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1. Introduction

A decade ago, Newhouse (1987) assessed the balance of trade between imports from
the econometrics literature into health economics, and exports from health economics
to a wider audience. While it is undoubtedly true that imports of concepts and
techniques still dominate the balance, the literature reviewed in this chapter shows that
the range and volume of applied econometric work in health economics has increased
dramatically over the past ten years. What is more, the prevalence of latent variables,
unobservable heterogeneity, and nonlinear models make health economics a
particularly rich area for applied econometrics.

The chapter is not a systematic review. Instead, it attempts to provide an overview of
the econometric methods that have been applied in health economics, and to use a
broad range of examples to illustrate their use. The emphasis of the chapter is on the
use of individual level data and microeconometric techniques; reflecting the emphasis
on microeconomic analysis in health economics generally. The majority of aggregate
analyses have used international data, and the methodological issues surrounding
international comparisons of health care are discussed by Jonsson and Gerdtham
(1998) in this Handbook.

The structure of the chapter is organised around the nature of the data to be analysed
and, in particular, the way in which the dependent variable is defined and measured.
This puts the emphasis on the specification of models and appropriate methods of
estimation. But the emphasis on estimation should not imply a neglect of checks for
model misspecification, and examples of the use of diagnostic tests are given
throughout.

2. Identification, heterogeneity, and estimation

2.1 The evaluation problem

The evaluation problem is whether it is possible identify causal effects from empirical
data. Mullahy and Manning (1996) provide a concise summary of the problem and,
while their discussion focuses on clinical trials and cost-effectiveness analysis, the
issues are equally relevant for structural econometric models. An understanding of the
implications of the evaluation problem for statistical inference will help to provide a
motivation for most of the econometric methods discussed in this chapter.

Consider an “outcome” yy, for individual i at time t; for example an individual’s use of
primary care services. The problem is to identify the effect of a “treatment” on the
outcome; for example whether the individual has health insurance or not. The causal
effect of interest is,

CEGY = yh - y% (H



where T denotes treatment (insurance) and C denotes control (no insurance). The pure
causal effect cannot be identified from empirical data because the “counterfactual” can
never be observed. The basic problem is that the individual “cannot be in two places at
the same time”; that is we cannot observe their use of primary care, at time t, both with
and without the influence of insurance.

One response to this problem is to concentrate on the average causal effect,
ACE(®) = Ely"u-y%d @

and attempt to estimate it with sample data. Here it is helpful to think in terms of
estimating a general regression function,

y = gx 1, €) 3

where x is a set of observed covariates, including measures of the treatment, L
represents unobserved covariates, and € is a random error term reflecting sampling
variability. The problem for inference arises if x and [ are correlated and, in particular,
if there are unobserved factors that influence whether an individual is selected into the
treatment group or how they respond to the treatment. This will lead to biased
estimates of the treatment effect.

A randomised experimental design can achieve the desired orthogonality of measured
covariates (x) and unobservables (JL); and, in some circumstances, a natural experiment
may mimic the features of a controlled experiment (see e.g. Heckman, 1996).
However, the vast majority of econometric studies rely on observational data gathered
in a non-experimental setting. These data are vulnerable to problems of non-random
selection and measurement error which may bias estimates of causal effects.

2.2 Estimation strategies

In the absence of experimental data attention has to focus on alternative estimation
strategies. Mullahy and Manning (1996) identify three common approaches:-

i) Longitudinal data - the availability of panel data, giving repeated measurements for a
particular individual, provides the opportunity to control for unobservable individual
effects which remain constant over time. The debate over whether to treat these
unobservables as fixed or random effects, and methods for estimating both linear and
nonlinear panel data models are discussed in section 6.

ii) Instrumental variables (IV) - variables (or “instruments”) that are good predictors
of the treatment, but are not independently related to the outcome, may be used to
purge the bias. In practice the validity of the IV approach relies on finding appropriate
instraments. The use of instrumental variables to deal with heterogeneity and
simultaneity bias in both linear and nonlinear models is discussed in section 5.



iii) Control function approaches to selection bias - these range from parametric
methods such as the Heckit estimator to more recent semiparametric estimators. The
use of these techniques in health economics is discussed in section 4.3.

Estimation of regression functions like equation (3) typically requires assumptions
about the functional form for the deterministic part of the model and about the
distribution of the error term. Standard regression analysis assumes that the regression
function is linear and that the random error term has a normal distribution. However, in
recent years the econometrics literature has seen an explosion of theoretical
developments in nonparametric and semiparametric methods which relax functional
form and distributional assumptions. These are beginning to be used in applied work in
health economics. Section 2.3 introduces kernel-based nonparametric estimators and
semiparametric approaches are discussed in sections 4, 6, and 8.

In health economics empirical analysis is complicated further by the fact that the
theoretical models often involve inherently unobservable (latent) concepts such as the
health endowments, agency and supplier inducement, or quality of life. The problem of
latent variables is central to the use of MIMIC models of the demand for health and
health status indices (section 5.1.2); but latent variables are also used to motivate
nonlinear models for limited and qualitative dependent variables. The widespread use
of individual level survey data means that nonlinear models are common in health
economics. Examples include binary responses, such as whether the individual has
visited their GP over the previous month (section 3.1); multinomial responses, such as
the choice of provider (section 3.3); limited dependent variables, such as expenditure
on primary care services, which is censored at zero (section 4); integer counts, such as
the number of GP visits (section 7); or measures of duration, such as the time elapsed
between visits (section 8).

2.3 Nonparametric estimators

Most of the estimators discussed in this chapter rely on assumptions about the
functional form of the regression equation and the distribution of the error term.
However recent developments in the econometrics literature have focused on
semiparametric and nonparametric estimation and many of these are founded on the
Rosenblatt-Parzen kernel density estimator. This method uses appropriately weighted
local averages to estimate probability density functions of unknown form. Variants on
this basic method of density estimation are also used to estimate distribution functions,
regression functionals, and response functions [see e.g., Ullah (1988), Duncan and
Jones (1992)].

Consider a random vector x with unknown density function f(x). Given a random
sample of n observations, the density estimator at a point x is,

Fux) = (ndet(H))" X K[H" (xx)] @



where K(.) is a multivariate kernel function and det(H) is the determinant of a matrix of
bandwidths. Usually the kernel will be a positive real function. In addition, kernel
functions are often selected to be symmetric and unimodal density functions. In
general, the precise shape of the kernel has little impact on the overall appearance of
the density. A central issue in estimation by local smoothing is the choice of bandwidth.
Each bandwidth h is a sequence of numbers such that h—0 and nh—ee as the sample
size n—eo. With a fixed sample, the size of h determines the degree of smoothing and
is therefore of crucial importance for the appearance, interpretation, and properties of
the final estimate. The choice of bandwidth can be a purely subjective choice, it can be
based on some rule of thumb, or the choice can be “automated” by data-driven
methods such as cross validation.

One feature of the standard kernel estimator is that the size of bandwidth is
independent of the point in the sample space at which the estimator is evaluated. This
may mean that excessive weight is given to observations in less dense areas of the
sample space. The resulting estimates can produce spurious detail, particularly in the
tails of estimated densities. Alternative methods are available to overcome this
problem; such generalisations distinguish themselves from the basic kemel method by
adjusting the bandwidth to account for the density of data in particular regions of the
sample space; the less dense the data, the larger the bandwidth. However it should be
borne in mind that the greater robustness of these techniques is bought at extra
computational cost.  Specific methods include the kth nearest neighbour and
generalised nearest neighbour, variable kernel, and adaptive kernel methods [see
Duncan and Jones (1992)].

Kernel density estimates form the basis for nonparametric regression analysis. In
general the regression functional is,

E(ylx) = M(x) = [yf(ybody = [y(f(y,x)/f(x)) dy &)

In nonparametric regression, the regression functional is recovered directly from
estimates of the (joint and marginal) density functions. No parametric restrictions are
imposed on the form of conditional expectation M(.) or the density function of the
implied error term. The Nadaraya-Watson regression estimator takes the form

M(x) =T yiWi(x) , Wyx) = (ndet(H)) ' K[H (x-x)Vfu(x) (6)

The nonparametric regression function is therefore a weighted average, with the
individual kernel weights Wy(x) dependent on the estimated kernel density of the
Tegressors.

There appear to have been very few applications of kernel-based nonparametric and
semiparametric estimators in health economics. However, as appropriate software
becomes more readily available, use of the techniques is likely to increase. Jones
(1993) uses data from the 1984 UK Family Expenditure Survey to estimate joint
densities and nonparametric regressions for the relationship between household’s
budget share on tobacco and the logarithm of total non-durable expenditure. Norton
(1995) uses kernel estimates to smooth a plot of the fraction of elderly nursing home
residents who had “spent-down” at the time of discharge against their time of



discharge. Alderson (1997) uses kernel regressions to investigate the shape of the
relationship between health related quality of life (HRQoL.) and age, without imposing
a functional form on the data. She uses data for the EuroQol, EQ-5D, measure of
health status collected as part of the ONS Omnibus survey between January and March
1996. The analysis focuses on inequalities in HRQoL. and presents separate regressions
for males and females and by occupational social class. Studies by Stern (1996) and
Lee et al. (1997), which use kernel based semiparametric estimators of the sample
selection model, are discussed in section 4.3.3.

3. Qualitative dependent variables

3.1 Binary responses

Consider a binary dependent variable, y;, which indicates whether individual i is a “non-
participant” or a “participant”. In health economics, binary dependent variables have
been used to model an extensive range of phenomena; examples include the use of
health care services, purchase of health insurance, and starting or quitting smoking.

If the outcome depends on a set of regressors, x, the conditional expectation of y is,
E(yilxi) = P(yi=11x) = F(x;) N

In order to estimate (7), F(.) could be specified as a linear function, xi}; giving the
linear probability model. The linear probability model is easy to estimate, using
weighted least squares to allow for the implied heteroscedasticity of the non-normal
error term, and may be a reasonable approximation if F(.) is approximately linear over
the range of sample observations. However the possibility of predicted probabilities
outside the range [0,1] creates a problem of logical inconsistency. A nonlinear
specification of F(.) can avoid logical inconsistency.

The most common nonlinear parametric specifications are logit and probit models.
These can be given a latent variable interpretation. Let,

i = 1 iff y*i >0 (8)
=0 otherwise
where,
y5 =xiPf+ &

and, for a symmetrically distributed error term € with distribution function F(.),
P(y=1l x;)) = P(y*>01x) = P(gi>xB) = Exp) ®

Assuming that g has a standard normal distribution gives the probit model, while
assuming a standard logistic distribution gives the logit model. These models are



usually estimated by maximum likelihood estimation; the log-likelihood for a sample of
independent observations is,

LogL =X {(1- y)log(1-F(x:B)) + y; log(F(x:B)) } (10)

Applications of probit, logit, and other models for binary variables are too numerous to
list here. One recent example is Buchmeuller and Feldstein’s (1997) study of the
University of California’s decision to impose a cap on its contribution to employees’
insurance plans in 1994. This natural experiment allows an analysis of how the
resulting change in out-of-pocket premiums affected decisions by UC employees to
switch insurance plans. The binary dependent variable indicates whether an employee
switched plan, and this is modelled by a latent variable representing the net benefit of
switching as a function of the change in premium, plan characteristics, and individual
demographic characteristics. Plan switching is estimated using probit models on the full
sample of 74,478 employees and for separate types of coverage. Simulations of the.
change in probability of switching associated with changes in the level of premium
show large price effects across all of the models.

3.2 Multinomial and ordered responses

3.2.1 Ordered probits and grouped data regression

The ordered probit model can be used to model a discrete dependent variable that
takes ordered multinomial outcomes, e.g. y = 1,2......,m. A common example is self-
assessed health, with categorical outcomes such as excellent, good, fair, poor. The
model can be expressed as,

Yi =j if uj<y*isuj+1 . _i=0, ...... m-1 (11)

where,
v o=xB+ &, g ~ N(0,1) (12)

and o = -0, L < W1, M = oo. Given the assumption that the error term is normally
distributed, the probability of observing a particular value of y is,

Py =P(yi=j) = (W - xP) - Oy - xP) (13)

where ®(.) is the standard normal distribution function. With independent
observations, the log-likelihood for the ordered probit model takes the form,

LogL =% % yylog Py (14)

where y;; is a binary variable that equals 1 if y; = j. This can be maximised to give
estimates of  and of the unknown threshold values L;. Examples of the use of ordered
probit models include Kenkel (1995) who has categorical measures of self-reported



health status and of activity limitation from the Health Promotion/Disease Prevention
module of the 1985 U.S. National Health Interview Survey, and Chaloupka and
Wechsler (1997) who have a categorical measure of average daily cigarette
consumption from the 1993 Harvard College Alcohol Study.

Kerkhofs and Lindeboom (1995) develop an ordered probit model for self-reported
health, with state-dependent reporting errors. They are concerned with the potentjal
biases that arise in the use of subjective measures of health when responses are
influenced by financial incentives and social pressures. In particular they attempt to
isolate the impact of employment status on reporting errors. Their model uses three
measures of health. A latent variable, H*, that measures true health; a (categorical)
self-reported measure of health, H, and an objective measure of health based on
professional diagnosis, H’ (in their case the Hopkins symptom checklist). In order to
focus on the possibility of state-dependent reporting errors they assume that H® is a
sufficient statistic for the impact of employment status (S) on H*. They assume that
observed self-reported health is given by,

H'=j ifp<H*<p,, , j=0,...m-I (15)

True health is assumed to depend on f(H®), measured by a set of dummy variables, and
demographic characteristics x;,

H* =f(H") +x8+¢, &~ NOI) (16)
and the state-dependent reporting bias is modelled through the threshold values,

1 = g(S, X2) an

These depend on employment status and demographic characteristics x,. Various
specifications of g(.) are used to allow for interactions between employment status and
demographics. The typical contribution to the likelihood is,

P(H’= j) = @[gji(S,x2) - f(H°) - x,f] - @[gi(S,x2) - f(H) - x,f]  (18)

The model is estimated with data on heads of household aged 43-63 from the first
wave of the Dutch panel survey (CERRA-I). The sample is split by employment status
and ordered probit models are estimated with and without the objective measures of
health. This gives evidence of state-dependent reporting bias, identified through
interactions between employment status and the demographic variables. Also the
results suggest that education influences the way in which people report their health.

Grouped data regression is a variant of the ordered probit model in which the values of
the, thresholds (i) are known. Because the ‘s are known, the estimates of B are more
efficient and it is possible to identify the variance of the error term o°. Sutton and
Godfrey (1995) use grouped data regression to analyse social and economic influences
on drinking by young men. Their analysis uses pooled individual data for males aged
18-24 from the British General Household Survey for 1978-1990. As is often the case



with survey measures of alcohol consumption, individuals are assigned to one of seven
drinking categories defined by the number of units of alcohol consumed per week,
where the range of these intervals is recorded in the survey. They estimate a model in
which socio-economic characteristics, along with health-related attitudes and
behaviour, are used to predict levels of drinking. A general RESET test for
misspecification rejects an OLS specification of the model, but does not reject the
grouped data regression. Their results show evidence of a significant interaction
between the influence of the price of alcohol and an individual’s income.

3.2.2  The multinomial logit

Multinomial models apply to discrete dependent variables that can take (unordered)
multinomial outcomes, e.g. y = 1,2......,m. In health economics this often applies to the
choice of insurance plan or health care provider, but could be used to model the choice
of treatment regime for an individual patient. It is helpful to define a set of binary
variables to indicate which alternative (j=I,...,m) is chosen by each individual
(i=1,...,n),

¥ =1 ifyi=] (19
=0 otherwise

with associated probabilities
P(yi =]) = P 20

With independent observations, the log-likelihood for a multinomial model takes the
form,

LogL =2 % y; log Py 20

The multinomial logit model uses,
Py = exp(xiBy) / Zx exp(xiP) (22)

with a normalisation that B,,=0.

Multinomial models are often motivated by McFadden’s random utility model. Define
individual i’s utility from choice j as,

U',j = Vij (Zi, Xij) + & (23)
or, in linear form,
Uij =70+ XiJB + & (24)

The model assumes that individuals are aware of the unobservable (to the researcher)
provider characteristics gy, and the individual is assumed to choose the alternative that

10



gives the maximum utility, so choices are based on net utilities. Typically the &; are
assumed to be type I extreme value (or Weibull), which has the convenient property
that the difference between two EVI variables has a logistic distribution. The
multinomial logit can be derived from the random utility model provided that
unmeasured attributes €;;’s are independent. Then,

Pij = exp(ziotj + Xi_iB) /Zk exp(ziotk+ xikB) (25)

giving a tractable closed form solution. Setting P = O gives the multinomial logit or
“characteristics of the chooser” model, while setting o = 0 gives the conditional logit
or “characteristics of the choices” model.

The assumption that the €;’s are independent implies the independence of irrelevant
alternatives (I1A) property,

Pij / Py = CXp(Zi(X,j + XijB) / exp(zioq + XuB) (26)

So the odds ratio is unaffected by the existence of alternatives other than j and I, (i.e.,
by changes in the individual’s choice set). This implies that if a new alternative is
introduced all (absolute) probabilities will be reduced proportionately. Many authors
have argued that IIA is too restrictive for many of the applications of multinomial
models to health economics. For example, Feldman et al. (1989) argue that, in the case
of health insurance plans, the addition of a new plan is more likely to affect the choice
of “close substitutes”. Much of the recent literature has been concerned with models
that relax the IIA assumption such as the nested logit model and the multinomial probit
model.

The multinomial logit model can be used in conjunction with two-part models and
sample selection models (see Section 4). Haas-Wilson et al. (1988) use data from high
option Blue Cross and Blue Shield plans of Federal Employees Benefit Program. The
paper makes the case for aggregating health care use by episode of treatment rather
than by a fixed period and stresses disaggregation into types of treatment episode; in
this case outpatient visits only, outpatient with medication, outpatient with
hospitalisation, and hospitalisation only. A two-part specification with a multinomial
logit for types of treatment and OLS for levels of expenditure within episodes is used.
The results do not find a significant effect of coinsurance rates on types of episode, but
there is a significant effect on levels of expenditure.

Haas-Wilson and Savoca (1990) use a Federal Trade Commission survey of contact
lens wearers and their suppliers. A multinomial logit is used to estimate effects of
both personal and provider characteristics on the choice of providers between
opticians, opthamologists, and optometrists. The choice of provider is estimated jointly
with quality of care using Lee’s method to estimate selectivity corrected regressions
for patient outcomes (measured by the “presence of seven potentially pathological eye
conditions caused by poorly fitted lenses”). The study finds evidence of selection bias
which leads to an overestimate of quality of care provided by opthamologists. The
scope for selection bias arises because outcomes depend partly on patients’ behaviour,
and differences among patients may be correlated with their choice of provider.



3.2.3 The nested multinomial logit

Gertler et al. (1987) investigate the impact of user fees on the demand for medical care
in urban Peru, using a 1984 Peruvian household survey. They develop a random utility
model in which the demand for medical care is modelled as the decision to seek care
and, conditional on that, the decision of which provider to use (public clinic, public
hospital, or private doctor). The corresponding econometric specification is the nested
multinomial logit model, which relaxes the IIA assumption. The empirical model allows
them to predict the revenue consequences and welfare effects of increased user fees,
and illustrates the trade-off between efficiency and re-distributive goals. Dor et al.
(1987) develop the theoretical model used by Gertler et al. (1987) by including access
costs in the budget constraint. They apply the nested multinomial logit model to
provider choice using 1985 data from the rural Cote d’Ivoire.

A similar approach is adopted by Feldman et al. (1989) who estimate a model using
individual data on the demand for health insurance plans among employees of 17
Minneapolis firms. They argue that the existence of “close substitutes” makes the IIA
assumption and, hence, the use of a multinomial logit model unrealistic. The
assumption is relaxed by using the nested logit specification which drops the IIA
assumption between groups of close substitutes. Freedom of choice of doctor is used
to distinguish these health plan nests.

