 \quad \text{or} \quad \frac{\Delta c_c}{\Delta h} \leq v
 \]
 Consumption forgone

- Costs fall on both
 \[
 \Delta h - \frac{\Delta c_h}{k} - \frac{\Delta c_c}{v} \geq 0 \quad \text{or} \quad \frac{\Delta c_h - k\Delta c_c}{k\Delta h} \equiv 0
 \]

Fact: $k = \text{how much health displaced by increased HCS costs}$?

Value: $v = \text{how much consumption should we give up for health}$?
A scientific question of fact

- Previously (Martin et al JHE 2008)
 - Variations in expenditure and outcomes within programmes
 - Reflect what actually happens in the NHS by programme

<table>
<thead>
<tr>
<th></th>
<th>Cancer</th>
<th>Circulation</th>
<th>Respiratory</th>
<th>Gastro-int</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/05</td>
<td>£13,137</td>
<td>£7,979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/06</td>
<td>£13,931</td>
<td>£8,426</td>
<td>£7,397</td>
<td>£18,999</td>
</tr>
</tbody>
</table>

- Need estimate the overall threshold:
 - How changes in overall expenditure gets allocated across all the programmes
 - How changes in mortality might translate into QALYs gained
 - More (all) programmes (types of QALYs gained and forgone)
 - Reflect uncertainty in any overall estimate (parameters and identification)
 - How it changes with the sign and scale of expenditure change
 - How it changes over time
Social value of different types of health?

- Value of health gained (*and health forgone*)
 - Burden and severity
 - Δh lost as consequence of the condition with current treatment
 - Therapeutic improvement
 - Scale of Δh (some threshold below which it is less valuable)
 - Wider social benefits (-Δc_c
 - Cost of care born by patients and carers
 - External consumption effects
 - End of life

- Need to reflect the type and value of health and Δc_c forgone
Social value of health forgone (a single threshold)

- Unweighted QALYs
 \[k = \frac{1}{\sum_{i=1}^{I} q_i}, \quad q_i = QALYs \text{ of type } i \text{ per NHS £} \]

- Weighted QALYs
 \[k^* = \frac{1}{\sum_{i=1}^{I} w_i \cdot q_i}, \quad w_i = \text{weight for QALYs of type } i \]

- Weighted QALYs plus WSBs
 \[k^{**} = \frac{1}{\sum_{i=1}^{I} w_i \cdot q_i - \sum_{i=1}^{I} c_i \cdot q_i / v}, \quad c_i = \text{WSC associated with QALYs of type } i \]

- Some implications

 \[k > k^* \text{ if some } w_i > 1 \text{ when } q_i > 0 \quad k^* > k^{**} \text{ if some } c_i < 0 \text{ when } q_i > 0 \]

 \[k^* \neq w_j \cdot k, \quad w_j = \text{weight associated with QALYs gained from technology } j \]
End of life?

- NICE supplementary advice for EoL treatments (2009)
 - Criteria
 - Short life expectancy (normally less than 24 months)
 - Evidence of life extension (normally 3 months)
 - Indicated for small patient populations (supply side motive)
 - Advice
 - Life extension lived at normal quality of life (diminishing MRS)
 - What additional weight would be required make it cost-effective
 - Questions for NICE
 - Is life extension more important than quality at EoL?
 - Do social preferences suggest an additional weight (how large)?
 - Are cut offs or criteria reflective of social preferences?
Pilot study (Koonal Shah, Aki Tsuchiya, Allan Wailoo, NICE DSU June 2011)

- 5 Scenarios (social preferences)
 - EoL (at EoL or unexpectedly at EoL)
 - Life extension
 - Quality of life
 - Time preference
 - Age (preference for young)
 - Qualitative information about the source of preference

<table>
<thead>
<tr>
<th>Time (years)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (years)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So what role for v?

- Relative value of consumption effects

 \[\frac{\Delta c_h - \frac{k}{v} \Delta c_c}{\Delta h} \leq k \]

- Weight of different types of health

 \[k^* = \frac{1}{\sum_{i=1}^{I} v_i \cdot q_i} \]

 \[v_i = \text{consumption value of QALYs of type } i \]

- Equivalent of consumption benefits forgone

 \[k^{**} = \frac{1}{\sum_{i=1}^{I} v_i \cdot q_i - \sum_{i=1}^{I} c_i \cdot q_i / v_i} \]

- Compare an ICER to a k not a v

- Value based prices are determined by a k not a v

 - v only determines the scale of consumer surplus (if there is any)
Mishan’s wild goose chase

- Value a certain state conditional on events
 - Normative content of the axioms of EUT (should we pay for irrationality, regret)?
- Value of a uncertain prospect
 - Low probability of large benefit (variability = unexploited value in the joint distribution)
- Ex-ante or (almost) ex-post
 - Which v would you like?
 - Just choose the thickness of your veil
 - Individual values
 - Moment of the distribution
 - Inconsistent with concern for income or health distribution
Positive hats and normative rabbits

- John Broome
 - Some things cant not be compensated by roses (or consumption)
 - Only finite compensation if the life is unknown
 - Distinction of known and unknown not relevant for social decisions
 - Not unbounded (large) social value, just using the wrong ruler

- Specify (implicitly) complete and legitimate SWF?
 - v is the measure of social value and presupposes a complete SWF
 - k is simply an inefficient nuisance preventing welfare maximisation

- Welfare function is unknown/latent
 - Partially revealed by legitimate social processes
 - Social good is more than
 - the satisfaction of private wants and desires
 - Purpose of science and discovery is more than
 - the creation of futile hopes and amelioration of private fear
 - k is more than a mere fact

- It is a revealed expression of social value of health generated by collectively funded health care