DANGEROUS OMISSIONS:
The consequences of ignoring decision uncertainty

Susan Griffin, Karl Claxton, Stephen Palmer, Mark Sculpher
Introduction

When determining which technologies to reimburse within a health care system there are two conceptually distinct but simultaneous decisions:

1) Should a technology be adopted given the existing evidence (and the current uncertainty)?

2) Is additional evidence required to support the adoption decision?

Overview

• Decision theory

• The policy environment

• Decision rules incorporating the opportunity losses of adoption and rejection

• Incorporating uncertainty

• Discussion and Conclusions
Decision theory and value of information
Decision-making with uncertainty

• The decision to adopt a technology
 – Objective of health care system
 • Maximise health subject to budget constraint
 – Cost-effectiveness analysis
 • Compare health gained with new intervention to health displaced in transferring resources from existing programmes

• The decision to acquire more evidence
 – Value of information
 • Compare value of reducing expected cost of uncertainty to health displaced by allocating resources to research
Slope gives rate at which resources converted to health gains with currently funded technologies.
Slope gives rate at which resources converted to health gains with currently funded technologies.
Decision rule

• Is cost per unit of health gained with new intervention less than threshold, λ
 – Where $\lambda = \frac{\text{cost per unit of health gained with currently funded activities that would be displaced}}{(C_{\text{new}} - C_{\text{old}})/(H_{\text{new}} - H_{\text{old}})} < \lambda$

• Can rearrange this to calculate net health benefits

• Are net benefits with new intervention greater than net benefits of old
 \[\frac{H_{\text{old}} - C_{\text{old}}}{\lambda} < \frac{H_{\text{new}} - C_{\text{new}}}{\lambda} \]
The irrelevance of inference

• Costs and health outcomes estimated with uncertainty
 – E.g. Confidence interval around relative effect of new technology

• Must make decision in presence of uncertainty
 – To achieve objective of maximising health gains should adopt technology that we expect to have greatest net benefit

• Failure to adopt simply because differences in NB are not regarded as statistically significant will impose opportunity costs on patients who could benefit
Accept j^*

Reject j^*
However....

- Making decisions on expected NB does not mean that uncertainty is irrelevant

- The second question of whether additional evidence is required must be addressed, otherwise:
 - decisions made on limited evidence
 - decisions made on poor quality evidence
The decision to acquire more evidence

- Same objective as adoption decision
 - Maximise health gains
- With uncertainty, the technology selected on current evidence may not have maximum NB
 - In these cases patients forgo potential health gains
 - In absence of uncertainty, could always pick technology that maximised health

Expected value of perfect information (EVPI)
- Difference between expected NB of a decision made with perfect information and the decision made with current information
Population net health benefits (QALYs)

Population $E(NB_{j0})$

Population $E(NB_{j*})$

Population $E(NB_{**})$

Cost-effectiveness threshold

Reject j^*

Accept j^*

Cost-effectiveness threshold

Population net health benefits (QALYs)
Population values

• Multiply health gains from technology by population who can benefit
 – Estimate incidence of disease and period of time over which technology will be used

• Information has public good characteristics
 – Multiply value of information by population that can benefit

• Population EVPI provides upper bound for value of additional research
 – provides necessary condition for additional research
 – Value must exceed costs of further investigation
The policy environment
Background

• Economic evaluation increasingly used to inform reimbursement/adoption decisions made by funders of health care
 – For example

UK Canada Australia Sweden

National Institute for Health and Clinical Excellence

Canadian Agency for Drugs and Technologies in Health

PHARMAC Pharmaceutical Management Agency

Läkemedelsförmögningsnämnden
The policy environment

• Institutions with remit for making adoption decisions often separated from those responsible for prioritising and commissioning research
 – cannot directly arrange funding for research
 – cannot issue/enforce conditional approval

• In these circumstances the adoption decision is the only policy instrument available
 – not clear that question of whether further evidence needed is being addressed simultaneously and consistently
Expected NB decision-making

• Decisions can continue to be based on expected NB if the prospects of further research are unaffected by the adoption decision

• However this is unlikely because:
 – adoption removes incentives for manufacturer of technology to conduct further research
 – diffusion of technology, particularly when mandatory, means future clinical trials less likely to be supported or regarded as ethical
 – adoption can damage recruitment to ongoing trials
Implications

• Adoption can remove an option to acquire additional evidence

• The opportunity loss of adopting a technology can be measured by the value of information that may be forgone
 – Preventing research means cost of uncertainty cannot be reduced
 – This opportunity loss could be greater than the net benefits offered by the technology

• If reimbursement authorities are not given remit to commission/demand research then may be better to deny approval of apparently cost-effective technology
Calculating the opportunity losses of adoption and rejection
Context

• Decision maker whose role is limited to granting approval for reimbursement of mutually exclusive alternatives

• New technology, j^*, has greater expected NB than current practice, j_0

• To estimate value of information forgone need assessments of:
 – Probability that research will be conducted, α
 – Time at which research will report, τ
Population to benefit

• Split future patient population, \(P = P_1 + P_2 \), into:

• Incident cases prior to any further research
 – Those who benefit from treatment decision based on current evidence: \(P_1 \)

• Incident cases post any further research
 – Those who can benefit from decision incorporating results from further research: \(P_2 \)
Expected net benefits of rejection

- If approval of j^* is withheld, patients receive current practice, j_0 and the associated NB_{j_0}