The nested logit model generalises the muitinomial/conditional logit as follows. Let
l=1,...,L denote “nests” of health plan types. In Feldman et al. there are two nests;
IPAs and FFS plans versus HMOs. Within each nest there are j=1,..,J; plan
alternatives. Individual utility is,

Ul_i =W S+ Xjj B + &) (27)

where x); varies with both the nest and insurance plan, e.g. the premium charged, while
w varies only with the nest, e.g. freedom to choose a doctor. €;; is assumed to have a
generalised extreme value distribution, which relaxes the assumption that the error
terms are independent. Then,

P;j = PPy (28)
where,
Py = exp(xsB/(1-0))/ exp(I;) 29
and,
I = log( Xk exp(xiB/(1-6)) (30)

is the “inclusive value”, for nest 1. B can be estimated up to the scale factor 1/(1-¢) by
using conditional logit within each nest. Then

12



P = exp(wid + (1-0) I}) /2, exp(wid + (1-0) L)
3D

This shows that ML estimation can be done in two steps. First estimate B/(1-¢)
using conditional logit within each nest, then apply conditional logit across the nests to
estimate ([-0), including an estimate of the inclusive value,

Feldman et al. (1989) find that Hausman tests, based on the contrast between
conditional and nested logit estimates, suggest that the grouping of IPAs and FFS
versus HMOs is satisfactory. But they reject the grouping of IPAs and HMOs. Their
results show that health plan choices are sensitive to out-of-pocket payments, and they
suggest that estimates of the impact of premiums derived from conditional logit models
could be misleading.

3.2.4 The multinomial probit model

The use of a nested logit approach implies that choices can be organised into a
meaningful nesting or tree structure. This may not be appropriate for some
applications. For example, in their study of the choice of provider between government
health facilities, mission health facilities, private clinics and self-treatment in the Meru
District of Eastern Kenya, Mwabu et al. (1993) argue that there are no a priori grounds
for deciding on the correct decision structure for patients. As a result they adopt the
simpler multinomial logit specification, using the IIA assumption.

An alternative to the nested logit model is to use a multinomial probit model. Until
recently the computational demands of this model have been prohibitive, but the
development of simulation based estimators has opened the way for empirical
applications. Bolduc et al. (1996) use data from the rural district of Ouidah in Bénin to
model the choice of provider between hospital, community health clinic (CHC), private
clinic and self-medication. The empirical focus is on the role of user fees (for the
CHCs) and precautionary savings (through tontines) to fund health care. They adopt a
random utility specification as in equation (24) and compare multinomial logit (ML),
independent multinomial probit (IMP), and multinomial probit (MP) specifications.

The independent probit model assumes that the &;; are iid normal. Then the probability
that individual i chooses j is,

Pij = J‘Nm I1 kej (b( Z;0 ¥+ X*ikﬁ + Eij) ¢(€ij) dEij (32)

where o = 0 - O and x*x = x; - X Th_is specification assumes independence but,
unlike the MNL, it does not imply equal cross elasticities (the IIA property).

The multinomial probit model relaxes independence and assumes that the €; have a
multivariate normal distribution, N(O, Q). Then,

Py =M o Q)du (33)

13



where Ay = zo*, + x*:B. This requires computation of the area under the multivariate
normal density ¢(.), such that the utility associated with j is greater than the utility from
all the alternatives k=j.

Bolduc et al. estimate this model using simulated maximum likelihood approach using
the GHK simulator. They find that an LR test rejects independence in the probit model.
Their estimated time and money price elasticities are sensitive to the empirical
specification; those for the multinomial probit are “dramatically different” from those
for the multinomial logit and independent multinomial probit. In computing these
estimates they use hedonic price and travel time equations based on samples of
individuals who use each different provider. This is common practice in the literature
(see e.g. Gertler et al. (1987)) but it does raise the issue of potential selection bias.

3.3 Bivariate models

The models discussed in the previous section deal with a single dependent variable that
can take multinomial outcomes. The bivariate probit model applies to a pair of binary
dependent variables and allows for correlation between the corresponding error terms.
It is possible to express the model in terms of latent variables,

y*ji = XJiBj + &, j=1,2, (8],82) ~ N(O,Q) (34)
where,
Vi = 1 iff y*ji >0 (35)
=0 otherwise

In practice, the health economics literature has made greater use of two variants of the
bivariate probit model; the sample selection model and the partial observability probit
model. In the model with sample selection y, is observed only when y, = 1. In the
partial observability model the researcher observes only y = y1.ya.

A variant of the partial observability probit assumes that, if y| = 1, both y, and y, are
observed, while if y; = 0, then only y,.y, is observed. The log-likelihood for this case is,

LogL = 2,1-010g®(-xiB1) + Zyi=1y2-0 10g¢(X:B1,~X;Bz,-p)
+  Zyi=iy=t log®P(xiB1,x2B2,p) (36)

In fact, this identical to the bivariate probit with sample selection; and only the
interpretation of the model differs. Examples of the application of these models in
health economics are van de Ven and van Praag (1981), Kerkel and Terza (1993), van
de Ven and van Vliet (1995), and Jones (1993).

The pioneering use of the sample selection model in health economics is van de Ven
and van Praag’s (1981) study of the demand for deductibles in private health insurance.
They use data on 8,000 respondents from a postal survey of 20,000 policy holders of a
large non-profit health insurer in the Netherlands, to model choice between a plan with
a deductible and one with complete coverage. The dependent variable is derived from a
binary response to a question about their preference for a policy with a deductible.



This is modelled as a function of previous use of medical care, self-reported illness
days, income, employment and demographics.

Their economic model specifies the expected utility gain from taking a deductible and
leads to a basic probit model. However the dataset is prone to selection bias. The
survey has a substantial proportion of incomplete responses and these are shown to
vary with demographics. van de Ven and van Praag compare a two step estimator with
the maximum likelihood estimator of the sample selection model. Incomplete response
is predicted by age, gender and family size. Their results show that the two step
estimator gives results that are close to ML. They find that health, previous medical
consumption and income have significant effects, which implies the potential for
adverse selection if individuals can choose between plans with different levels of
deductibles.

An example of the partial observability probit model is Kenkel and Terza’s (1993)
study of the demand for preventive medical care. The motivation for this study is a
recognition of the limitations of the neoclassical model of demand for (preventive)
medical care, measured by use of diagnostic tests. This stems from the fact that the
consumer’s (latent) demand is not observed without a visit to doctor, and the actual
choice of treatment is influenced by the role of the doctor in mediating patient choice.
Together these mean that a physician visit hurdle comes between latent and observable
demand for diagnostic tests.

The use of diagnostic tests is modelled as a partial observability probit based on the
latent variables,

y*, = xBa+ wo 0 + €2 [diagnostic test index] (37
y¥ i =xiB1 + & [physician visit index] (38)

Kenkel and Terza’s identification strategy relies on the fact that they are modelling
sequential decisions. The physician visit is patient initiated, but tests are made after
seeing a doctor and are influenced by a set of post-visit influences w,. Tests for
supplier induced demand are based on a sub-set of ws; those post-visit influences that
reflect financial incentives for doctors. Although this is a sequential model, Kenkel and
Terza reject a “two-part model”, as it rules out positive latest demands for those
individuals who do not visit the doctor.

Data from the 1977 National Medical Expenditure Survey is used in separate analyses
for men and women and for lab tests and diagnostic tests. The common set of
regressors include insurance coverage (private, medicare/caid, none), health (self-
assessed and disability days), income, schooling, age, and race. The post-visit variables
(w) measure outpatient or ER versus office visits, waiting time, and the percentage of
the charge paid by private or public insurance. The results show that the correlation
between the two error terms is significant for diagnostic tests, but not significant for
lab tests. The probability of diagnostic tests increases with private insurance and the
fraction of charge paid by private insurance. The results do not support the existence
of SID; reflected in the fact that there is no evidence of fewer tests in outpatient/ER
compared to office visits, and no effect of waiting time.



4.  Limited dependent variables

4.1 Two-part, selectivity, and hurdle models

4.1.1 A taxonomy

Two-part (or multi-part), sample selection, and hurdle models have all been used in the
health economics literature to deal with the problem of limited dependent variables. To
understand which approach is appropriate for a particular application, it is useful to
begin by asking what type of dependent variable is being used. To answer this question
it is helpful to introduce some notation. Say that there are two variables of interest: a
binary indicator d;, with associated covariates x, and parameters B;, and a continuous

variable y;, with associated covariates x, and parameters B,, where y; is coded as y; = 0
lf di = O

The first question is whether observations of y;=0 represent an actual choice of zero?
If the answer is no, the problem is one of non-observable response and a sample
selection model is appropriate (see e.g. Heckman, 1979). For example this might apply
to the case where coinsurance rates (y) are only observed for those who purchase
insurance (d=1), but non-purchase of insurance does not imply that a potential insuree
would face a coinsurance rate of zero. If the answer to the question is yes; then zero
observations represent a genuine choice of zero.

In the case of “genuine zeros”; the second question is whether the choice to consume
is influenced by the decision of how much to consume? If the answer is no, a sequential
decision model is appropriate. If the answer is yes, a joint decision model is
appropriate. When considering joint versus sequential decisions it is important to make
the distinction between a chronological sequence of events and ‘sequential choice. For
example the “‘gate-keeper” role of GPs may mean that an individual has to visit a GP
before they can use inpatient care. This limits their opportunity set, but the individual
can consider a range of options; do not visit the GP; visit the GP but do not visit
consultant; or visit both. Modelling these decisions as a sequential choice suggests a
myopic decision rule, i.e. visit the GP then decide how to respond to advice.

The third question to bear in mind is the object of the analysis. Is the object prediction
of E(ylx), inference about B, and B, inference about JE(yly>0,x)/ 0x, etc.? The
answer to this question will help to determine the appropriate method to adopt.

Defining the dependent variables in this way suggests a taxonomy to distinguish the
three approaches. In the sample selection model, knowledge that y=0 (as opposed to
di=0) is uninformative in estimating determinants of the level of y;. In the two-part
model observations for which y;=0 are uninformative in estimating the determinants of
the level of (yil yi>0). In hurdle models, the fact that y=0 is used in the estimation of

B2

It is possible to express the sample selection and hurdle models in terms of latent
variables (y*):
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Y5 o= xiby + g, j=1.2 (39
Then the sample selection model is given by;
Vi = y¥*y iff y*;>0 (40)
=unobserved otherwise ( = 0 in generalised Tobit)
and the hurdle model is given by;
Y2 = Y¥a iff y*2 > 0rand y*;; > 0 4D
=0 otherwise

There is no latent variable representation for the two-part model. Instead it is
motivated by a conditional mean independence assumption,

E(ggi 1 y2i> 0, x2)) =0 (42)

Notice that no assumption is made about the unconditional mean E(ylx), so the two-
part model cannot be used to make inferences about JE(ylx)/ox, only about
conditional/selected sample. In general, the two-part specification does not assume
normality of (g, €,) and does not require linearity of E(yly>0).

4.1.2 Two-part versus selectivity models: the debate

The issue of choosing between the two-part model (2PM) and a generalised Tobit or
sample selection specification (SSM) to model the demand for medical care has
provoked a vigorous, and often heated, debate in the health economics literature.
Advocacy of the two-part model is most associated with the empirical strategy adopted
for the RAND Health Insurance Experiment (see e.g. Newhouse et al., 1980,
Leibowitz et al., 1985, Manning, Newhouse et al., 1987). Duan et al. (1983) initiated
the subsequent debate by making the case for the two-part model. They argue that the
censored data approach requires restrictive distributional assumptions and that, as the
censored data is unobservable, these assumptions are not testable. They stress “poor
numerical and statistical properties” of the SSM, caused by the existence of multiple
local optima in its likelihood function. They also argue that the fact that the residual
vector is censored in the SSM poses a problem for standard residual based tests.

Hay and Olsen (1984) criticise the 2PM by claiming that it is also subject to untestable
assumptions and they question the existence of any distribution of (g, €,) that gives a
complete normal distribution for (€,l€;>-x;B1). To support this argument they show
that if €, and €, are not independent, the conditional distribution of €; is generally a
function of (x,B;). They respond to the argument that the SSM has poor numerical
properties by citing an algorithm for finding a global maximum. Also they argue that,
even though the 2PM and SSM are non-nested, they can be compared in terms of



mean squared forecast error (MSFE). Duan et al. (1984) counter this final point by
showing that with the RAND data there is no discernable difference between the 2PM
and SSM models according to the MSFE criterion. Also they provide an example
designed to show that it is possible to find a distribution of (&), &) that contradicts Hay
and Olsen’s claim,

Maddala (1985) sets out to adjudicate the debate. He stresses the need to understand
the nature of the underlying decision process in selecting an empirical model and
argues that joint decisions may be more appropriate than the sequential approach
implied by the 2PM. He cites van de Ven and van Praag (1981) and argues that
decision to use health care will be linked to perceived severity of illness (and hence
likely expenditure).

In response to Duan et al. (1984) he points out that semiparametric estimators were
available for the SSM and that the normality assumption is testable. Also he considers
their “counter-example”. Duan et al. (1984) aim to show that there is a joint
distribution of (g, &;) that allows correlation between the two error terms but, for d=1,
gives,

log(y) = %oB2 + €2, 82~ IN (0, &) (43)

They assume that €; is continuous for the whole population, and that €, has a mass
point at €,=-c0 and is continuous over the real line for d=1. They argue that it is
possible to construct a joint distribution from these marginals such that €, and ¢; are
correlated. Maddala argues that this is “purely semantic” as the correlation is not
estimable. Also, their model is actually specifying conditional distributions for the
separate sub-populations, £;>x3; and &<x,B,.

Maddala makes the distinction between sample selection models; in which the criterion
function is written in reduced form, and correlation between €, and ¢, is the only
connection between the two equations; and self selection models in which the criterion
is written in structural form. He argues that adopting a structural approach “will help in
organising one’s thinking properly on why one expects any selectivity bias in the
problem”. He goes on to argue that “even when decisions are sequential, if there are
some common omitted variables the two decisions will be correlated. In this case, it is
advisable not to formulate the model in a way that the correlation cannot ever be
estimated”. Zimmerman Murphy (1987) lists common omitted variables in context of
medical care demand; these include insurance status, time costs, marginal valuation of
health, time preference, and risk aversion.

Duan et al. (1985) take up Maddala’s challenge. They stress that the focus of their
own work is on estimating mean medical expenditure and that, in that context, the
debate over statistical methods has no relevance for the policy implications of their
results. They find that multi-part, ANOVA, and sample selection models all give
similar results, and that the debate is “much ado about nothing”. Also they argue that
“in the specific case of health insurance one does not need an estimate of p to estimate
mean expenditure” and that many econometrics models are formulated so that
“nuisance parameters” are eliminated, these include the Cox partial likelihood, the



within-groups estimator for panel data, and zero restrictions in structural models.
Maddala (1985) rounds off the exchange’by recognising that the RAND data is special
because participants were randomised across insurance plans. But he cautions against
use of the 2PM in other contexts.

4.1.3 Monte Carlo evidence

In an attempt to settle the debate over the relative merits of 2PM and SSM
specifications Manning, Duan, and Rogers (1987) use Monte Carlo simulations to
compare the LIML (Heckit) and FIML sample selection estimators with a “naive two-
patt model” (the true specification omitting the correlation coefficient) and a “data-
analytic (testimator) variant” (which adds powers of x, according to a test criterion).

As in the earlier work of the RAND researchers, they stress that “we are not interested
in the coefficients per se”, only in predictions of E(y) using

E(y) = P(y>0)E (y1 y>0) (44)

They use the SSM as their theoretical benchmark, but find that 2PM outperforms it on
statistical grounds. This leads them to conclude; “based on our experience here and
elsewhere, we believe that the data-analytic version of the two part model will be
robust - as long as analysts are concerned about the response surface rather than
particular coefficients”.

A comprehensive re-assessment of the Monte Carlo evidence in Manning, Duan, and
Rogers (1987) is provided by Leung and Yu (1996). Leung and Yu argue that their
Monte Carlo design creates collinearity problems that bias the results against the SSM
and in favour of 2PM. The design problem they identify is that Manning, Duan, and
Rogers use a model with no exclusion restrictions (x;=x,) and simulate x~u(0,3).
Leung arid Yu argue that this leads to insufficient range of variation in the inverse
Mill’s ratio. Leung and Yu use x~u(0,10) and find that “collinearity problems vanish
and the sample selection model performs much better than the two-part model”. Of
course this raises the empirical question of how much variation will be observed with
real data.

To understand the collinearity problem consider the Heckit/LIML estimator of the
SSM, which is based on,

y=%XPo+ AMxiP)) + & (45)

With x;=x,, identification (of B,) relies ‘on the nonlinearity of the inverse Mill’s ratio
A(). A plot of A(.) shows that the function is approximately linear for much of its
range. This implies that the range of x;B, , and hence of x,, is important and that the
degree of censoring is important, as it reduces the range of observed values. Leung and
Yu argue that the claim that Heckit will perform poorly when there is a high degree of
correlation between x,[3; and X, is potentially misleading. In their Monte Carlo design,
Heckit performs well when x, and x,B, are perfectly correlated, as long as the
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proportion of censored observations is sufficiently small and/or the range of x; is
sufficiently large (i.e. when the nonlinearity of A(.) comes into play).

Leung and Yu (1996) conclude that the performance of models depends on the
empirical context. Collinearity problems can arise if there are few exclusion
restrictions, a high degree of censoring, low variability among the regressors (x,), or a
large error variance in the choice equation (i.e. weak instruments). They suggest that
applied researchers should always check for collinearity. After looking at a range of
measures of collinearity, they favour the condition number. They argue that their
Monte Carlo evidence shows that, in the absence of collinearity problems, the t-test on
the inverse Mill’s ratio can be used to distinguish between the 2PM and SSM. Overall
they conclude that “....the merits of the two-part model have been grossly exaggerated
in the literature”.... “hence the extreme and negative remarks against the sample
selection model made by Duan et al. ..... are unwarranted and misleading”.

4.1.4 Empirical evidence

Zimmerman Murphy (1987) estimates sample selection models for physician office
visits, hospital outpatient visits, and hospital inpatient days using the 1970 U.S.
National Health Survey. She uses the Heckit estimator and finds significant negative
coefficients for the inverse Mill’s ratio. The results show evidence of the collinearity
problem, with the estimates of the selectivity correction becoming less significant the
greater the correlation between the inverse Mill’s ratio and the other regressors . Hunt-
McCool et al. (1994) use a sample of adult from the U.S. National Medical Care
Expenditure Survey. Their dependent variables are the quantity of service (office visits,
hospital inpatient care) and out-of-pocket expenditure shares. Heckit estimates show
positive and significant coefficients on the inverse Mill’s ratio.

4.2 Two-part models: developments and applications

This section draws heavily on John Mullahy’s (1997) paper “Much ado-about two:
reconsidering the two-part model in health econometrics”. Mullahy focuses on the
2PM applied to “genuine zeros™ rather than missing observations. He argues that, due
to nonlinearities and retransformations, the estimated parameters from the 2PM are not
sufficient for inference about important policy parameters that involve the level oy y,
such as E(ylx), 0E(ylx)/0x, and dlogE(ylx)/dlogx.

The usual specification of the 2PM separates a probit or logit for m(x)=P(y>0lx), and
least squares estimates on the logarithm of y,

log(y) = log(u(x )+ &, y>0 (46)
= XBZ + &

The problem for inference stems from two issues; the conditioning on y>0, and the
need to re-transform from log(y) to y-space. The identifying assumption for 3, is the
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orthogonality condition E(g:ly>0,x)=0. Under this assumption the 2PM will give
consistent estimates of [3,, but the condition does not identify other parameters such as
E(ylx). In general notation, the 2PM implies,

E(ylx) = P(y>0lx). E(yly>0,x)
= q(x).u(x). E(exp(e)l y>0,x)
= 1().u(x).p(x) 47
with parametric representations,
= 0GB uOGB2)-pY) (48)

The presence of p(x;Y) in this expression means that the identification of (By,B2), by
the 2PM, is not sufficient to identify E(yly>0,x) or E(ylx). Two solutions to this
identification problem are:

1)  Assume log-normality of (yly>0,x) with constant variance o, which implies,
E(yly>0,x) = exp(xBa + %2 &%) (49)

2)  Instead of assuming a distribution for €,, Duan (1983) proposes a nonparametric
smearing estimator,

S = X" [CXP(€2i)]/ N4 (50)

the mean of the estimate of exp(€s) over the positive observations (n,). Duan shows
that this is a consistent nonparametric estimator of E(exp(€,)).

The problem with the smearing estimator is that consistent estimation of B, in the 2PM
only requires the ofthogonality condition E(g,ly>0,x) = 0. In other words &, could be
heteroscedastic, in which case the consistency of the smearing estimation breaks down.
Mullahy (1997c¢) speculates about testing for this problem by running a regression of
exp(€g2) on, say, exp(xy). If v=0 for non-constant elements of x, then Duan’s estimator
should be adequate. The actual approach adopted by the RAND researchers was to
split the sample by discrete x variables and apply separate smearing estimates.

Given the problems of identifying E(yly>0,x) or E(ylx) in the standard 2PM, Mullahy
(1997c) considers two alternative estimators. First, given that E(yly>0,x) must be
positive, - he suggests using an exponential conditional mean specification;
E(yly>0,x)=exp(xP};). Combining this with a logistic specification for P(y>0lx), the
model gives,

E@ylx) = P(y>0ix). E(yly>0,x)
= [exp(xP)/(1+exp(xB1))].exp(xP2)
exp(x(Bi+B2))/(1+exp(xB)) (5D

The model can be estimated by a two-step estimator (2PM-M-2); using logit (or
probit) for P, and nonlinear least squares (NLLS) for the positive observations.
Alternatively it can be estimated in one step (2PM-M-1), using the full sample to
estimate (51) by NLLS.
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Then Mullahy considers the “more primitive assumption”, E(ylx) > 0. This can be
justified by the fact that, for non-negative y, finding E(ylx)=0 means the problem is
uninformative (as it implies that y always equals zero). So he suggests using the
exponential conditional mean (ECM) model, E(ylx)=exp(xB), and estimating by NLLS.
The advantages of this simple specification are that it is straightforward to use
instrumental variables to deal with problems of unobservable heterogeneity in the
model, and that the elasticities, dE(logy)/dlogx, are simple to compute and interpret.
The price of using the simpler specification is that it does not allow separate inferences
about P(y>0ix) and E(yly>0,x). Mullahy notes that the 2PM-M model reduces to the
ECM model when =0, and he proposes a conditional moment test to assess whether
a one-part or a two-part specification applies. He also proposes a Wald test based on
the contrast between the 2PM and 2PM-M estimates of 3. This can be interpreted as a
test of whether p(x) is constant.

It is worth noting that the use of exponential conditional mean specifications provides a
direct link with the count data regressions discussed in Section 7 of this chapter. The
ECM model corresponds to a Poisson regression model, while the 2PM-M-2
corresponds to the the zero altered Poisson model. These specifications are discussed
in greater detail below.

4.3 Selectivity models: developments and applications

4.3.1 Manski bounds

In a recent review, Manski (1993) argues that “the selection problem is, first and
foremost, a failure of identification. It is only secondarily a difficulty in sample
inference.” To illustrate, consider a population characterised by (y,dx), where d and x
are observed but y is only observed if d=1. Interest centres on the unconditional
probability,

P(ylx) = P(ylx,d=1)P(d=1ix) + P(yld=0,x)P(d=0lx) (52)

The selection problem stems from the fact that the term P(yld=0,x) cannot be identified
from the available data. All that is know is, i

P(ylx) e [Pyl d=DP(d=1x) + yP(d=0Ix), vel'] (53)
where I' is the space of all probability measures on y. A common response to this
problem in the statistical literature is the assumption of independence or ignorable non-
response,

P(ylx) = P(yld=0,x) = P(yld=1,x) (54)

But, as Manski points out, “in the absence of prior information this hypothesis is not
rejectable”; to see this set ¥ = P(yld=1,x). So, in the absence of prior information, the
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“selection problem is fatal for inference on the mean regression of y on x”.
Restrictions on P(ylx), P(ylx, d=0), and P(dlx,y) may have identifying power, but
restrictions on P(ylx,d=1) and P(dIx) are “superfluous” as they are already identified by
censored sampling process.

The selection problem may be fatal for inferences concerning E(ytx) without
indentifying restrictions, but Manski shows that it is possible to put bounds on other
features of the distribution. Let g(.) be a function mapping Y into a bounded interval
{Ko.K], for example the CDF for y. Then,

Elg(y)lx] = Elg(y)ld=1x]P(d=11x) + E[g(y)ld=0,x]P(d=0Ix) (55)

In which case E[g(y)ld=0,x] is not identified by the data, but it is bounded. This implies
that E[g(y)Ix] can be bounded to a bandwidth which is proportional to (K, -
Ko)P(d=0Ix). “Therefore meaningful to say that degree of underidentification of
E[g(y)lx=xp) is proportional to censoring probability at x¢.” This leads Manski to
discuss the (nonparametric) estimation of the bounds and to develop estimators for
quantile regressions. Quantile regression has been applied by Manning et al. (1991) to
analyse whether heavy drinkers are more or less responsive to the price of alcohol than
other drinkers. They find evidence that the price effect does vary by level of
consumption.

4.3.2  The propensity score

The propensity score approach to dealing with the selection problem has been
developed in the context of the identification of treatment effects when there is a
problem of self-selection in the assignment of patients to treatments. Rosenbaum and
Rubin (1983) show that conditioning on the propensity score, which measures the
probability of treatment given a set of covariates, can control for confounding by these
covariates in estimates of treatment effects.

Angrist (1995) provides weak sufficient conditions for conditioning on the propensity
score in a general selection problem involving instrumental variables. The main
identifying assumption is that the instruments satisfy a simple monotonicity condition,
as in Imbens and Angrist (1994). The result implies that, with P(d=1Ix) fixed, selection
bias does not affect IV estimates of slope parameters. This result lies behind Ahn and
Powell’s (1993) approach to the selection problem, which uses differencing of
observations for which non-parametric estimates of P(d=1Ix) are “close”. To illustrate
it is worth recapping a general version of the sample selection model. Assume that the
following is observed,

y = [XaPa + €] 1[&) > -y(x1)] (56)

where 1[.] is an indicator function, y(x,) is the selection index and d is the observed
binary variable, such that d=1[g, >-y(x,)]. For the selected sample,

Elylx,d=1) = x23> + E[€2]x, &> -yi(x))] 57
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If the distribution of (g, &) is independent of x, and x,, the conditional expectation of
€ depends only on (x;). This gives a “tiered index structure”,

Elylx] = Gi[xaf2, w(xp)] (58)
E[dIx] = Gao[w(x))] (59)

The propensity score is defined as follows,
P(x)) = P(d=1Ix,) = P[e, >-y(x))] (60)

When the function is independent of x, it is invertible and it is possible to write
W(x)=n(P(x1)). Then,

Elylx,d=1) = xB2 + 1[P(x1)] (61)
Using a “differenced form” this leads to ,
¥ - ElylP(x)] = [x2 - E(xal P(x1))1B2 + ¢ (62)

where Efelx,d=1] = 0. This forms the basis for the estimators discussed below.

4.3.3 Semiparametric estimators

Ahn and Powell (1993) propose an estimator for the general model where the selection
term depends on the propensity score. Consider any pair of observations where Pi=P;.
Then, provided the selection function 1(.) is continuous,

Yi-¥i= [Xa- X B2+ (63)

This leads Ahn and Powell to suggest a weighted IV estimator for B, using kernel
estimates of (P;-P;) as weights,

wi; = (1/h) K[ (Pi - Pj)/h]did; (64)

The attraction of this approach is that it gives a two-stage estimation procedure with
closed form solutions at both stages. The first step is to construct a standard kernel
regression for the propensity score P based on the observed d’s. Estimates of B are
given by the weighted IV estimator. Ahn and Powell show that, under appropriate
assumptions, the estimator is ¥n consistent and asymptotically normal and they provide
an estimator for the associated covariance matrix.

The Ahn and Powell approach is particularly flexible because it is based on T[P(x)].
Many other semiparametric approaches have concentrated on the linear index version

of the selectivity model,

Efylx,d=1) = x2B2 + A(x:B1) (65)
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Stern (1996) provides an example of the semiparametric approach in a study that aims
to identify the influence of health, in this case disability, on labour market participation.
The paper uses a Heckman style model, using labour market participation to identify
the reservation wage (supply) and a selectivity corrected wage equation to identify the
offered wage (demand). This proves to be sensitive to distributional assumptions and
exclusion restrictions.

Stern’s data are a sample of 2,674 individuals from the 1981 U.S. Panel Study on
Income Dynarnics. Disability is measured by a limit on the amount or kind of work the
person can do. Initial estimates are derived from reduced form probits and selectivity
corrected reduced form wage equations. He finds that disability is insignificant when
controlling for selection but very significant without control (even though the selection
term is not significant); a result which seems to highlight the collinearity problems
associated with the sample selection model. Structural participation equations, in the
form of multiple index binary choice models, were very sensitive to the choice of
exclusion restrictions, so Stern turns to semiparametric estimation.

He uses Ichimura and Lee’s (1991) estimator for the model,
Y =2Zo+Y(Z1,22) + € (66)

where z; = xB;. This includes two special cases that are relevant here: first the
structural participation model, where Jo = 0, 2z, is the demand index, and z, is the
supply index; and second the Heckman wage equation, where z,=0. Ichimura and
Lee’s approach uses a semiparametric least squares (SLS) estimator and minimises the
criterion,

I E [y - 20) - E(y-zolzs,2)T" 67)
where the conditional expectation is given by the nonparametric regression function,

E(y-20l21,22)1 = (/n-1) [Zja( ¥5 - 20K z1i - Zip/hi, (22 - 225)/ho]
/(1/n-1) Ysi K[(21i - 2s)/hy, (Zai - 295)/ha] (68)

and where K[.,.] is a kernel function and the h’s are bandwidths. The IL estimator is
known to be badly behaved in small samples. In Stern’s application this shows up in
the irregular shape of the estimated supply function. To deal with this he imposes a
monotonicity assumption; y , ¥, = 0.

For the multiple index model he reports the correlations for the regressors that are
common to both equations. He finds a low degree of correlation and concludes that the
“hypothesis that demand and supply are not identified can be rejected” (p.61). The
results suggest that the supply effects of disability are much greater than the demand
effects. “Thus effort to improve the handicap accessibility of public transportation or
home care programmes for disabled workers (if effective at reducing the supply index)
are likely to be more successful than efforts to reduce discrimination among employers
or to provide wage subsidies to employers” (p.68).
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Similar semiparametric methods are used by Lee et al. (1997). Like Stern (1996), they
adopt a linear index specification and use semiparametric estimators to avoid imposing
any assumptions on the distributions of the error terms in their model. Their analysis is
concerned with estimating a structural model for anthropometric measures of child
health in low income countries. They argue that reduced form estimates of the impact
of health interventions, such as improved sanitation, on child health may be prone to
selection bias if they are estimated with the sample of surviving children. If the health
intervention improves the chances of survival it will lower the average health of the
surviving population, as weaker individuals are more likely to survive, and lead to a
biased estimate of the effectiveness of the intervention.

They specify a system of structural equations. These consist of a survival equation,
based on a binary dependent variable, which includes the influence of water supply and
sanitation on child survival; reduced form input demands, measuring calorie intake; and
the child health production function, measured by the child’s weight. The survival
equation is specified as a linear index model with an unknown error distribution, and is
estimated by a semiparametric maximum likelihood (SML) procedure. The reduced
form input demands, for the surviving children, are estimated as sample selection
models by semiparametric least squares (SLS), conditioning on the SML estimates of
the survival index. The child health (weight) production function is estimated using the
same approach, but the endogenous health inputs are replaced by fitted values from
SLS estimates of the reduced forms, giving two-stage semiparametric least squares
estimates (TSLS). The form of the kernel functions and the bandwidths used in the
estimation are selected so that the semiparametric estimates are Vn-consistent and
asymptotically normal. Hausman type tests are used to compare the SML estimates of
the survival equation with standard probit estimates, to test for the exogeneity of the
health inputs, and to test whether there is a'problem of sample selection bias.

The models are estimated on two datasets; the 1981-82 Nutrition Survey of Rural
Bangladesh and the 1984-85 IFPRI Bukidnon, Philippines Survey. The data are split
into sub-samples for children aged 1-6 and 7-14. Tests for normality in the survival
equation fail to reject the standard probit model in both of the sub-samples for the
Philippines, and for ages 1-6 in Bangladesh. For children aged 7-14 in Bangladesh the
estimated effects of maternal schooling and water supply are substantially different, but
the estimates for other variables are similar for SML and the probit. For the health
production functions they compare a standard simultaneous equations estimator, a
simultaneous equations selection model based on joint normality, and the
semiparametric estimnator. The results do not appear to be sensitive to either the
selectivity correction or the normality assumption. Despite this, the authors note that
previous reduced form studies may have understated the impact of health interventions,
because of the unobservable heterogeneity bias associated with a reduced allocation of
resources to child health in households with better facilities.

4.3.4  ldentification by covariance restrictions

Pitt (1996) develops similar theoretical ideas to Lee et al. (1997), but adopts a different
approach to dealing with the selection problem. He argues that fertility selection bias
(when parents are .influenced by health prospects for potential births) may affect
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estimates of the determinants of child health and mortality, and that mortality selection
bias may influence the analysis of the determinants of child health. This creates an
identification problem for standard parametric approaches to the selectivity problem.
Pitt argues that in a reduced form specification of child health (mortality) conditional
on fertility it is difficult to justify exclusion restrictions, that is to find regressors that
influence fertility choices but do not influence child health. In this case identification
would have to rely on nonlinearity of the selection correction. For binary measure of
child health (e.g. mortality data) this leads to a bivariate probit with partial
observability, and Pitt cites the empirical problems of identifying this model with his
data, and in other studies.

Pitt suggests an alternative approach based on identification by covariance restrictions.
This provides a strategy for identification “so long as fertility and health outcomes are
observed for more than one time period in the life of each woman in the sample”. In
other words this approach relies on longitudinal data to control for individual effects.
Pitt models observed births (F) and deaths (D) in terms of latent variables,

F#, = Xﬁth + Ug + Enr F=1 if F*>0 (69)
D*;e = Xnun + Hri + Enie > D=1 iD*>0 (70)

Identification relies on there being individual effects that influence fertility (ltg) which
are correlated with the individual effects that influence child health (p). Pitt uses
longitudinal data on births to identify these correlated effects. The model adopted is a
random effects bivariate probit, which implies that correlation only works through a
time invariant effect, i.e. there are no dynamic effects associated with the timing of
births.

The model is applied to data from 14 Sub-Saharan Demographic and Health Surveys
(DHS). The measure of mortality is deaths before age two. For each country Pitt
compares standard probits on the sample of all births, a random effects probit, and a
“selection corrected probit”, i.e. a random effects bivariate probit with partial
observability. There is evidence of correlated effects in all cases. But the random
effects only account for a small portion of overall error variance, and there is no
marked effect on the derivative of the conditional probability of infant death with
respect to parental education.

Pitt also derives trivariate models for continuous anthropometric measures of child
health: weight and height. To observe these measures the child must be born and
survive and estimation must allow for both sources of selection bias. Estimates from
the Zambian DHS show little evidence of selection bias for log(weight) and only
limited evidence for log(height).
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4.4  Hurdle models: developments and applications

In health survey data, measures of continuous dependent variables such as alcohol and
tobacco consumption, or measures of medical care expenditure invariably contain a
high proportion of zero observations and appropriate limited dependent variable
techniques are required. The special feature of the double hurdle approach is that,
unlike the standard Tobit model, the determinants of participation (e.g., whether to
start or quit smoking) and the determinants of consumption (e.g., how many cigarettes
to smoke) are allowed to differ,

However, a limitation of the standard double hurdle specification is that it is based on
the assumption of bivariate normality for the error distribution. Empirical results will
be sensitive to misspecification, and ML estimates will be inconsistent if the normality
assumption is violated. This may be particularly relevant if the model is applied to a
dependent variable that has a highly skewed distribution, as is often the case with
survey data on cigarette and alcohol consumption, and for medical care expenditure.

A flexible generalisation of the double hurdle model is used by Yen and Jones (1996).
The Box-Cox double hurdle model provides a common framework that nests standard
versions of the double hurdle model and also includes the generalised Tobit mode! and
‘two-part’ dependent variable, as special cases. This allows explicit comparisons of a
wide range of limited dependent variable specifications that have been used in the
health economics literature. The model for the observed dependent variable (y;) can be
written in terms of two latent variables (y*;,y*,), where,

Y = xifi+g, =12, a1
(€1,62) ~N@©O, QD and Q=1 opl
l_0'12 UZJ

and,

G-/ A fords0
iff y*); >0 and y*u >-1/A  (72)
log(yi) for A=0

Y

=0 otherwise

In other words, the conditional distribution of the latent variables is assumed to be
bivariate normal. This specification allows participation to depend on both sets of
regressors X;; and x,; and permits stochastic dependence between the two error terms.
In addition, the use of the Box-Cox transformation relaxes the normality assumption
on the conditional distribution of y;. Yen and Jones (1996) show that the log-likelihood
function for a sample of independent observations is,

LogL = Y, log[l- ®(xiB1,(x2f2+1/A)/0,p)]

+ Tyno log® [(XiBy + (p/O){(Y* -1)/ A-xaBe HA(1- pP)]
+ Tpo (-Dlogy) +  Zyso logl(1/6)¢ ({(Y* -1)/ A-x2B2}/0)] (73)
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where @ denotes a univariate or bivariate standard normal CDF, ¢ denotes the
unijvariate standard normal PDF, and p=0,,/c. The general model can be restricted to
give various special cases:

i) 612= 0 gives the Box-Cox double hurdle with independent errors.

ii) A =1 gives the standard double hurdle with dependence. This model is applied to
UK data on household tobacco expenditure from the 1984 Family Expenditure Survey
(FES) in Jones (1992), and to Spanish Family Expenditure Survey data for 1980-81 in
Garcia and Labeaga (1996). The special case in which the error terms are assumed to
be independent is applied to FES data on household tobacco expenditure in Atkinson
et al. (1984), UK data on individual cigarette consumption from the 1980 General
Household Survey (GHS) in Jones (1989), and to US data on wine consumption in
Blaylock and Blisard (1993).

iif) With A = 0 the likelihood function corresponds to the generalised Tobit model with
log(y:) as dependent variable in the regression part of the model. Setting ©,2=0 gives
the special case of the two-part model in which normality is assumed and the equations
are linear. Studies of smoking based on the two-part model include Lewit et al. (1981),
Wasserman et al.(1991), and Blaylock and Blisard (1992).

Yen and Jones (1996) apply the Box-Cox double hurdle model to data on the number
of cigarettes smoked in a sample of current and ex-smokers from the British Health
and Lifestyle Survey. The estimated Box-Cox parameter (A) equals 0.562 which is
significantly different from both zero and one at the 0.01 level. Thus, both the
standard double hurdle model and generalised Tobit model are rejected.

5. Unobservable heterogeneity and simultaneous equations

5.1 Linear models

5.1.1 Instrumental variables

Problems of unobservable heterogeneity bias and simultaneity have received particular
attention in the context of empirical studies of health production. A pioneering paper is
Auster et al.’s (1969) analysis of cross sectional data on death rates across the United
States in 1960. They specify a Cobb-Douglas model for mortality rates, as a function
of medical care and environmental variables. This is estimated by two-stage least
squares (2SLS) to allow for the possible endogeneity of medical care; recognising that
aggregate mortality rates may influence the level of spending on medical care at the
State level.
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Rosenzweig and Schultz (1983) highlight the problem of unobservable heterogeneity
bias in a study of child health production and the demand for child health inputs. They
consider estimation of a structural health production function,

y =f(x,z,W) (74)

where y is a measure of child health, x are goods that affect health such as nutrition, z
is medical care, and [t is an unobservable (to the researcher) variable reflecting the
child’s genetic and enviromental endowment. If the child’s parents are aware of [, it
may influence the reduced form demands for health inputs; for example, a mother who
has a history of complications during previous pregnancies may be more likely to seek
early prenatal care. Then the marginal effect of medical care on health is,

oyldz = f,+ f,0u0z (75)

So, estimates that fail to control for |t will give biased estimates of the effect of
medical care on health (f,). Rosenzweig and Schultz’s (1983) proposed solution is to
find instruments that predict the use of medical care but do not have an independent
effect on health outcomes, and to estimate the model by 2SLS. Data on live births from
the U.S. National Natality Followback Surveys for 1967-69 are used and separate
models are estimated for birth weight, the length of the gestation period, and the fetal
growth rate. Estimates of the impact of the delay before the mother sought medical
care change significantly when 2SLS is used rather than OLS.