- If research conducted and reports at time, τ, decision can be revised and the maximum future patients will receive is value of decision made with perfect information, NB^{**}:
 - NB_{j_0} for population prior to τ
 - NB_{j_0} for population post τ, if research not conducted (with probability $1 - \alpha_R$)
 - NB^{**} for population post τ, if research conducted (with probability α_R)
Expected net benefits of adoption

• If approval of j^* is granted, patients receive the associated NB_{j^*}

• If research conducted and reports at time, τ, decision can be revised and the maximum future patients will receive is value of decision made with perfect information, NB^{**}:

 – NB_{j^*} for population prior to τ
 – NB_{j^*} for population post τ, if research not conducted (with probability $1 - \alpha_A$)
 – NB^{**} for population post τ, if research conducted (with probability α_A)
Condition for immediate adoption

• Benefits of adoption should exceed benefits of reject:
 – Gain for current patients and for future patients if research not conducted
 \[(NB_{j}^* - NB_{j_0}) \cdot (P_1 + (1 - \alpha_R) \cdot P_2)\]
 – Loss for future patients and if adoption reduces probability of research
 \[(\alpha_R - \alpha_A) \cdot (NB^{**} - NB^*) \cdot P_2\]

• Standard condition for adoption is special case
 – Adoption does not affect prospects for research, \(\alpha_A = \alpha_R\)
 – Approve if \(E(NB_{j_0}) \geq E(NB_{j*})\)
New decision rule
Examples

• Will now demonstrate:
 – Difference with decision making based on expected NB
 – Incentives offered by decision rule that incorporates opportunity cost of research forgone
 • Price
 • Uncertainty
 – Implications for different types of research
\[\alpha_R = 1 \quad \alpha_A = 0 \quad \tau = 2 \]
Combination of α_R and τ for which $B_A = B_R$

Approve based on current evidence

Reject?

$\lambda = £30,000$

$sufficient condition$

$\alpha_A = 0$
The decision to adopt

- Technologies for which research prospects lie to the north-east of the boundary should be approved.
- Technologies that lie to the south-west may require further consideration.
- Boundary based on value of perfect info:
 - Boundary based on sample info lies to south-west.
 - Computationally expensive to assess EVSI.
 - However, given α and τ can calculate threshold for EVSI as a guide.
Impact of the threshold on the boundary for approval

Time research reports (τ)

Probability of research (α_r)

$\lambda = \£25k = \text{ICER}$

$\lambda = \£26,000$

$\lambda = \£27,000$

$\lambda = \£30,000$

$\lambda = \£45,000$
Impact of the price and uncertainty on the boundary for approval

- **Probability of research** (α_R)
- **Time research reports** (τ)

- Original boundary
- Reduce price or uncertainty
- $\alpha_R=0.8$, $\tau=2$
Impact of price and uncertainty

• Reducing price increases the benefits of immediate adoption: increases NBj*
 – If uncertainty associated with incremental cost, reducing price also reduces value of information

• Reducing uncertainty reduces the value of any information forgone by immediate adoption

• Reducing price or uncertainty will increase the benefits of adoption relative to rejection
Incentives to manufacturers

• Decision rules based solely on expected NB
 – set price so that ICER just below threshold
 – thus minimising R&D costs and capturing surplus

• Decision rules that consider the opportunity loss of adoption
 – provide more evidence to support technology
 – reduce price
What type of research?
Research decision space

• Different parameters contribute to overall decision uncertainty
 – Type of evidence determines appropriate research design
 – Different research designs affected in different ways by adoption

• Suppose $\theta_1, \theta_2 \supset \theta$
 – If θ_1 relative effect of j^* \rightarrow RCT; $\alpha_{R}^{\theta_1} > \alpha_{A}^{\theta_1} = 0$
 – If θ_2 quality of life \rightarrow observational study; $\alpha_{R}^{\theta_2} = \alpha_{A}^{\theta_2}$
 – Time to research $\tau_{\theta_1} > \tau_{\theta_2}$
Uncertainty in α and τ

- Characterise uncertainty associated with τ and α by assigning appropriate prior distributions
 - allows calculation of expected payoff from immediate adoption

- For example:
 - trial registry indicates ongoing trial
 - protocol indicates when results expected to be reported
 \[\tau \sim \text{gamma}(25,0.1); \quad \alpha \sim \text{beta}(2.4,0.6) \]

 - no information about potential further research
 \[\tau \sim \text{unif}(0,T); \quad \alpha \sim \text{unif}(0,1) \]
Figure 5. Expected net benefits of immediate adoption

Expected net benefits of immediate adoption (£m)

Cost-effectiveness threshold, \(\lambda \)
Discussion
Recap

• If objective is to maximise health gains from available resources
 – has been argued that decision to adopt be based on expected cost, expected outcomes and an assessment of the cost-effectiveness threshold

• However this is only justified
 – if question of whether additional evidence required assessed simultaneously
 – or adoption decision does not affect prospects for future research
Recap

• Adoption decision is likely to affect prospects for further research
 – adoption decision cannot be separated from question of whether evidence is sufficient
 – not clear whether this is recognised in current policy environment

• Where adoption decision only policy instrument
 – adoption decision cannot be based on expected NB
 – require assessment of opportunity loss of immediate adoption
Benefits of formal approach

• Have demonstrated formal framework for evaluating the opportunity losses
 – provides incentives for manufacturers to reduce price or provide additional evidence

• Current ‘informal’ approach
 – lack of legal standing to back-up recommendations
 – not transparent
 • problems with consistency, predictability, incentives
Other issues

• Rely on EVPI and assessment of threshold for EVSI

• Consider only current decision problem
 – value of additional information may be underestimated