A similar static health production framework is adopted by Mullahy and Portney
(1990) to estimate the impact of smoking and atmospheric pollution on respiratory
health. They use individual data from the 1979 U.S. National Health Interview Survey,
and models are estimated for a binary dependent variable indicating whether the
individual experienced days when their activities were limited by respiratory illness, and
for the actual number of restricted activity days. Both models are estimated by OLS
and by the generalised method of moments (GMM); where the latter uses the price of
cigarettes and additional demographic variables to instrument the measure of cigarette
smoking and the estimation uses 2SLS with a Huber-White correction for
heteroscedasticity. In order to assess the sensitivity of the results to the use of
instrumental variables, the models are estimated on different sub-samples and with
different instrument sets. The results appear to be robust and show that allowing for
unobservable heterogeneity bias increases the estimated impact of smoking relative to
the impact of atmospheric pollution.

Mullahy and Sindelar (1996) extend the use of GMM estimation of the linear
probability model to a two equation system in which a measure of problem drinking is
treated as an endogenous regressor in equations for employment and unemployment
(with non-participation in the workforce as the omitted employment status). The study
is careful to acknowledge the possibility of TV bias, which arises if the instruments are
poor predictors of the endogenous regressor, and it reports F-statistics for the
significance of the instruments in the reduced form regressions. Data from the 1988
Alcohol Supplement of the NHIS are used and the estimates show that problem
drinking has a negative effect on employment.
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5.1.2 The MIMIC model

In models of the demand for heaith and of health status indexes, problems of
endogeneity are compounded by the fact that the central concept, “health”, is
inherently unobservable and has to be proxied by indicator variables. Multiple causes-
multiple indicators, or MIMIC, models have been widely used to deal with the
problem of latent variables. MIMIC models are estimated as LISREL (linear structural
relationships) models. Examples of the the use of LISREL models of the demand for
health include Erbsland, Ried and Ulrich (1995), Hakkinen (1991), van Doorslaer
(1987), van de Ven and van der Gaag (1982), Wagstaff (1986, 1993), Wolfe and van
der Gaag (1981). van de Ven and Hooijmans (1991) and van Vliet and van Praag
(1987) concentrate on the derivation of a health status indexes from the MIMIC
model. Behrman and Wolfe (1987) estimate a structural model of health production
functions for maternal and child health in Nicaragua; their latent variables include
health inputs such as nutrition, along with community and maternal health
endowments.

An illustration of the MIMIC approach is van der Gaag and Wolfe’s (1991) study
which uses data on adults and children from the 1975 Rochester Community Child
Heaith Survey. The problem they address is that health has to be proxied by multiple
indicators, none of which are a perfect measure of health. To set the scene for their
model they show that principal components analysis can be used to reduce the
dimensions of the problem; in their case 26 health indicators are reduced to 4
independent factors. They also show that socio-economic factors affect health, and that
the estimated effects depend on the particular measure of health that is used. The
relationship between socio-economic factors, desired health, and the demand for
medical care is explored through a structural model,

H* =xd +¢g (76)
Dj = ZBl_i + H*BZJ + &y , j=l,..,4 (77)

where H* is the (unobserved) desired health status, x and z are socio-economic
variables, and the D;s are four observed measures of the demand for medical care. This
is combined with the measurement models,

HP, =H*y + &y , I=1,.L (78)

where the HP are proxy measures of health. (76)-(78) are estimated by maximum
likelihood as a LISREL model. This assumes joint normality of the error terms and
makes use of covariance restrictions to identify the model, so that the unobservable H*
is proxied by a linear combination of the health indicators.

van der Gaag and Wolfe (1991) are careful to point out that the kind of health
indicators and measures of health care utilisation that commonly arise in survey data
are often discrete variables. The normality assumption, used in the LISREL estimation,
may not be plausible when dealing with discrete variables.
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5.2 Nonlinear models

5.2.1 A framework

Blundell and Smith (1993) provide a general framework which is useful to categorise
simultaneous equation models involving limited dependent variables. The model
consists of an observation mechanism for a limited dependent variable (y1),

yi= gOy*uy*s) (79)

and structural equations,
y¥i = auh(y*y*s) + Tiya + xiPi +eu (80)
Yz = Y*u = o h(y*;, y*3) + xafs + &x (81)

The presence of the additional latent variable y*s; allows for the possibility of sample
selection bias. In models without selection bias g(y*;,y*s)=g(y*i) and h(y*,
y*a)=h(y*:;). In many of the applications discussed below y; is a binary variable and
yai 18 continuous; and this is the example that will be pursued here.

Blundell and Smith draw attention to the distinction between, what they call, Type I
and Type II models. In Type I models h(y*;;))=y*};, and the identification condition for
the mode! is o,=0. This implies that a Type I specification is appropriate if the
structural model is based on a simultaneous equations involving the Iatent variables,

Y = Yiya + xufi +en (82)
Ya = Oay* + X2 + & (83)

An example of the use of a Type I specification in health economics is Hamilton et al.’s
(1997) study of the impact of unemployment on mental health. In their model y*, is a
latent index of employability and y»; is mental health, measured by the Psychiatric
Symptom Index. However if their structural model had predicted that an individual’s
actual employment status influenced their mental health, then a Type Il specification
would be more appropriate.

In a Type II model h(y*;;)=y,; . This is appropriate if the outcome y,; depends on the
actual realisation yy; ,

Y¥i =y + Yiya + XliBl +Ey (84)
Y = Oayis + Xaf, + € (35)
Type 1I specifications raise the problem of coherency conditions. These reflect the
logical consistency of the model and are required for the model to have unique reduced

form solutions. For example in the model (84) and (85) the restriction, o, +0zy; = 0,
ensures that the probabilities P(y,; =0) and P(y,; =1) sum to one.
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Estimation of the LDV equations in Type I and Type II models requires different
approaches. The Type I specification gives two equations to estimate; one, (82), with
the LDV as dependent variable and one, (83), with the continuous dependent variable.
Various estimators are available for the LDV equation (82). Of these, two have been
favoured in the health economics literature. The two-step or IV estimator replaces the
actual values of y;; with fitted values from OLS estimates of the reduced form. The
use of predicted values means that the covariance matrix of the estimates should be
adjusted to allow for the additional sampling variability (see e.g. Maddala, 1983). The
conditional maximum likelihood approach (CML); developed by Smith and Blundell
(1986) for the Tobit model and by Rivers and Vuong (1988) for the probit; adds the
OLS residuals to the equation. The t-statistic for the residuals provides a simple test
for the exogeneity of y,.

Blundell and Smith (1993) propose an estimator for the Type II LDV equation (84).
Again this is based on the CML approach and uses,

Y¥i = VY + X + prua + &g (86)

where y™2; and u”; are obtained from linear IV estimation of (85), using the estimate
of oz to compute,

Y2 = Ya - Oz Vi (87)

This estimator is applied by Sutton and Jones (1997), in a comparison of Type I and
Type II specifications of a model of levels and styles of drinking, using data from the
British Health and Lifestyle Survey.

5.2.2  Applications

In two related papers, Kenkel (1990, 1991) estimates models for health related
behaviour in which continuous measures of health knowledge are treated as
endogenous regressors, due to unobservable heterogeneity bias, and replaced by fitted
values. Kenkel (1990) uses a survey of 5,336 household from a 1975-76 survey carried
out by the Centre for Health Administration Studies and the National Opinion
Research Center (CHAS-NORC) of the University of Chicago and looks at the
relationship between a general index of health knowledge and physician visits. The
probability of a physician visit is modelled using the two-stage probit estimator,
replacing the actual values of health knowledge with fitted values from an OLS
reduced form. The number of visits is estimated using a simultaneous equation version
of the sample selection model, using fitted values along with the Inverse Mill’s Ratio
from a reduced form probit equation. Kenkel (1991) uses data from the 1985 U.S.
National Health Interview Survey for three measures of health related behaviour,
smoking, drinking and exercise. These are all censored and Tobit models are used. In
all cases the Smith-Blundell test rejects the exogeneity of health knowledge. Kenkel
discusses the goodness of fit of the OLS reduced forms. He argues that the results are
reasonable for the measures of knowledge about the health effects of smoking and
exercise (R%=0.12-0.19), but rather poor for alcohol (R*=0.02).
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Bollen et al. (1995) use data from the Tunisian Demographic and Health Survey to
illustrate the practical relevance of Monte Carlo experiments on the performance of
different estimators for simultaneous equation probit models reported by Guilkey et al.
(1992). Their model involves a binary measure of contraceptive use and a measure of
the family’s desired number of children; which for the purposes of the analysis is
treated as continuous and susceptible to unobservable heterogeneity bias. Like Guilkey
et al.,, they apply a range of estimators: these are the standard probit model, the two-
step probit estimator, the conditional ML estimator (CML), FIML, GMM, and a
LISREL specification. In the case of the two-step and CML estimators, they rely on
Monte Carlo evidence from Guilkey et al. to justify using the standard estimates of the
covariance matrix, rather than adjusting the standard errors to allow for the fact that
predicted values are being used rather than actual values. Overidentification tests are
used to assess the validity of the instruments. These are implemented by comparing
the log-likelihood for the model with fitted values and with an unrestricted version in
which instruments are added to the equation directly. In their empirical application the
exogeneity of the desired number of children cannot be rejected and the simple one-
step probit model is favoured. The empirical results are used to reinforce the message
from Guilkey et al.’s Monte Carlo evidence; that the performance of the two-step
estimators relative to the simple probit model depends on the goodness of fit in the
reduced form equations and on the degree of identification, reflected by the number of
regressors (x) that are common to both equations.

5.2.3 Switching regressions

The models discussed above include the case of an endogenous binary variable which,
in effect, shifts the intercept of the regression function under different regimes. The
switching regression model extends this to deal with the case where the whole
regression function, slope coefficients as well as the intercept, switches under different
regimes. Examples from the health economics literature include O’Donnell’s (1993)
study of disability and labour supply, in which the income function depends on an
individual’s labour market status; and Gaynor’s (1989) model of nonprice competition
within group practices, in which the regression equation for the efficient price locus
switches between regimes when demand is constrained or unconstrained.

O’Donnell (1993) uses data from the UK OPCS Disability Survey to investigate the
influence of disability benefits on labour market participation by disabled people. The
nature of the tax-benefit system means that individuals face a non-convex budget
constraint and labour market participation is modelled using a fixed hours specification.
A linear utility model leads to a structural labour market participation index,

d*i = (1(}’11— yol) + X'lB + € (88)

This gives the net utility from working, and depends on the gap between income in
work (y1;) and income out of work (yo), along with socio-econormic characteristics x;.
The problem with estimating (88) is that, for a particular individuval, only one level of
income can be observed. In order to measure the income gap, incomes have to be
predicted using reduced form functions,
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Yi =zt +€; , €~N(0,0%) (89)

Yz Za0 + €, €~N(0, o 2) (90)
Because labour market participation is a choice that depends on the levels of y;; and yy;,
this gives a switching regression model with endogenous switching. To estimate the
model (89) and (90) are substituted into (88) to give a reduced form participation
equation. This is estimated as a probit model, and the inverse Mill’s ratio is added to
the income equations to obtain selectivity corrected estimates. The structural model is
identified by exclusion restrictions on B. As long as the model is over-identified, the
predicted values of yj; and yo; from the income equations can then be used to obtain
consistent, but inefficient, estimates of the parameters of the structural participation
equation. In his empirical results, O’Donnell finds that the income gap has a significant
effect on labour market participation, although the magnitude of the effect is sensitive
to the functional form adopted. He uses the estimates to simulate the impact of the
introduction of Disability Working Allowance on employment.

Hay (1991) estimates a variant of the switching regression model with a multinomial
logit participation criterion. This allows him to estimate a model for physician’s
incomes in which their choice of specialty (between GP, internal medicine, and other
specialties) may involve self-selection and be influenced by income differentials. Using
U.S. data from the Seventh Periodic Survey of Physcians for 1970, he finds the
estimated effect of income on choice of specialty changes sign in estimates that take
account of selectivity bias.

6. Longitudinal and hierarchical data

6.1 Multilevel models

Multilevel models are used to analyse data that fall naturally into hierarchical structures
consisting of multiple macro units, and multiple micro units within each macro unit.
Emphasis is placed on defining and exploring variations at each level of the hierarchy
after conditioning on the set of explanatory variables of interest. To illustrate the basic
structure of a multilevel model consider a simple linear model consisting of two levels
which may represent patients (i=l,...n) nested within hospitals (j=1,....,m). yj
represents the outcome of interest which is related to a vector of explanatory variables
x in the following manner:

Vi = X+ 1+ gy 91

Assume that the random error term for patient i in hospital j, €, has zero mean and
constant variance o%. The effects of hospitals are estimated through w; which is
assumed random and again has a mean of zero and constant variance ¢*,. Finally
assume that patient and hospital effects are uncorrelated, cov(g;;,1;) =0.
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For the i-th patient within the j-th hospital, the conditional variance is var(y;ix;B) = 6%
+ ¢ and hence, the overall variance is partitioned into components for both hospitals
and patients. The partitioning of the variance in this manner leads to the intra-group
correlation coefficient, p = Iy W (¢ w+ o%)", which measures the strength of nesting
within the data hierarchy and is fundamental to the estimation procedures for multilevel
models. In the presence of a non-zero intra-group correlation, estimation usually
proceeds through the use of generalised least squares (GLS). Various estimation
routines have been developed for the analysis of hierarchical data structures and these
are reviewed in Rice and Jones (1997).

An alternative to the use of GLS is the Gereralised Estimating Equations (GEE)
approach; however this is principally concerned with estimates of fixed part parameters
(for explanatory variables) rather than exploring the random part. GEE is typically
used for clustered data, where there are a large number of clusters. These kinds of data
are common in evaluations of prevention programmes which randomise clusters of
individuals, rather than specific individuals, to treatment programmes. Norton et al.
(1996) use GEE estimates for linear and logistic regressions in an evaluation of Drug
Abuse Resistance Education (DARE) using individual data based on a random sample
of schools.

It is conceivable that the relationship between an explanatory variable and the response
is not the same across all hospitals. Certain hospitals may have the effect of increasing
the average response (for example, length of stay) of younger patients whilst
decreasing the stays of older patients. The exploration of different ‘higher level effects’
can be obtained by the inclusion of random coefficients, such that the slope effect
associated with an explanatory variable (x;) can be represented by,

yi = X + Xy 1y + gy 92)

In (92) there are three random terms, two of which are random at the hospital level, ¥;
and pj. This highlights the use of random coefficients by allowing regression
coefficients to vary across level 2 units. However more complex variance structures
can be introduced at any level of the hierarchy, including level 1, and this may lead to
interesting interpretations and better model specification.

The models discussed so far represent the most basic form of a multilevel model where
a continuous response is linearly related to a set of explanatory variables and the
structure of the hierarchy is simple. In terms of the contributions to health and health
economics research, more complex multilevel models may have the most to offer. For
example, interest may be focused on the efficiency of both clinicians and provider units
when assessing performance. In such a situation the hierarchy consists of patients
within clinicians within provider units, and a multilevel model containing three levels is
required. Alternatively, data may consist of a series of repeated measurements on
patients attending different hospitals. This structure can be modelled using three
levels; observations within patients, within hospitals. In reality, clinicians may operate
in more than one hospital. In such situations the hierarchy is termed cross-classified.
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This occurs when individuals within a Jower level cluster are grouped into a different
higher level unit than peers from the same cluster.

Many health applications are not suited to a simple model with a linear link function
and further extensions to incorporate generalised linear models, including link
functions for logit, probit, Poisson, negative binomial, duration (survival) and
multinomial models may be specified. The range of applications of multilevel models in
health economics is discussed in Rice and Jones (1997).

An example of a linear multilevel model is the analysis of intertemporal preferences for
future health by Cairns and van der Pol (1997). Survey respondents were asked to
identify what future level of benefit make them indifferent between a specified benefit
to be received one year in the future and the more distant delayed benefit. Each
respondent was asked to provide estimates of their chosen future level of benefit for
two different periods of delay. From the sample data collected implied discount rates
for each respondent were calculated and regressed against the set of explanatory
variables. The results compare an OLS specification and a multilevel specification of a
hyperbolic discounting model. First, it appears that the OLS standard errors are
underestimated, and hence the significanee of the coefficients are exaggerated.
Second, the partitioning of the variance between that observed across responses within
respondents and that across respondents themselves allows the intra-class correlation
to be estimated. The vast majority of variation (98%) exists across individuals. This
suggests that respondents vary greatly in their time preferences, but in comparison
appear to be reasonably consistent in applying discount rates to different periods of
delay. An advantage of applying a multilevel specification to these data is that the
heterogeneity across individuals is modelled whilst preserving degrees of freedom.
Due to the lack of multiple responses illicited from individuals, a fixed effects
specification would be prohibitive in this application.

Scott and Shiell (1997) apply multilevel analysis with a binary logit link function. Their
study analyses the impact of a change in the reimbursement of Australian GPs in 1990.
This involved a move from a system based on the length of consultation, to one based
on fee descriptors reflecting the content of the consultation, for those GPs on the
vocational register. Data is taken from the 1990-91 Australian Morbidity and
Treatment Survey. Their working dataset consists of 4,185 consultations for upper
respiratory tract infections and sprain/strains, nested within 412 GPs, within 25 types
of local area. Three binary dependent variables are investigated measuring prescribings
therapeutic treatments, and counselling. The multilevel model can be expressed in
terms of the log-odds ratio for patient i being treated by GP j,

loglmy/(L-mpl= xsfs + 27y + 1y +8y 93)

where the x’s are measured patient characteristics and the z’s are measured GP
characteristics. Estimation is based on software which linearises the model and uses a
quasi-likelihood procedure. The results do not show a significant effect of the change
in reimbursement, proxied by membership of the vocational register, on counselling or
treatment, but they do show that prescribing is reduced.
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6.2  Random versus fixed effects

The literature on Panel data techniques places emphasis on the relative merits of
treating higher level units as random or fixed effects. In model (91), the individual
effects ();) are specified as random effects, but they could be specified as fixed effects,
to be estimated together with the B‘s. The choice of specification requires careful
consideration and may be determined by the data generating process and the type of
inference sought. If individual effects are not of intrinsic importance in themselves,
and are assumed to be random draws from a population of individuals and that
inferences concerning population effects and their characteristics are sought; then a
random specification may be more suitable. However, if inferences are to be confined
to the effects in the sample only, and the effects themselves are of substantive interest,
then a fixed effects specification may be more appropriate.

Anpother important consideration is whether the explanatory variables are correlated
with the effects. In such circumstances, random or fixed effects approach may lead to
very different estimates, and again careful consideration of the model specification is
warranted. The situation can be extended to the multilevel model depicted in (91).
When p; and x; are correlated, and group sizes are relatively small, the iterative
generalised least squares estimator for the parameters B will be inconsistent. Treating
the effects ; as fixed and applying a least squares dummy variable (LSDV) or within-
groups/covariance (CV) estimator leads to consistent estimates. However, when
group sizes are large, the two estimators can be shown to be equivalent (see Blundell
and Windmeijer (1997)).

In the situation where an explanatory variable is correlated with the higher level
effects, and the sole concern of the analyst is the consistent estimation of the
parameters associated with the explanatory variables or the mean effect of the higher
levels, a fixed effects specification is preferable. However, in the multilevel
framework, intrinsic interest lies in the estimation and interpretation of higher level
variances, after conditioning on the set of explanatory variables. Rice et al. (1997)
develop a conditioned iterative estimator (CIGLS) that attempts to combine the
consistency of the fixed effects estimator and the efficiency and estimates of the higher
level effects provided by the GLS estimator.

6.3  Fixed effects in panel data

6.3.1 Linear models

Applied work in health economics frequently has to deal with both the existence of
unobservable individual effects that are correlated with relevant explanatory variables,
and with the need to use nonlinear models to deal with qualitative and limited
dependent variables. The combined effect of these two problems creates difficuities for
the analysis of longitudinal data; particularly if the model includes dynamic effects such
as lagged adjustment or addiction.
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To understand these problems, first consider the standard linear panel data regression
model, in which there are repeated measurements (t=1,...., T) for a sample of n
individuals (i=1,.....,n),

Vie= Xaf + Wi+ € 92)

Failure to account for the correlation between the unobservable individual effects (1)
and the regressors (x) will lead to inconsistent estimates of the Ps. Adding a dummy
variable for each individual will solve the problem, but the least squares dummy
variable approach (LSDV) may be prohibitive if there are a large number of cross
section observations. The fixed effects can be swept from the equation by transforming
variables into deviations from their within-group means. Applying least squares to the
transformed equation gives the covariance or within-groups estimator of 3 (CV).
Similarly, the model could be estimated in first differences to eliminate the time-
invariant fixed effects.

One disadvantage of using mean deviations or first differences, is that parameters
associated with any time invariant regressors, such as gender or years of schooling, are
swept from the equation along with the fixed effects. Kerkhofs and Lindeboom (1997)
describe a simple two-step procedure for retrieving these parameters; in which
estimates of the fixed effects from the differenced equation are regressed on the time
invariant variables. This is applied to a model of the impact of labour market status on
self-assessed health.

The within-groups estimator breaks-down in dynamic models such as,
Vi = O i+ &, g ~iid (93)

This is because the group mean, yi ;= (I/T)Y: yi1, is a function of €, and g An
alternative is to use the differenced equation,

AYiz = oAy + Agy (94)
in which case both y;.; and Ay, are valid instruments for Ayi.( .

First differences are used by Bishai (1996) to deal with individual and family fixed
effects in a model of child health. He develops a model of child health production
which emphasises the interaction between a caregiver’s education and the amount of
time they actually spend caring for the child. The aim is to get around the confounding
of, effectively time invariant, levels of education with unobservable (maternal) health
endowments. This is done by comparing the productivity of child care time given by
members of the family with different levels of education. The model is estimated using
the 1978 Intrafamily Food Distribution and Feeding Practices Survey from Bangladesh
and the estimator used is the lagged instruments fixed effects estimator (LIFE) of
Rosenzweig and Wolpin (1988). This uses differencing to remove the fixed effects, and
then estimates the model by 2SLS, using lagged values of childcare time, family
resource allocation, and child health as instruments to deal with the potential
endogeneity of health inputs and the measures of health.
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6.3.2  The conditional logit estimator

Now consider a nonlinear model, for example a binary choice model based on the
latent variable specification,

y*u= xuf + i+ &, where y; =1 if y*>0 (95)
Then, assuming that the distribution of &; is symmetric with distribution function F(.),

P(yu=1) = P(ea > -Xu - 1) = B + ) (96)

This illustrates the “problem of incidental parameters™ as n—eo the number of
parameters to be estimated (B, W) also grows. In linear models B and W are
asymptotically independent, which means that taking mean deviations or differencing
allows the derivation of estimators for P that do not depend on . In general this is not
possible in nonlinear models and the inconsistency of estimates of L carries over into
estimates of B. An exception to this general rule is Chamberlain’s conditional logit
estimator,

Chamberlain (1980) shows that 3y; is a sufficient statistic for ;. This means that
conditioning on X.y; allows a consistent estimator for B to be derived. For example
with T=2, 3,y; =0 is uninformative as it implies that y;=0 and y;,=0. Similarly X.y; =2
is uninformative as it implies that y;;=1 and yi;=1. But there are two ways in which
Y.y =1 can occur; either y;=1 and yi=0, or y;;=0 and y;;=1. Therefore analysis is
confined to those individuals whose status changes over the two periods. Using the
logistic function,

P(yi =1) = F(xiB + 1.} = exp(xP + )/(1+ exp(xiB + 1)) N

it is possible to show that,

P[(0,1)I(0,1) or (1,0)] = exp((Xi-xi1)BY(1+ exp((xiz-Xi1)B)) (98)
In other words, the standard logit model can be applied to differenced data.

Bjorklund (1985) uses the conditional logit model to analyse the impact of the
occurrence and duration of unemployment on mental health using data from the
Swedish Level of Living Survey. This includes longitudinal data which allows him to
focus on individuals whose mental health status changed during the course of the
survey. Bjorklund’s estimates compare the conditional logit with cross section models
applied to the full sample. He finds that the cross section estimates cannot, on the
whole, be rejected when compared to the panel data estimates.
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6.3.3 Parameterising the individual effect

Another approach to dealing with correlated individual effects is to specify E(uIx). For
example, in dealing with a random effects probit model Chamberlain (1980,1984)
suggests using,

L=x0 +1; , u~iid N, ) (99)
where x;=( Xij,.....Xir). Then the distribution of y; conditional on x but marginal to
has the probit form,

P(yi =1) = D1+ (xup + xi0)] (100)

This could be estimated by maximum likelihood (ML), but Chamberlain suggests a
minimum distance estimator.

Labeaga (1993, 1996) develops the Chamberlain approach to deal with situations that
combine a dynamic model and limited dependent variables. In Labeaga (1993) he uses
panel data from the Spanish Permanent Survey of Consumption, dating from the
second quarter of 1977 to the fourth quarter of 1983. Data on real household
expenditure on tobacco is used to estimate the Becker-Murphy (1988) rational
addiction model; a model that includes past and future consumption as endogenous
regressors. The data contain around 40 per cent of zero observations and a limited
dependent variable approach is required. The problems of endogeneity and censoring
are dealt with separately; using a GMM estimator on the sample of positive
observations to deal with endogeneity and using reduced form T-Tobit models to deal
with the limited dependent variable problem.

In Labeaga (1996) the two problems are dealt with simultaneously. To illustrate,
consider a structural model for the latent variable of interest (say the demand for
cigarettes),

Y = oyF + XaB o+ Xy + zm i+ 8 (101)
This allows for dynamics in the latent variable (y*) and the time varying regressors (x)

as well as time invariant regressors (z). The observed dependent variable (y) is related
to the latent variable by the observation rule,

y¥*i= glyw (102)

where g(.) represents any of the common LDV specifications; such as probit, Tobit,
etc..

This specification raises two problems; the inconsistency of ML in nonlinear models
with fixed effects and a fixed T, and the correlation between the fixed effect and y*;...
Labeaga’s solution to this problem combines Chamberlain’s approach to correlated
individual effects with the within-groups estimator. Assume,
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Wi=wiat +u; and B(y¥olw;)) = w0 (103)

where w; = [Xiy,....., XiT, Z;, and nonlinear terms in x; and z;]. Using these assumptions. it
is possible to derive T reduced form equations, one for each cross section of data,

y*it': WiTl: + €t (104)

Each of these can be estimated using the appropriate LDV model, implied by g(.), and

specification tests can be catried out on these reduced form models. Once reduced
form estimates of 7, have been obtained for each of the cross sections they could be

used in a minimum distance estimator. However Labeaga suggests applying the within-

groups estimator to equation (101) using the reduced form fitted values of the latent

variables (y*; and y*;.|). This gives consistent estimates of (¢, B, v), although they are

less efficient than the minimum distance estimator. This approach can also deal with

continuous endogenous explanatory variables (y;) by using predictions from the OLS

reduced form,

E(yadw) = wi, (105)
in the within-groups estimation.

Labeaga’s (1993, 1996) results confirm the existence of addiction effects on the
demand for cigarettes, even after controlling for unobservable individual heterogeneity.
They show evidence of a significant, but inelastic, own-price effect.

Lépez (1997) makes use of Labeaga’s approach to estimate the demand for medical
care using the Spanish Continuous Family Expenditure Survey. The dependent variable
measures expenditure on non-refundable visits to medical practitioners; for which 60
per cent of households make at least one purchase during the 8 quarters that they are
measured. This leads Lopez to use an infrequency of purchase specification for the
LDV model g(.). He adopts the model of Blundell and Meghir (1987) which allows a
separate hurdle for non-participation (identified as no purchases during 8 quarters) and
which makes use of the identifying condition that E(y*)=E(y). In specifying the
demand for medical care Lépez combines the logarithmic version of the Grossman
model with the partial adjustment model used by Wagstaff (1995). The estimates, for
the impact of age, education, and the log{wage), show that controlling for censoring
and unobservable individual effects does influence the results. This is to be expected, as
unobservable heterogeneity is likely to be a particular problem in the use of
expenditure survey data which does not contain any direct measures of morbidity.

The work of Dustmann and Windmeijer (1996) brings together many of the ideas
discussed so far in this section. They develop a model of the demand for health care
based on a variant of the Grossman model in which the demand for health capital is
derived solely from the utility of increased longevity. Given the optimal path for health,
they assume that there are transitory random shocks to the individual’s health. If these
fall below a threshold, the individual visits their GP. The model implies that the
demand for medical care will depend on the ratio of the initial values of the individual’s
marginal utilities of wealth and of health; in other words the model contains an
unobservable individual effect. The model is estimated with the first four waves of the
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German Socio-Economic Panel for 1984-87, using a sample of males who are
measured throughout the period and who report visits to a GP. Poisson and negbin2
models are estimated for the number of visits and logit models are estimated for
contact probabilities. The specifications of the Poisson and negbin2 models are
discussed in more detail below in Section 7.

Dustmann and Windmeijer compare three strategies for dealing with the individual
effects. The first is to use a random effects specification. In the negbin2 model the
GEE approach is used to allow for the clustering of the data. For the logit model, a
nonparametric approach is adopted. This approximates the distribution of unobservable
heterogeneity using a finite set of mass points, |, with associated probabilities, ps
(Heckman and Singer, 1984). The likelihood function for this model is,

L= T Zopd T Q™ (10" 1 (106)

where
Aiis = exp(xiuB + P14+ exp(xuf +is)) (107)

and [, and p; are parameters to be estimated. This finite density has been used in other
health economics applications, using both count data and survival data, and these are
discussed in Sections 7 and 8.

The second strategy is to parameterise the individual effects. They adopt Mundlak’s
(1978) approach and parameterise the individual effects as a function of the group
means for the time varying regressors (they report that they found very similar results
with Chamberlain’s approach of using all leads and lags of the variables).

The third strategy is to use conditional likelihood estimates of the logit and Poisson
models. The log-likelihood for the conditional Poisson is similar to the logit model and
takes the form,

LogL =% ¥ T(yu+ 1) - X 2 yie loglXs exp(-(xic - Xi)B)] (108)

where I'(.) is the gamma function (I'(q) = [ pq'le"’ dp). Overall they find that the
second and third strategies, that control for correlated effects, give similar estimates
but that they differ dramatically from the random effects specifications. With the fixed
effect estimators, the estimated impact of current income is reduced and becomes
insignificant. This is consistent with their theoretical model which predicts that
permanent rather than transitory income will affect the demand for health, and that the
ratio of marginal utilities of wealth and health is a function of lifetime income.

6.3.4 A semiparametric approach: the pantob estimator

The Ministry of Health in British Columbia gives enhanced insurance coverage for
prescription drugs to residents aged 65 and over. Grootendorst (1997) uses the
“natural experiment” of someone turning 65 to investigate whether the effect of
insurance is permanent or transitory, and whether changes are concentrated among
those on low incomes. He uses longitudinal claims data for around 18,000 elderly
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people for 1985-92. This dataset does not include measures of health status and it has
to be treated as an “individual specific fixed endowment subject to a common rate of
decay”, which is modelled as a fixed effect, y1;, and an (observable) age effect.

The measure of prescription drug utilisation is censored at the deductible limit and
Grootendorst uses Honoré’s (1992) panel Tobit estimator (pantob). This estimator
deals with censoring and fixed effects, and allows for a non-normal error term. It only
requires that the latent variable (y*), after controlling for covariates, is independently
and identically distributed for each individual over time. For the case of T=2,

Ve = X +pite, t=1,2 (109)

If &, and g are i.i.d. then the distribution of (y*|,y*;) is symmetric around a 45° lne
through (xi, x2f). This symmetry gives a pair of orthogonality conditions which
imply objective functions that can be used to derive estimators of . Honoré shows
that the estimators are consistent and asymptotically normal for T fixed and n—ee.
Grootendorst’s results suggest that there is no permanent effect on drug use, except
for low income males. There is little evidence of a transitory effect and it appears that
insurance coverage only makes a minor contribution to the growth in utilisation.

7. Count data

7.1 The basic models

Count data regression is appropriate when the dependent variable is a non-negative
integer-valued count, y = 0,1,2,....... . Typically these models are applied when the
distribution of the dependent variable is skewed to the left, and contains a large
proportion of zeros and a long right hand tail. The most common examples in health
economics are measures of health care utilisation, such as numbers of GP visits or the
number of prescriptions dispensed over a given period.

Cameron and Trivedi (1986) use a range of measures of health care utilisation from the
1977-78 Australian Health Survey (AHS), and this dataset has become a test-bed for
many of the recent methodological innovations in the area. Cameron et al. (1988) use a
sample of single person households from the AHS and their dependent variables
include the number of hospital admissions and the number of days in hospital over the
previous year, along with the number of prescribed and the number of non-prescribed
medicines taken. Cameron and Trivedi (1993) use the same set of models to illustrate
conditional moment tests for independence of the different count variables. Cameron
and Windmeijer (1996) use the same data and models as Cameron and Trivedi (1986)
to compare a range of models of goodness of fit for count data regressions, favouring
those based on deviance residuals, Cameron and Johansson (1997) use the count of
visits to (non-doctor) health professionals to illustrate a new estimator based on
squared polynomial expansions of the Poisson model. Mullahy (1997b) uses the
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measure of number of consultations in the previous two weeks to explore the role of
unobservable heterogeneity in accounting for excess zeros in count data.

Other applications to health care utilisation include Cauley (1987), who estimates
Poisson regressions for the number of outpatient visits during a year, using a random
sample of individuals from the Southern California region of Kaiser Permante Medical
Care Programs. Grootendorst (1995) uses self-reported utilisation of medicines by
individuals aged 55-75 in the 1990 Ontario Health Survey. Pohlmeier and Ulrich
(1995) use cross-section data from the 1985 wave of the German Socio-Economic
Panel to estimate hurdle models for the demand for ambulatory care, measured by the
number of physician visits during the year. The same dataset is used by Geil et al.
(1997), who exploit the unbalanced panel data for 1984-89 and 1992-94 to estimate
models for the number of hospital trips each year. Primoff et al. (1995) use data from
the 1987 U.S. National Medical Expenditure Survey to estimate a negbin model of
mothers’ demand for paediatric ambulatory care. Deb and Trivedi (1997) use the same
survey to estimate models for six different measures of health care utilisation by the
elderly; these include office visits and hospital outpatient visits to both physicians and
non-physicians, along with emergency room visits, and inpatient stays. Coulson et al.
(1995) use information on the number of prescriptions filled or re-filled over two
weeks, among a sample of Medicare enrolled Pennsylvanians. Hékkinen et al. (1996)
use information from telephone surveys on physician visits, over the previous six
months, to analyse the impact of recession on the use of physician services in Finland.
Gurmu et al. (1997) use data from Santa Barbara and Ventura counties taken from the
1986 Medicaid Consumer Survey to estirnate models for the number of doctor and
health centre visits over a four month (120 day) period, presenting separate results for
Medicaid eligible recipients and AFDC beneficiaries. Windmeijer and Santos Silva
(1997) and Santos Silva and Windmeijer (1997) use the British Health and Lifestyle
Survey to estimate models for the number of GP visits over the past month. Gerdtham
(1997) uses measures of the number of physician visits and weeks of care over the past
year from the Swedish Level of Living Survey for 1991.

Despite this emphasis on measures of health care utilisation, count data models have
proved useful in other areas. Mullahy (1997a) uses data on cigarette smoking from the
1979 U.S. National Health Interview Survey, and on birthweight from the 1988 Child
Health Supplement of the NHIS. Kenkel and Terza (1997) use count data on the
number of drinks consumed over the two weeks, from the 1990 U.S. National Health
Interview Survey.

To understand the nature of count data models consider the following simple example.
Assume that the probability of an event (e.g. a GP visit), during a brief period of time
(dv), is constant and proportional to its duration. So the probability equals Adt, where
A is known as the intensity of the process. Now consider the count of events from zero
up to time t, say (y,t). These are random variables, and the discrete density function
must satisfy,

f(y,t+dt) = f(y-1,0Rdt + £(y,0)(1-Adt) 110)

Letting dt—0 gives a differential equation which solves to give,
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fiy,n) =™ (111)

which is the joint density of y and t. This yields two additional distributions; the first
for the count of events (y) over a fixed interval of time (t=1); and the second for the
time (t) until the first occurrence of the event (y=1), or the “time until failure”. This
illustrates the point that the count data models discussed in this section are, in general,
dual to the duration models discussed in Section 8.

Setting t=1, gives the starting point for count data regression; the Poisson process,
P(y) = ™M/ ! (112)

This gives the probability of observing a count of y; events, during a fixed interval. In
order to condition the outcome (y) on a set of regressors (x), it is usually assumed that,

)\4 = E(yilxi) = CXp(XjB) (1 13)

An important feature of the Poisson model is the equidispersion property; that
E(yilx;)=Var(yilx;)=A:. Experience shows that this property is often violated in empirical
data. In particular, the overwhelming majority of the empirical studies of health care
utilisation cited above show evidence of overdispersion (E(yix)<Var(yilx;)). With
overdispersion, the Poisson model will tend to under-predict the actual frequency of
zeros, and of values in the right hand tail of the distribution. The need for tests and
remedies for overdispersion provide the motivation for many of the methodological
developments discussed below.

There are two basic approaches that have been used to estimate count data
regressions. Maximum likelihood estimation (ML) uses the fully specified probability
distribution and maximises the log-likelihood,

LogL = 3 log[P(y»] (114)
For the Poisson model, the ML estimator solves the first order conditions,
X(y-A) = x'(y-exp(xp)) = 0 (115)

If the conditional mean specification is correct but there is under- or overdispersion,
then the ML estimates of the standard errors will be biased. However the theory of
pseudo-maximum likelihood (PML) estimation ensures that the estimates of f§ are
consistent, and the standard errors can be adjusted by using an appropriate estimator of
the covariance matrix (see e.g., Gourieroux et al. (1984), Mullahy (1997¢), Windmeijer
and Santos Silva (1997)).

The first-order moment condition (115) implies an alternative formulation of the
Poisson model, as a nonlinear regression equation,

E(yilx;) = exp(xiB) (116)
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This is the exponential conditional model (ECM) discussed in Section 4. An alternative
approach to estimation, suggested by (116), is to use moment-based estimators, such
as nonlinear least squares (NLLS) or generalised method of moments (GMM). For
example the GMM estimator minimises,

(y - AWxW'x(y - ) (117)

where W is a positive definite weighting matrix. As this approach only uses the first
moment rather than the full probability distribution, it is more robust than ML. In fact
the exponential conditional model encompasses other parametric specifications, such as
the geometric and the negative binomial, both of which have the same conditional
expectation.

The negative binomial specification allows for overdispersion by specifying,
exp(x:P+u)=exp(xiPpm; where i is a gamma distributed error term (see €.g., Cameron
-and Trivedi, 1986). Then

P(y) = {r(}’i+\Vi)/r(\Vi)r(}’i+1)}(\Vi/(x#\l/i))wi(xi/(xi’f\Vi))yi (118)

where I'() is the gamma function. Letting the “precision parameter” y=(1/a)A*, for
a>0, gives.

E(y) = A and Var(y) = A + aA>™ (119)

This leads to two special cases: setting k=1 gives the negbin | model with the variance
proportional to the mean, (1+a)A; and setting k=0 gives the negbin 2 model where the
variance is a quadratic function of the mean, A + aA” Setting a=0 gives the Poisson
model, and this nesting can be tested using a conventional t-test. The negative binomial
has been applied extensively in studies of health care utilisation; examples include
Cameron and Trivedi (1986), Cameron et al. (1988), Cameron and Windmeijer (1996),
Cameron and Johannson (1997), Geil et al. (1997), Gerdtham (1997), Grootendorst
(1995), Hikkinen et al. (1996), Pohlmeier and Ulrich (1995).

7.2 Excess zeros

Overdispersion is one source of excess zeros in count data. Mullahy (1997b)
emphasises that the presence of excess zeros “is a strict implication of unobserved
heterogeneity”. In other words, the existence of unobservable heterogeneity may be
sufficient to explain excess zeros, without recourse to alternative specifications such as
zero inflated or hurdle models. He concentrates on the case where heterogeneity is
modelled as a mixture; exp(xiB+LL)= exp(xif)m;, with E(m;)=1. This includes the negbin
model as a special case. Mullahy demonstrates that P(y;=0) is greater for mixing
models than for the Poisson model (where n,=1 for all i). A similar result applies to the
probability of events in the upper tail of the distribution. The intuition behind these
results is that the additional dispersion associated with mixing spreads the distribution
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out to the tails. In this sense, the phenomenon of excess zeros is no more than a
symptom of overdispersion.

However it may be that there is something special about zero observations per se, and
an excess of zero counts may not be associated with increased dispersion throughout
the distribution. This may reflect the participation decision, and the underlying model
of economic behaviour. Many studies of health care utilisation have emphasised the
principal-agent relationship between doctor and patient and stressed the distinction
between patient initiated decisions, such as the first contact with a GP, and decisions
that are influenced by the doctor, such as repeat visits, prescriptions, and referrals (see
e.g. Pohlmeier and Ulrich, 1995). There are two approaches which place particular
emphasis on the role of zeros; zero inflated models and hurdle, or two-part, models.

The “zero inflated” or “with zeros” model is a mixing specification which adds extra
weight to the probability of observing a zero (see e.g., Mullahy, 1986). This can be
interpreted as a splitting mechanism which divides individuals into non-users, with
probability q(x,B;), and potential-users, with probability 1-q(xi;,). So the probability
function for the zero inflated Poisson mode], P“* (y¥x) is related to the standard Poisson
model, P'(ylx), as follows,

P™(ylx) = 1(y=0)q + (1-@P"(ykx) (120)

Zero inflated Poisson and negbin models can be estimated by maximum likelihood.
However researchers often report problems in getting the estimates to converge when
the full set of regressors are included in the splitting mechanism (see e.g.,
Grootendorst, 1995, Gerdtham, 1997).

In the count data literature, unlike the limited dependent variable literature discussed in
Section 4, hurdle and two-part specifications are treated as synonymous. The hurdle
model assumes the participation decision and the positive count are generated by
separate probability processes P;(.) and P,(.).The log-likelihood for the hurdle model
is,

LogL Y=o log[1-Pi(y >0Ix)] + Xy { log[Pi(y>0lx)] + log[Pa(ylx,y>0)1}

{Zy=0 10g[1-Pi(y>01x)] + Xys0 log[Pi(y>0x)1} + {Zys0 log[Pa(y!x,y>0)]}

= LogL, + LogL, (121)

This shows that the two parts of the model can be estimated separately; with a binary
process (LogL.) and the truncated at zero count model (Logl,). Mullahy (1986)
introduces the hurdle specification for Poisson and exponential models, while
Pohlmeier and Ulrich (1995) extend it by using a negbin 1 specification for both stages.
Grootendorst (1995) applies the hurdle model with a probit for the first stage and a
negbin 2 modet for the second, while Hikkinen et al. (1996) and Gerdtham (1997) use
a logit for the first stage and a negbin 2 model for the second stage.

Grootendorst (1995) provides an empirical comparison of hurdle and zero inflated
specifications. The study uses data from the 1990 Ontario Health Survey to analyse the
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impact of copayments on the utilisation of prescription drugs by the elderly, exploiting
the fact that Ontario residents become eligible for zero copayments under the Ontario
Drug Benefit Program on their 65th birthday. Zero inflated and hurdle models are not
parsimonious, often doubling the number of parameters to be estimated. As always,
more complicated models may be prone to over-fitting, and to allow for this
Grootendorst uses within-sample forecasting accuracy to evaluate their performance.
The models are estimated on a random sample of 70 per cent of the observations. The
estimated models are used to compute predictions for the remaining 30 per cent (the
forecast sample). Models are then compared on the basis of the mean squared error for
the forecast sample. In addition to the split-sample analysis, Voung’s non-nested test is
computed. The hurdle models outperform the other specifications on all of the criteria.
Having established this, Grootendorst goes on to show evidence of heteroscedastity in
both the probit and negbin components of the model and parameterises the
heterogeneity, but the comparison of models is not repeated.

Pohlmeier and Ulrich (1995) are careful to point out that a limitation of the hurdle
model is that it implies that the measure of repeat visits to the doctor relates to a single
spell of illness, an issue that may be especially problematic with their annual data. This
issue is explored by Santos Silva and Windmeijer (1997) who propose some alternative
two stage count models that allow for multiple spells of illness. The observed total
number of visits (y) is modelled as,

y = 25 (1+R) (122)

where S is the number of illness spells, and R; is the number of referrals, or repeat
visits, during the jth spell. It should be clear that this definition of an illness spell
implies that the individual will always make at least one visit to the doctor when they
are ill. This perspective leads Santos Silva and Windmeijer to question the need for a
truncated model in the second stage of hurdle models. However this seems to be an
empirical issue; and allowing individuals to have zero visits during an illness spell may
be relevant in studies of unmet need.

(122) implies that y has a stopped sum distribution. Santos Silva and Windmeijer
consider two special cases. When S is Poisson and the R; are independent identical
Poisson variates, y has a Thomas distribution. When S is Poisson and (1+ R;) are
logarithmic, y has a negative binomial distribution. The stopped sum specification
allows S and R to be parameterised separately, as functions of variables that influence
the first visit and that influence referrals. In the light of this, Santos Silva and
Windmeijer argue that failure to recognise that the negbin model may reflect a two
stage decision process and hence to parameterise the dispersion, may bias comparisons
in favour of hurdle models.

Given assumptions about the distributions of S and R;, the model could be estimated by
ML. But pseudo-ML results do not apply, and misspecification of the stopped sum
distribution can lead to inconsistent estimates. Instead, Santos Silva and Windmeijer
rely on a first-order moment condition and derive a GMM estimator. They use the
hypothesis of a single spell (S=1) to generate testable overidentifying restrictions. The
estimator is applied to data on the number of GP visits over the past month from the
British Health and Lifestyle Survey. They find that the overidentification test does not
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reject the hypothesis that the observations are generated by a single spell of illness,
suggesting that the hurdle-specification may be adequate. The implication is that data
collected over longer periods, such as a year, may be prone to the problem of multiple
spells, and that, where possible, information should be collected for separate illness
spells or episodes of care.

It is often argued that the zero inflated model illustrates the fact that excess zeros can
arise even when there is no unobservable heterogeneity (see e.g., Grootendorst, 1995,
Mullahy, 1997). For example Grootendorst (1995) argues that comparing the negbin 2
model with a zero inflated negbin 2 allows. the analyst to discriminate between
unobservable heterogeneity and the splitting mechanism. However a recent paper by
Deb and Trivedi (1997) puts a different perspective on the issue. They interpret the
zero inflated model as a restrictive special case of a general mixture model with
unobservable heterogeneity.

Deb and Trivedi deal with unobservable heterogeneity by using a finite mixture
approach. The intuition is that observed counts are sampled from a mixture of different
populations. They argue that zero inflated models are a special case of the mixture
model, in which the zevo counts alone are sampled from a mixture of two populations
(non-users and potential users). Their model is implemented using a finite density
estimator, where each population, j, is represented by a probability mass point, p;, (see
Heckman and and Singer, 1984). The C-point finite mixture negbin model takes the
form,

P(yil) =X p-Pilyil.), Sapi=1 ,0<p< 1 (123)

where each of the Pj(yil.) is a separate negbin model, and the pjs are estimated along
with the other parameters of the model.

The model is applied to the demand for medical care among individuals aged 66 and
over, in the 1987 U.S. National Medical Care Expenditure Survey. Demand is
measured by six different measures of utilisation for a one year period, and the finite
mixture model is compared to hurdle and zero inflated specifications. The finite
mixture models are estimated by maximum likelihood, using two and three points of
support. The models are compared on the basis of likelihood ratio (LR) and
information criterion tests (IC), along with measures of goodness of fit. The negbin |
models with two points of support are preferred on the basis of these statistical criteria.
Deb and Trivedi interpret the points of support as two latent populations of “healthy”
and “ill” individuals, reflecting unobserved frailty. Perhaps it is not surprising that a
model of health care utilisation among the elderly over a full year which splits the
population in this way proves more applicable than the zero inflated and hurdle models,
which split individuals into sub-populations of users and non-users.

While Deb and Trivedi apply a finite density estimator to the distribution of
unobservable heterogeneity, Gurmu (1997) adopts a semiparametric approach, using a
Laguerre series approximation of the unknown density function. This is applied to
hurdle models because, unlike the standard model, misspecification of the density leads
to inconsistent estimates of the conditional mean in hurdle models. The Laguerre
polynomials are complex, but they do have closed form solutions and the model can be
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estimated by maximum likelihood. The model nests the Poisson hurdle model and the
negbin hurdle with a binary logit for the first stage. In order to balance goodness of fit
and parsimony, the number of terms in the Laguerre polynomials is selected according
to the Akaike information criterion (AIC = -2Logl - 2(number of free parameters)).
Estimates of models for the number of doctor and health centre visits from the 1986
Medicaid Consumer Survey suggest that the sermiparametric estimator dominates the
Poisson and negbin hurdle models, in terms of the maxmised log-likelihood and the
AIC. According to the AIC, a first order polynomial is preferred for the first stage, in
other words, a logit model is adequate. While a second order polynomial is preferred at
the second stage, giving a specification with greater flexibility than the standard negbin
model.

Cameron and Johansson (1997) propose a new estimator that uses squared polynomial
expansions around a Poisson baseline. This differs from Gurmu’s (1997) approach in
that the expansion is around the count density itself, rather than around the density of
unobservable heterogeneity. This affects the mean as well as the dispersion. The model
is estimated by maximum likelihood using a fast simulated annealing algorithm to deal
with the problem of multiple local optima. Cameron and Johansson argue that their
estimator is particularly suited for underdispersed data, which is rare in health
applications. But for overdispersed data it provides an alternative to the negbin model.
They apply the estimator to (non-doctor) health professional visits in the 1977-78
Australian Health Survey and find that their preferred specification, based on a 5th
order polynomial, outperforms a negbin 2 model.

7.3 Unobservable heterogeneity and simultaneity biases

Count data models typically assume that unobservable heterogeneity is uncorrelated
with the regressors (the same is true of the duration models discussed in Section 8).
Mullahy (1997a) argues that this assumption may not hold in many applications,
particularly when the unobservable heterogeneity (L) represents unmeasured omitted
regressors. He cites the example of health care utilisation, where L may reflect an
individual’s propensity for illness, in which case regressors measuring an individual’s
insurance coverage may be prone to self selection bias. Similarly, Dustmann and
Windmeijer’s (1996) model suggests that health care utilisation will depend on
correlated individual effects reflecting the ratio of the initial values of the individual’s
marginal utilities of wealth and of health. The problem may not be confined to
individual characteristics; Pohlmeier and Ulrich (1995) argue that unobservable
heterogeneity may reflect supply side factors that are nor recorded in individual survey
data. These variables may well be correlated with individual characteristics that
influence their choice of provider as well as their rate of utilisation of health care. The
presence of correlated unobservable heterogeneity means that the standard estimators
(ML, PML, NLLS) are inconsistent estimators of 8. Mullahy (1997a) proposes the use
of nonlinear instrumental variables, estimated by the generalised method of moments
(GMM), as a fairly general solution to this problem.

The standard nonlinear instumental variables estimator deals with the case in which
unobservables are additively separable,
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yi = exp(xiB) + Wi+ & (124)
But if [ is to be regarded as an omitted variable it may seem more natural to treat
measured and unmeasured regressors “symmetrically” (see e.g., Mullahy, 1997a, and

Terza, 1997). This implies that a multiplicative specification should be used, including
[t in the linear index,

yi =exp(xiB +p) + & = exp(xp)n; + & (125)
While this specification may seem more natural, it raises problems for the use of

nonlinear IV estimators. In this context, the assumptions that define a set of valid
instruments, z, are,

E(ylx,n,z) =E(ylx,n) (126)

E(niz) =1 (127)
Now consider the “standard” residual,

u=Yy; - exp(xB) (128)
where, from (125),

u; = exp(xif)(Ni-1) + & (129)
The problem is that this expression involves the product of functions of x and 1. So, in
general, E(ulz)#0, even if (126) and (127) hold. This means that nonlinear IV will be
an inconsistent estimator of B. Mullahy's (1997a) solution to this problem is to

transform the model so that the transformed residuals (u") do satisfy the standard
conditions for the consistency of IV. Let,

uTi =4 /7&1
= ; fexp(x;B)
= exp(-xiB)y: - 1
= m; + exp(-xif)e; (130)

The transformed residual is additively separable in T;, and Mullahy shows that
E(u'lz)=0. He then derives an optimal GMM estimator using the transformed residuals
to define the moment conditions.

The choice between muitiplicative and additive specifications is taken up by
Windmeijer and Santos Silva (1997) in the context of simultaneous equations models
for count data. They emphasise that, in general, a particular set of instruments, z, will
not be orthogonal to both u; and u”,. They appear to be sceptical of the claim that a
multiplicative specification is more natural, and argue that the choice is an empirical
issue. This can be settled using tests for the overidentifying restrictions in cases where
there are more instruments than endogenous regressors.
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Windmeijer and Santos Silva use data from the 1991 British Health and Lifestyle
Survey to investigate simultaneous equations models for GP visits, in which self-
assessed health is treated as a binary endogenous regressor. They adopt the Blundell
and Smith (1993) framework, discussed in Section 5, and compare type I and type II
specifications. In the type II model, recorded health status is assumed to influence GP
visits. In the type I model it is the latent health index that influences the number of
visits. The coherency conditions for the type II model imply that the model is only
logically consistent when it is specified as a recursive system. In other words, the type
IT specification can only be coherent when the endogeneity of self-assessed health
stems from unobservable heterogeneity bias rather than classical simultancous
equations bias. Additive and multiplicative specifications of the type II model are
estimated by GMM (alternative estimators for the multiplicative model are discussed
by Terza (1997)); the type 1 specification is estimated using a two-step approach. The
tests of the overidentifying restrictions favour the additive specification, although
Hausman tests do not reject the exogeneity of self-assessed health.

8. Survival analysis

8.1 Survival and duration data

Statistical models of “time until failure” have tended to be labelled survival analysis in
the epidemiology and biostatistics literature, while the labour economics literature uses
the label duration analysis. In health economics, the techniques have been applied to a
range of datasets. The most obvious application of survival analysis is to individual
lifespan and mortality rates; usually in the context of models of individual health
production. For example, Behrman et al. (1990) use the Dorn survey of mortality
among U.S. veterans. While Behrman et al. (1991) analyse racial inequality in age
specific death rates for males from the U.S. Retirement History Survey (RHS). The
RHS is also used by Butler et al. (1989) in a competing risks model for transitions into
re-employment or death. Forster and Jones (1997a) use data on mortality from the
British Health and Lifestyle Survey (HALS) to estimate a model of the demand for
longevity.

However the techniques are not confined to studies of mortality rates. Philipson (1991)
uses the child health supplement of the 1991 U.S. National Health Interview Survey
(NHIS) to analyse the time elapsed before a child has their first MMR vaccination.
Douglas and Hariharan (1994) use the 1978 and 1979 smoking supplements of the
NHIS to estimate a model for the age of starting smoking; while Forster and Jones
(1997b) use the HALS dataset to analyse the number of years that someone smokes
and the decision to quit. Morris et al. (1994) use data from a social experiment
involving 36 for-profit nursing homes in San Diego to analyse length of stay by
Medicaid recipients. Norton (1995) analyses the time to “spend-down” in nursing
homes, modelling the time elapsed before an individual’s personal assets are exhausted
and they become eligible for Medicaid. Siddiqui (1997) uses the German Socio-
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Economic Panel to model the impact of chronic illness and disability on the probability
of early retirement using a discrete time hazard rate model. Lindeboom et al. (1995)
use a semi-Markov model for sickness, work, and job exit to explain sickness
absentesism among public school teachers in the Netherlands. Bhattachayra et al.
(1996) use information on around 440,000 patients from the Japanese Ministry of
Health and Welfare’s 1990 Patient Survey to estimate a Cox proportional hazards
model for the time elapsed between outpatient visits. The delay before adopting a new
technology is used by Escarce (1996), to analyse the diffusion of laparoscopic
cholecystectomy in a 1992 survey of U.S. surgeons. Hamilton et al. (1996) and
Hamilton and Hamilton (1997) use a competing risks specification for post-surgery
length of stay and inpatient mortality to estimate the impact of waiting time on surgical
outcomes and the volume-outcome relationship.

8.2 Methods

8.2.1 Semiparametric models

The key concept in duration models is the hazard function, defined as the rate of failure
at a point in time, given survival to that time. Nonparametric, semiparametric and
parametric duration models make assumptions of varying degrees of strength about the
hazard function underlying the data generating process. The most commonly used
semiparametric duration model is the proportional hazards model of Cox (1972). In
this model, the hazard function at time t for individual i, hj(t, x;), is defined as the

product of a baseline hazard function, hy(t), and a proportionality factor exp(x;B),

hi(t, xi) = ho(D). exp(x; B) (131)

where x; is a vector of covariates and [ is a parameter vector. The covariates may be

time invariant, or the model can be extended to allow for time-varying covariates. For
example Philipson (1991) sets out to estimate the “prevalence elasticity” of the demand
for MMR vaccinations, and treats regional measles caseloads as a time-varying
covariate.

Cox’s method is described as being semiparametric because it does not specify the
baseline hazard function hy(t). The partial log-likelihood function for the Cox

proportional hazards model is,
LogL = X &{ xf- log(ZijCXP(XIB)) } (132)

where 8; is a dummy variable equal to 1 if the observation exits the process of interest

(for example, the age at death of an individual) and O if the observation is censored (for

example, if an individual is still alive at the end of the data collection period). le Rj are

those observations in the risk set, R, at the time of exit of individual i. Rj includes

J’
those observations still alive and uncensored at the time of exit of individual i and
whose entry time to the survey is less than or equal to the exit time of the individual
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(this controls for left truncation). By conditioning on the risk set the baseline hazard
hy(t) is factored out of the partial likelihood function, in the same way that fixed

effects are dealt with in the conditional logit model.

The sampling distribution of the f that maximises the partial likelihood is
asymptotically normal, and the standard results of maximum likelihood estimation
apply. In the proportional hazards models, the estimates of the parameter vector f
measure the effect of a unit change in the covariates of the model on the log of the
proportionate shift in the baseline hazard function. Applications of the Cox
proportional hazards approach in health economics include Behrman et al. (1990),
Behrman et al. (1991), Bhattachyra et al. (1996), Forster and Jones (1997a&b), and
Philipson (1995).

A related model, used in Forster and Jones (1997a), is the stratified proportional
hazards model,

hi(t) = ’hnv(t).exp(xivﬁ) (133)

where h;(t) is the hazard function for individual i in stratum v, 8 is the common shift
parameter vector, X, is the vector of explanatory variables for individual i in stratum v,
and h,,(t).is the baseline hazard function in stratum v. This model can be used when
misspecification tests suggests that non-proportional hazards exist for one or more
covariates.

8.2.2  Parametric models

Parametric models assume a functional form for the baseline hazard function. Many
applied studies compare a variety of different functional forms in order to assess the
best empirical specification. Behrman et al. (1990) use the Weibull, log-normal, log-
logistic, and generalised gamma. Behrman et al. (1991) use the Weibull and log-
logistic. Morris et al. (1994) use the exponential, Weibull, log-normal and generalised
gamma. Norton (1995) compares the Weibull, log-normal, log-logistic and generalised
gamma. Escarce (1996) uses the Weibull model with and without unobserved gamma
heterogeneity.

Specifying the baseline hazard function as h(,(t)=hptp‘1 gives the Weibull proportional
hazards model,

hi(t) = hptP-L exp(xiB) (134)

where p is known as the shape parameter. In the Weibull model, the shape of the

baseline hazard function, ptP-! , is shifted by the proportionality factor h.exp(xi8). The
hazard is monotonically increasing for p>1, showing increasing duration dependence,
and monotonically decreasing for p<1, showing decreasing duration dependence. The
hazard function, h(t)=f(t)/S(t), can be used to derive the probability density function,
f(t), and the survival function, S(t), for the Weibull model, and the likelihood function
with right censoring is,
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L = IT (/S0 Sty (135)

Standard maximum likelihood estimation can be used to obtain estimates of the
parameters h, p and P.

The Weibull model may also be estimated in what is called the accelerated time to
failure format, which expresses the log of time as a function of the dependent variables
and the shape parameter. Taking logs of both sides of (135) and simplifying gives,

log(t) = (1/p){-log(h) - xiB,+ log(-log(S«(1))) } (136)

where log(-log(S;(1))) has an extreme value distribution. In the accelerated failure time

version of the Weibull model, the parameters -B/p measure the effect of a one unit
change in a covariate on the log of failure time. The Weibull model (and its special case
the exponential model, when p=1) is the only parametric model that can be expressed
in both the proportional hazards and accelerated time to failure format. But a variety of
functional forms are available for the latter. These include non-monotonic hazard
functions such as the log-logistic and the generalised gamma.

In their analysis of U.S. data on the age of starting smoking, Douglas and Hariharan
(1994) argue that the standard survival analysis may not be appropriate and that a split-
population model should be used. The standard survival analysis would treat
individuals who had not started smoking by the time of the survey as incomplete spells,
and it is assumed that all of these individuals will eventually “fail”. The split-population
specification allows for the possibility that some people will remain confirmed non-
smokers. It augments the standard model by adding a probability, modelled as a probit,
that an individual will never fail. A log-logistic specification is used for the hazard
function; this is non-monotonic and captures the peak in starting: smoking during the
mid-teens.

8.2.3 Unobservable heterogeneity

The existence of unobservable heterogeneity will bias estimates of duration
dependence. To illustrate, imagine that survival data is sampled from two groups, a
“frail” group and a “healthy” group, both of which have constant hazard rates. As time
goes by the sample will contain a higher proportion of those with the lower hazard
rate; as those with the higher hazard will have died. This will lead to a spurious
estimate of negative duration dependence. Kiefer (1988) shows how unobservable
heterogeneity can be incorporated by adding a general heterogeneity effect p and
specifying,

f(t) = [ f(tpu)dp (137)
The unknown distribution p(u) can be modelled parametrically using mixture

distributions. Or a non-parametric approach can be adopted which gives | a discrete
distribution characterised by the mass-points,
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Pu=p) =pi , i=l,.....I (138)

where the parameters (Li,....., UnPise..., Do) are estimated as part of the maximum
likelihood estimation. This is the basis for the finite support density estimator of
Heckman and Singer (1984).

Behrman et al. (1990) and Behrman et al. (1991) provide comprehensive treatments of
unobservable heterogeneity in their studies of mortality risks; using parametric,
semiparametric, and nonparametric estimators. They adopt two special cases of the
Box-Cox conditional hazard used by Heckman and Singer (1984), and they consider
two ways in which unobservable frailty (i) can affect the hazard,

h(tx(t), W(B) = exp(x(HB + Y(t*-1)/k + L()) (139)
and

h(tix(t), k() = KO-exp(xOB + y(t-1)/k) (140

Their parametric approach uses a normal distribution for f(i) in the additive
specification and an inverse Gaussian distribution in the multiplicative specification.
Both versions of the hazard function can be expressed in the form,
h(t)=he(t)exp(x(t)B), and their semiparametric estimator uses the Cox partial likelihood
approach to factor the baseline hazard out of the likelihood function. The
nonparametric Heckman and Singer approach can be applied by using a finite support
density estimator for f(j1).

In addition to these well known approaches, Behrman et al. (1991) apply a maximum
penalised likelihood estimator (MPLE). The rationale for this approach is that it avoids
over-parameterising the heterogeneity, and it avoids the computational problems
associated with the finite density estimator, particularly when there is a high degree of
censoring and the distribution of heterogeneity has a long tail. In general, the penalised
log-likelihood takes the form,

LogLq(f) = Xilog(f(xy)) - aR() (141)

The penalty term, aR(f), takes account of the “roughness” or local variability in the
joint density of the data. The smoothing parameter ¢, which controls the balance
between smoothness and goodness of fit, is typically chosen by cross-validation.

Behrman et al. (1990) evaluate the performance of their models using the maximised
value of the likelihood function as a measure of goodness of fit and they test for
unobserved heterogeneity using Lancaster’s IM test, based on Cox-Snell residuals.
They find evidence of heterogeneity but conclude that “modelling of unobserved
heterogeneity directly in a proportional hazard setting may not be as important as
allowing the covariates to affect the hazard in the highly nonlinear way that the gamma
accelerated failure-time model allows”. Behrman et al. (1991) find that the
“introduction of nonparametric or parametric heterogeneity yields a small improvement
in fit, similar parameter estimates, and changed significance levels”.
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8.3 Competing risks and multiple spells

So far the focus has been on duration models with a single destination; such as an
individual’s death. But the techniques can be extended to allow for multiple
destinations; or competing risks. For example, Butler, Anderson, and Burkhauser
(1989) use a competing risks specification with transitions out of retirement either
back into employment or due to death. While, in their study of sickness absence among
Dutch teachers, Lindeboom et al. (1995) use a three state Markov model that allows
transitions from spells of work into sickness absence or exit from the job, and from
spells of sickness back into work or exit from the job. Their model uses a partial
likelihood approach to allow for school specific fixed effects.

Hamilton and Hamilton’s (1997) study of the surgical volume-outcome relationships
for patients undergoing surgery for hip fractures in Quebec between 1991-93 provides
an example that combines competing risks, unobservable heterogeneity, and fixed
effects. They use longitudinal data from the MED-ECHO database of hospital
discharge abstracts. This allows them to attribute differences in the quality of providers
to hospital specific fixed effects, modelled by dummy variables, and to analyse the
within-hospital volume-outcome relationship; thereby discriminating between the
“practice makes perfect effect” and “selective referral effect” (that hospitals with good
outcomes will get more referrals).

Their competing risks specification allows for a correlation between the two outcomes;
post-surgery length of stay and inpatient mortality. This is important as, ceteris paribus,
a death in hospital is more likely for a patient with a longer length of stay. With two
exhaustive and mutually exclusive destinations for discharges, alive (a) or dead (d), the

probability of exit to state r, after a length of stay m, for patient i, in hospital h, at
period t, is assumed to be,

f(mindXm) = AdMindXin) Hjea,d eXP[-Imihto }"j(UIxiht) du], r=ab (142)
The first term on the right hand side, A{(mu !xin), is the transition intensity; the
equivalent of the hazard rate in single destination models. The second term is the
survivor function; giving the probability of surviving to m without death or discharge.
A proportional hazards specification is used,

M) = exp(Xinbr + On + M) Ao(iny), 1=2,d, and w=1 (143)
where 0, is the hospital fixed effect, and a log-logistic baseline hazard is used,

Ao(m) = (P m™ (1 + pm®) , >0, p>0 (144)

Unobserved fraility is modelled as the scalar random variable 1, and its distribution is
estimated using the Heckman-Singer approach. The likelihood takes the form,

L= ILiX« Prfa(madXin, O, l»lk)aia SLa(mindXine On, le)aid , Xk pe=1 (145)
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where the points of support (k) and associated probabilities (py) are estimated along
with the other parameters. Hamilton and Hamilton (1997) use three mass points, which
they interpret as a distribution made up of three types of patient.

The results of the study show that when hospital fixed effects are added to the model
the coefficient on volume, measured by the logarithm of live discharges, declines
substantially and is insignificant. Volume does not have a significant effect on inpatient
deaths with or without hospital fixed effects; although cruder models without
unobservable heterogeneity and with fewer controls for comorbidities do show a
significant effect.

9, Stochastic frontiers

9.1 Cost function studies

A recent systematic review by Aletras (1996) identifies approximately 100 studies
which provide evidence on the existence of economies of scale and scope in hospitals.
Many of these are econometric studies which use regression analysis to explore the
average cost of hospital treatment. Other methods include data envelopment analysis
(DEA), market survival methods, and before-and-after studies. These attempts to
estimate empirical production functions and cost functions for hospitals and other
health care organisations face some common methodological problems.

It would be desirable to define a hospital’s output in terms of health outcomes,
measured as health gains, but typically these kinds of data are not available and
measures of throughput have to be used (e.g., admissions, discharges, number of
procedures performed). Output is multi-dimensional, and it is important to control for
case-mix, by including variables for the proportion of patients in each specialty, the
number of discharges, or the average length of stay by specialty or case-mix grouping.
However these case-mix adjustments may miss intra-category variations in severity,
and inter-hospital variation in case-mix. Measures of the quantity of output may
neglect differences in quality across hospitals, which may bias estimates of economies
of scale. Similar arguments apply to the neglect of differences in the quality of inputs.
Also, in econometric studies, the level of output is usually assumed to be exogenous,
reflecting the demand for health care from patients or purchasers. The possibility of an
incomplete agency relationship between purchasers and providers may lead to
simultaneous equations bias.
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9.2 Frontier models

9.2.1 Cross section estimators

Rather than discussing hospital cost studies in general, this section concentrates on the
econometric techniques that have been used to analyse the efficiency of health care
organisations, and in particular the use of stochastic frontier models. This builds on
earlier surveys by Wagstaff (1989a&b) and Aletras (1996).

Feldstein’s (1967) pioneering econometric analysis of hospitals costs in the British
NHS uses the following empirical specification,

=B+ % Bjx_u_ +u, (146)

where y, is the average cost per case and X, is the proportion of hospital i’s patients in
the jth.case-mix category. In this model the residuals are distributed symmetrically
around the cost function and it cannot be interpreted as a frontier. This is relaxed by
deterministic cost frontier (DCF) models, which assume u, > 0 for all i. In this case the

error term moves hospitals above the (deterministic) cost frontier. One estimator for
this model is corrected OLS, which simply adjusts the OLS estimates of the intercept
BD and the residuals by adding min(u) to the intercept and subtracting it from the

residuals. The drawbacks of this method are that it treats the most efficient hospital as
100 per cent efficient, and that the whole of the error term is assumed to reflect
inefficiency. This ignores random “noise” due to measurement errors and unobservable
heterogeneity.

To relax these assumptions stochastic cost frontiers (SCF) are based on the two-error
model,

y, =B, + % Bjxij +u +g w20 147

where u_measures inefficiency and € is a random error term. To estimate parametric

versions of this model by maximum likelihood it is necessary to make assumptions
about the distributions of u and €. For example Aigner et al. (1977) assume that € is
normal and u is half-normal. Other common assumptions are that u is truncated
normal, exponential, or gamma distributed.

Vitaliano and Toren (1994) apply stochastic frontiers to estimate cost inefficiency in
New York nursing homes, using the 1987 and 1990 waves of a panel dataset. After
experimenting with truncated normal and exponential distributions, they choose to
estimate the model using a half normal inefficiency term. They use Jondrow et al.’s
method to decompose the estimated error term; this computes an estimate of
inefficiency conditional on the estimated residual, E(u, lu+€). Their results suggest a

mean inefficiency of 29 per cent.
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Stochastic frontiers are applied to a multiproduct hospital cost function by Zuckerman
et al. (1994). They use data on 1,600 U.S. hospitals from the AHA Annual Survey,
Medicare hospital cost reports, and MEDPAR data system to estimate translog cost
functions that include measures of illness severity, output quality, and patient
outcomes. The SCF models are estimated by ML using a half-normal distribution for
inefficiency, these suggest a mean inefficiency of 13.6 per cent. The authors are
concerned about possible endogeneity of the output measures, and find that Hausman-
‘Wu tests reject exogeneity in non-frontier specifications. However, they are not able to
find estimates that converge when instrumental variables are used in the frontier
models.

The use of stochastic frontiers is not confined to estimates of hospital cost functions.
Gaynor and Pauly (1990) use production frontiers to investigate the effects of different
compensation arrangements on productive efficiency in medical group practices. They
compare “traditional” production functions, which only include inputs, with
“behavioural” functions, which include variables that reflect incentives. Data on 6,353
physicians within 957 group practices, from a survey carried out by Mathematica
Policy Research in 1978, are used to estimate stochastic frontiers using normal and
truncated normal error components. The potential endogeneity of variables that
measure the firm’s compensation structure is dealt with using instrumental variables.
The results suggest that incentives do influence productivity, with larger groups
reducing productivity and greater average experience within a group increasing
productivity.

Jones et al. (1997) apply frontier models to individual health production functions;
using data from the British Health and Lifestyle Survey to estimate the impact of
cigarette smoking on respiratory health. Half-normal, truncated normal, and
exponential stochastic frontier models are used to estimate the efficiency with which
individuals produce respiratory health, measured by their forced expiratory volume.
Instrumental variables are used to deal with the possible confounding effects of
unobservable heterogeneity bias. The results show that smoking has a detrimental
effect on respiratory health and they identify the specific effects of smoking intensity,
duration, and recovery after quitting.

Most cross-section frontier models are estimated by maximum likelihood, imposing
specific parametric distributions on both u and £ . Kopp and Mullahy (1990, 1993)
propose semiparametric estimators which relax the distributional assumptions about €,
simply requiring that it is symmetrically distributed. Given the symmetry assumption,
they are able to derive restrictions for the higher order moments of the composite error
term. In Kopp and Mullahy (1990) these moment conditions are used to motivate a
GMM estimator, and in Kopp and Mullahy (1993) they are used to motivate a COLS
or corrected moment (CM) estimator. These estimators do not seem to have been
applied to health data as yet.
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9.2.2  Panel data estimators

The fact that cross-section models rely on skewness to identify inefficiency is often
criticised (see e.g. Wagstaff, 1989b, Skinner, 1994). The danger is that skewness in the
distribution of the random error term could be mistakenly attributed to inefficiency.
The alternative is to use panel data estimators. On the assumption that inefficiency
remains constant over time, the stochastic frontier model takes on a form similar to the
standard panel data regression (see equation (92)),

v, =B, + % [3jxijl+ui +g, uzo (148)
This model can be estimated using fixed or random effects estirnators, and the results
are subject to the strengths and weaknesses of these estimators, as discussed in Section
6. In particular, the fixed effects models raises the problem of separately identifying
inefficiency and the effects of time invariant regressors, while the random effects
specification is biased if the inefficiency is correlated with the regressors.

Wagstaff (1989b) uses data on 49 Spanish public hospitals to compare cross section
and panel data estimators. Cross section estimates based on the half-normal model
suggest that mean cost inefficiency is only 10 per cent, and it is not possible to reject
the null hypothesis that there is no skewness. However estimates of the fixed effects
specification suggest that around one third of the variation in costs can be attributed to
inefficiency. Also the stochastic frontier leads to quite different efficiency rankings than
the fixed effects and deterministic cost frontier models. This ambiguity leads Wagstaff
to recommend that a range of methods are compared to assess the sensitivity of the
efficiency estimates to model specification.

Standard pane! data methods do not make use of the fact that inefficiency, u, is

expected to be non-negative. Koop et al. (1997) acknowledge this and develop a
Bayesian fixed effects estimator, using the prior that the inefficiency effects will be
one-sided and independent. They also develop a random effects estimator that allows
the inefficiency to depend on time invariant hospital characteristics. These estimators
are applied to a panel of 382 U.S. non-teaching hospitals for 1987-91. Estimates of a
translog cost function show that for-profit hospitals are less efficient, although these
results are based on highly aggregated measures of output and may neglect differences
in quality.

The assumption that inefficiency remains constant over time can be relaxed. For
example, Battese and Coelli (1992) propose a panel data estimator model in which firm
specific inefficiency takes the form,

u, = exp[—‘r](t—T)}ui >0 (149)
This allows inefficiency to change over time, but on the assumption that the rate of
change, m, is common to all firms. The model is estimated by ML, on the assumption
that that € is normal and u is truncated or half-normal. Battese and Coelli (1995)
propose an alternative specification in which,
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u = 70+ w 20 (150)

i

The 2 variables are determinants of cost inefficiency and the distribution of u_ is

assurmned to be truncated normal. Linna (1997) applies both of these models to Finnish
panel data covering 43 acute hospitals for 1988-94.

10. Conclusion

In documenting the influence of econometrics on the development of health
economics, Newhouse (1987) grouped imports from econometrics under four
headings: specification tests, robust estimators, replication, and experimentation. Ten
years on, the first two of these remain dominant themes in applied work. Examples of
good practice in health econometrics make extensive use of tests for misspecification
and explicit model selection criteria. Robust and distribution-free estimators are of
increasing importance, and this chapter has given examples of nonparametric, and
semiparametric estimators applied to sample selection, simultaneous equations, count
data, and survival models. As the use of these techniques widens, it will be interesting
to see whether they have an impact on the economic and policy relevance of the results
produced. Even if the impact proves to be small, researchers will have greater
confidence in results generated by less robust methods.

Published replications of empirical results remain relatively rare, perhaps reflecting the
incentives surrounding academic publication in economics. One way in which this
deficit may be remedied is through the appearance of more systematic reviews of
econometric studies, such as the work of Aletras (1996). The chapter has shown that
certain datasets are widely used, allowing results to be compared across studies, and
many of the studies reviewed here are careful to compare new techniques with
established methods. The use of experimental data remains an exception and most
applied studies continue to rely on observational data from secondary sources.
However applied work in health economics is likely to be influenced by the debate
concerning the use of instrumental variables to analyse social experiments (see e.g.
Angrist et al., 1996, Heckman, 1997).

This chapter has illustrated the impressive diversity of applied econometric work over
the past decade. It has emphasised the range of models and estimators that have been
applied, but that should not imply a neglect of the need for sound economic theory and
careful data collection and analysis in producing worthwhile econometric research.
Most of the studies reviewed here use individual level data and this has lead to the use
of a wide range of nonlinear models, including qualitative and limited dependent
variables, along with count, survival and frontier models. Because of the widespread
use of observational data, particular attention has gone into dealing with problems of
self-selection and heterogeneity bias. This is likely to continue in the future, with the
emphasis on robust estimators applied to longitudinal and other complex datasets.

63



ACKNOWLEDGEMENTS

The text of this chapter draws on joint work with Vassilios Aletras, Paul Contoyannis,
Alan Duncan, Martin Forster, Rob Manning, Nigel Rice, Matt Sutton, and Steven Yen.

I am grateful for valuable suggestions and comments from Ignacio Abasolo, Tom
Buchmueller, Marty Gaynor, Antonio Giuffrida, Michael Grossman, Don Kenkel, Will
Manning, John Mullahy, Edward Norton, Owen O’Donnell, Carol Propper, Belinda
South, Joe Terza, and John Wildman.



References

Ahn, H. and J.L. Powell (1993), “Semiparametric estimation of censored selection models with a
nonparametric selection mechanism”, Journal of Econometrics, Annals 58: 3-30.

Aigner, D.J., CAK. Lovell and P. Schmidt (1977), “Formulation and estimation of stochastic
production function models”, Journal of Econometrics 6: 21-37,

Alderson, C. (1997), “Exporing a modified ‘fair innings’ appraoch to addressing social class
inequalities in lifetime health”, unpublished M.Sc. dissertation, University of York.

Aletras, V. (1996), “Concentration and choice in the provision of hospital services, Technical
Appendix 27, NHS Centre for Reviews and Dissemination, University of York.

Angrist, 1.D. (1995), “Conditioning on the probability of selection to control selection bias”, NBER
Technical Working Paper #181.

Angrist, J.D., G.W. Imbens and D.B. Rubin (1996), “Identification of causal effects using
instrumental variables”, Journal of the American Statistical Association 91. 444-455.

Atkinson, AB., J. Gomulka, and N.H.Stern (1984), “Household expenditure on tobacco 1970-1980:
evidence from the Family Expenditure Survey”, London School of Economics, Discussion Paper
no.60.

Auster, R., I. Leveson and D. Sarachek (1969), “The production of health an exploratory study”,
Journal of Human Resources 15: 411-436.

Battese, G.E. and T.J. Coelli (1992), “Frontier production functions, technical efficiency and panel
data: with application to paddy farmers in India”, Journal of Productivity Analysis 3: 153-169.

Battese, GE. and T.J. Coelli (1995), “A model for technical inefficiency effects in a stochastic
frontier production function for panel data”, Empirical Ecconomics 20: 325-332.

Becker, G.S. and K.M. Murphy (1988), “A theory of rational addiction”, Journal of Political
Economy 96: 675-700.

Behrman, J.R., R.C. Sickles and P. Taubman (1990), “Age-specific death rates with tobacco smoking
and occupational activity: sensitivity to sample length, functional form, and unobserved frailty”,

Demography 27: 267-284.

Behrman, J.R., R. Sickles, P. Taubman and A. Yazbeck (1991), “Black-white mortality inequalities”,
Journal of Econometrics 50: 183-203.

Behrman, J.R. and B.L. Wolfe (1987), “How does mother’s schooling affect family health, nutrition,
medical care usage, and household sanitation?”, Journal of Econometrics 36: 185-204.

Bhattacharya, J., W.B. Vogt, A. Yoshikawa and T. Nakahara (1996), “The utilization of outpatient
medical services in Japan”, Journal of Human Resources 31: 450-476.

Bishai, D.M. (1996), “Quality time: how parents’ schooling affects child health through its interaction
with childcare time in Bangladesh”, Health Economics 5: 383-407.

Bjorklund, A. (1985), “Unemployment and mental health: some evidence from panel data”, Journal of
Human Resources 20: 469-483.

65



Blaylock, J.R. and W.N. Blisard (1992), “Self-evaluated health status and smoking behaviour”,
Applied Economics 24: 429-435,

Blaylock, J.R. and W.N. Blisard (1993), “Wine consumption by US men”, Applied Economics 25:
645-651.

Blundell, R.W. and R.J. Smith (1993), “Simultaneous microeconometric models with censored or
qualitative dependent variables”, In Maddala, G.S., C.R. Rao and H.D. Vinod, eds., Handbook of
Statistics, Vol 11. (Elsevier, Amsterdam) 117-143,

Biundell, R.W. and F.A.G. Windmeijer (1997), “Correlated cluster effects and simultaneity in
multilevel models”, Health Economics 6: 439-443,

Bolduc, D., G. Lacroix and C. Muller (1996), “The choice of medical providers in rural Bénin: a
comparison of discrete choice models™, Journal of Health Economics 15: 477-498.

Bollen, KA., D.K. Guilkey and T.A. Mroz (1995), “Binary outcomes and endogenous explanatory
variables: tests and solutions with an application to the demand for contraceptive use in Tunisia”,
Demography 32: 111-131.

Buchmueller, T.C. and P.J. Feldstein (1997), “The effect of price on switching among health plans”,
Journal of Health Economics 16; 129-260.

Butler, J.S., K.H. Anderson and R.V. Burkhauser (1989), “Work and health after retirement: a
competing risks model with semiparametric unobserved heterogeneity”, The Review of Economics and
Statistics ..: 46-53.

Cairns, J.A. and M. van der Pol (1997), “Saving future lives: a comparison of three discounting
models”, Health Economics 6: 341-350.

Cameron, A.C. and P. Johansson (1997), “Count data regression using series expansions: with
applications”, Journal of Applied Econometrics 12: 203-223.

Cameron, A.C. and F.A.G. Windmeijer (1996), “R-squared measures for count data regression models
with applications to health care utilization”, Journal of Business and Economic Statistics 14: 209-

220.

Cameron, A.C. and P.K. Trivedi (1986), “Econometric models based on count data: comparisons
and applications of some estimators and tests”, Journal of Applied Econometrics 1: 29-53.

Cameron, A.C., P.K. Trivedi, F. Milne and J.Piggott (1988), “A microeconometric model of demand
for health care and health insurance in Australia”, Review of Economic Studies 55: 85-106.

Cameron, A.C. and P.K. Trivedi (1993), “Tests of independence in parametric models with
applications and illustrations”, Journal of Business and Economic Statistics 11: 29-43.

Cauley, S.D. (1987), “The time price of medical care”, Review of Economics and Statistics

Chamberlain, G. (1980), “Analysis of covariance with qualitative data”, Review of Economic Studies
47: 225-238.

Chamberlain, G. (1984), “Panel data” in Griliches, Z. and M. Intrilligator, eds., Handbook of
Econometrics (North-Holland, Amsterdam): 1247-1318.

Coulson, N.E., I.V. Terza, C.A. Neslusan and B.C. Stuart (1995), “Estimating the moral-hazard effect

of supplemental medical insurance in the demand for prescription drugs by the elderly”, AEA Papers
and Proceedings 85: 122-126.

66



Deb, P. and P.K. Trivedi (1997), “Demand for medical care by the elderly: a finite mixture approach”,
Journal of Applied Econometrics 12: 313-336.

Dor, A.; P. Gertler, and J. van der Gaag (1987), “Non-price rationing and the choice of medical care
providers in rural Cote D’Ivoire”, Journal of Health Economics 6: 291-304.

Douglas, S. and G. Hariharan (1994), “The hazard of starting smoking: estimates from a split
population duration model”, Journal of Health Economics 13: 213-230.

Duan, N. (1983), “Smearing estimate: a nonparametric retransformation method”, Journal of the
American Statistical Association 78: 605-610.

Duan, N., W.G. Manning, C.N. Morris, and J.P. Newhouse (1983), “ A comparison of alternative
models for the demand for medical care”, Journal of Business and Economic Statistics 1: 115-126.

Duan, N., W.G. Manning, C.N. Morris, and J.P. Newhouse (1984), “ Choosing between the sample-
selection and multi-part model”, Journal of Business and Economic Statistics 2: 283-289.

Duncan, A.S. and AM. Jones (1992), “NP-REG: an interactive package for kernel density estimation
and nonparametric regression”, Institute for Fiscal Studies, Working Paper W92/7.

Dustmann and F.A.G. Windmeijer (1996), “Health, wealth and individual effects - a panel data
analysis”, presented at Fifth European Workshop on Econometrics and Health Economics.

Ellis, R.P., D.K. Mclnnes, and E.H.Stephenson (1994), “Inpatient and outpatient health care demand
in Cairo, Egypt”, Health Economics 3: 183-200.

Erbsland, M., W. Ried and V. Ulrich (1995), “Health, health care, and the enviroment. Econometric
evidence from German micro data”, Health Economics 4: 169-182.

Escarcé, J.J. (1996), “Externalities in hospitals and physicina adoption of a new surgical technology:
an exploratory analysis”, Journal of Health Economics 15: 715-734.

Feldman, R., M. Finch, B. Dowd, and S. Cassou (1989), “The demand for employment-based health
insurance plans”, Journal of Human Resources 24: 115-142,

Feldstein, M.S. (1967), Economic analysis for health service efficiency: econometric studies of the
British National Health Service. (North-Holland, Amsterdam).

Forster and Jonmes (1997a), “Inequalities in optimal life-span: a theoretical and empirical
investigation”, mimeo, University of York.

Forster and Jones (1997b), “The optimal time path of consumption of an unhealthy good: a theoretical
and empirical investigation of smoking durations” , mimeo, University of York.

van der Gaag, J. and B.L. Wolfe (1991), “Estimating demand for medical care: health as a critical
factor for adults and children”, In G. Duru and J.H.P. Paelinck, eds., Econometrics of Health Care,
(Kluwer, Amsterdam) 31-58.

Garcia, J. and J.M Labeaga (199.), “A cross-section model with zeros: an application to the demand
for tobacco”, Oxford Bulletin of Economics and Statistics

Gaynor, M. (1989), “Competition within the firm: theory plus some evidence from medical group
practice”, RAND Journal of Economics 20: 59-76.

67



Gaynor, M. and M.V. Pauly (1990), “Compensation and productive efficiency in partnerships:
evidence from medical group practice”, Journal of Political Economy 98: 544-573.

Geil, P., A. Million, R. Rotte and K.F. Zimmermann (1997), “Economic incentives and
hospitalization in Germany”, Journal of Applied Econometrics 12: 295-311,

Gerdtham, U-G. (1997), “Equity in health care utilization: further tests based on hurdle models and
Swedish micro data”, Health Economics 6: 303-319.

Gertler, P., L. Locay and W.Sanderson (1987), “Are user fees regressive? The welfare implications of
health care financing proposals in Peru”, Journal of Econometrics 36: 67-88.

Gourieroux, C.A., A. Monfort, and A. Trognon (1984), “Pseudo maximum likelhood methods:
applications to Poisson models”, Econometrica 52, 701-720.

Grootendorst, P.V. (1995), “A comparison of alternative models of prescription drug utilization™,
Health Economics 4: 183-198.

Grootendorst, P.V. (1997), “Health care policy evaluation using longitudinal insurance claims data:
an application of the panel Tobit estimator”, Health Economics 6: 365-382.

Guilkey, D.K. , T.A. Mroz, and L. Taylor (1992), “Estimation and testing in simultaneous equations
moadels with discrete outcomes using cross section data”, unpublished manuscript.

Gurmu, 8. (1997), “Semi-parametric estimation of hurdle regression models with an application to
medicaid utilization”, Journal of Applied Econometrics 12: 225-242.

Haas-Wilson, D., A. Cheadle and R. Scheftler (1988), “Demand for mental health services: an episode
of treatment approach”, Southern Economic Journal 55: 219-232,

Haas-Wilson, D. and E. Savoca (1990), “Quality and provider choice: a multinomial logit-least
squares model with selectivity”, Health Services Research 2:, 791-809.

Hakkinen, U. (1991), “The production of health and the demand for health care in Finland”, Social
Science and Medicine 33: 225-237.

Hakkinen, U., G. Rosenquist and S. Aro (1996), “Economic depression and the use of physician
services in Finland”, Health Economics 5. 421-434.,

Hamilton, B.H. and V.H. Hamilton (1997), “Estimating surgical volume-outcome relationships
applying survival models: accounting for frailty and hospital fixed effects”, Health Economics 6: 383-
395.

Hamilton, B.H., V.H. Hamilton, and N.E. Mayo (1996), “What are the costs of queueing for hip
fracture surgery in Canada?”, Journal of Health Economics 15: 161-185.

Hamilton, V.H., P. Merrigan and E. Dufresne (1997), “Down and out: estimating the relationship
between mental health and unemployment”, Health Economics 6: 397-406.

Hay, JW. (1991), “Phyisicians’ specialty choice and specialty income”, In G. Duru and J.HP.
Paelinck, eds., Econometrics of Health Care, (Kluwer, Amsterdam) 95-113.

Hay, J. and R.J. Olsen (1984), “Let them eat cake: a note on comparing alternative models of the
demand for health care”, Journal of Business and Economic Statistics 2: 279-282.

Heckman, 1. (1979), “Sample selection bias as a specification error”, Econometrica 47: 153-161.

68



Heckman, I.J. (1996), “Randomization as an instrumental variable”, Review of Economics and
Statistics .., 336-341.

Heckman, J.J. (1997), “Instrumental variables. A study of implicit behavioral assumptions used in
making program evaluations”, Journal of Human Resources 32: 441-461

Heckman, J.J. and B. Singer (1984), “A method of minimizing the distributional impact in
econometric models for duration data”, Econometrica 52: 271-230.

Honoré, B.E. (1992), “Trimmed LAD and least squares estimation of truncated and censored
regression models with fixed effects”, Econometrica 60: 533-565.

Hughes, M.D. (1988), “A stochastic frontier cost function for residential child care provision”,
Journal of Applied Econometrics 3: 203-214.

Hunt-McCool, J., B.F. Kiker and Y.C. Ng (1994), “Estimates of the demand for medical care under
different functional forms™, Journal of Applied Econometrics 9: 201-218.

Ichimura, H. and L.FLee (1991), “Semiparametric estimation of multiple index models:single
equation estimation”, in Barnett, W.A., J. Powell and G. Tauchen, eds. Nonparametric and

semiparametric methods in econometrics and statistics (Cambridge University Press, Ncw York).

Imbens, G.W. and J.D. Angrist (1994), “Identification of local average treatment effects”,
Econometrica 62: 467-475.

Jones, AM. (1989), “A double-hurdle model of cigarette consumption”, Journal of Applied
Econometrics 4: 23-39.

Jones, AM. (1993), "Starters, quitters and smokers: choice or addiction”, prepared for the
Inaugural Labelle Lectureship, CHEPA, McMaster University.

Jones, A.M., R. Manning and M. Sutton (1997), “The impact of cigarette smoking upon the efficient
production of respiratory health”, Centre for Health Economics Technical Paper 5.

Jonsson, B. and U. Gerdtham (1998), “Healthcare systems internationally compared”, in Newhouse,
J.P. and A.J. Culyer, eds., Handbook of Health Economics (North-Holland, Amsterdam).

Kenkel, D.S. (1990), “Consumer health information and the demand for medical care”, The Review of
Economics and Statistics .., 587-595.

Kenkel, D.S. (1991), “Health behaviour, health knowledge and schooling”, Journal of Political
Economy 99: 287-305.

Kenkel, D.S. (1995), “Should you eat breakfast? Estimates from health production functions™, Health
Ecconomics 4: 15-29

Kenkel, D.S. and J.V. Terza (1993), “A partial observability probit model of medical demand”,
mimeo.

Kerkhofs, M. and M. Lindeboom (1995), “Subjective health measures and state dependent reporting
errors”’, Health Economics 4 221-235.

Kerkhofs, M. and M. Lindeboom (1997), “Age related health dynamics and changes in labour market
status”, Health Economics 6: 407-423.

Kiefer, N. (1988), “Economic duration data and hazard functions”, Journal of Economic Literature
26: 646-679.

69



Koop, G., I. Osiewalski and M.F.J Steel (1997), “Bayesian efficiency analysis through individual
effects: hospital cost frontiers”, Journal of Econometrics 76: 77-105.

Kopp, R.J. and J. Mullahy (1990), “Moment-based estimation and testing of stochastic frontier
models”, Journal of Econometrics 46: 165-183.

Kopp, RJ. and J. Mullahy (1993), “Least squares estimation of econometric frontier models:
consistent estimation and inference”, Scandanavian Journal of Economics 95: 125-132.

Labeaga, J.M. (1993), “Individual behaviour and tobacco consumption: a panel data approach”,
Health Economics 2; 103112,

Labeaga, J.M. (1996), “A dynamic panel data model with limited dependent variables: an application
to the demand for tobacco”, mimeo. '

Lee L-F., M.R. Rosenzweig and M.M. Pitt (1997), “The effects of improved nutrition, sanitation, and
water quality on child health in high mortality populations”, Journal of Econometrics 77: 209-235.

Leibowitz, A., W.G. Manning and J.P. Newhouse (1985), “The demand for prescription drugs as a
function of cost-sharing”, Social Science and Medicine 21: 1063-1069.

Leung, S.F. and S. Yu (1996), “On the choice between sample selection and two-part models™,
Journal of Econometrics T2; 197-229.

Lewit, EM., D. Coate and M. Grossman (1981), “The effects of government regulation on teenage
smoking”, Journal of Law and Economics 24: 545-570.

Lindeboom, M., M. Kerkhofs and L. Aarts (1995), “Sickness absentecism of primary school teachers
in the Netherlands”, mimeo, Leiden University.

Linna, M. “Measuring the hospital cost efficiency with panel data models”, Paper presented at Sixth
European Workshop on Econometrics and Health Economics, Lisbon.

Lopez, A. (1997), “Unobserved heterogeneity and censoring in the demand for health care”,
unpublished manuscript.

McGuire, A. D.Parkin, D.Hughes and K. Gerard (1993), “Econometric analyses of national health
expenditures: can positive economics help to answer normative questions?”’, Health Economics 2:
113-126.

Maddala, G.S. (1983), Limited-dependent and gqualitative variables in econometrics, (Cambridge
University Press, Cambridge).

Maddala, G.S. (1985), “A survey of the literature on selectivity bias as it pertains to health care
markets”, In R.M. Scheffler and L.F. Rossiter, eds., Advances in Health Economics and Health
Services Research, Volume 6 (JAI Press, Greenwich Connecticut) 3-17.

Manning, W.G., L. Blumberg and L.H. Moulton (1995), “The demand for alcohol: the differential
response to price”, Jouraal of Health Economics 14: 123-148,

Manning, W.G., N. Duan and W.H. Rogers (1987), “Monte Carlo evidence on the choice between
sample selection and two-part models”, Journal of Econometrics 35: 59-82.

Manning, W.G., I.P. Newhouse, N. Duan, E.B. Keeler, A. Leibowitz and M.S. Marquis (1987),

“Health insurance and the demand for medical care: evidence from a randomized experiment”,
American Economic Review 77: 251-277.

70



Manski, C.F. (1993), “The selection problem in econometrics and statistics”, In Maddala, G.S., C.R.
Rao and H.D. Vinod, eds., Handbook of Statistics, Vol. 11. (Elsevier, Amsterdam) 73-84.

Morris, C.N., E.C. Norion and X.H. Zhou (1994), “Parametric duration analysis of nursing home
usage”, In N. Lange et al., eds., Case Studies in Biometry, (John Wiley & Sons Ine, New York) 231-
248.

Mullahy, J. (1986), “Specification and testing of some modified count data models”, Journal of
Econometrics 33: 341-365.

Mullahy, I. (1997a), “Instrumental variable estimation of count data models. Applications to models
of cigarette smoking behaviour”, Review of Economics and Statistics.....

Mullahy, J. (1997b), “Heterogeneity, excess zeros, and the structure of count data models”, Journal of
Applied Econometrics 12: 337-350.

Mullahy, J. (1997c), “Much ado about two: reconsidering the two-part model in health econometrics”,
mimeo.

Mullahy, J. and W. Manning (1996), “Statistical issues in cost-effectiveness analysis”, in Sloan, F.A.
ed., Valuing health care (Cambridge University Press, Cambridge) 149-184.

Mullahy, J. and P.R. Portney (1990), “Air pollution, cigarette smoking, and the production of
respiratory health”, Journal of Health Economics 9: 193-205.

Mullahy, J. and J. Sindelar (1996}, “Employment, unemployment, and problem drinking”, Journal of
Health Economics 15: 409-434,

Mundlak, Y. (1978), “On the pooling of time series and cross section data”, Econometrica 46: 69-85.

Mwabu, G., M. Ainsworth, and A. Nyamete (1993), “Quality of medical care and choice of medical
treatment in Kenya. An empirical analysis”, Journal of Human Resources 28: 838-862.

Newhouse, J.P. (1987), “Health economics and econometrics”, American Economic Review 77: 269-
274,

Newhouse, J.P., C.E. Phelps and M.S.M. Marquis (1980), “On having your cake and eating it too.
Econometric problems in estimating the demand for health services”, Journal of Econometrics 13:
365-390.

Norton, E.C. (1995), “Elderly assets, Medicaid policy, and spend-down in nursing homes”, Review of
Income and Wealth 41: 309-329.

Norton, E.C., G.S. Bieler, S.T. Ennett and G.A Zarkin (1996), “Analysis of prevention program
effectiveness with clustered data using generalized estimating equations”, Journal of Consulting and

Clinical Psychology 64: 919-926.

O’Donnell, O. (1993), “Income transfers and the labour market participation of disabled individuals
in the UK”, Health Economics 2: 139-148.

Philipson, T. (1996), “Private vaccination and public health: an empirical examination for U.S.
measles”, Journal of Human Resources 31: 611-630.

Pitt, M.M. (1997), “Estimating the determinants of child health when fertility and mortality are
selective”, Journal of Human Resources 32: 129-158.

71



Pohlmeier, W. and V. Ulrich (1995), “An econometric model of the two-part decisionmaking process
in the demand for health care”, Journal of Human Resources 30: 339-360.

Primoff, .. Vistnes, J. and V. Hamilton (1995), “The time and monetary costs of outpatient care for
children”, American Economic Review Papers and Proceedings 85: 117-121.

Rice, N. and A.M. Jones (1997), “Multilevel models and health economics”, Health Economics 6:
561-575.

Rice, N., AM. Jones and H. Goldstein (1997), “Multilevel models where the random effects are
correlated with the fixed predictors: a conditioned iterative generalised least squares estimator”,
(CIGLS), mimeo.

Rosenbaum, P.R. and D.B. Rubin (1983), “The central role of the propensity score in observational
studies for causal effects”, Biometrika 70: 41-55.

Rosenzweig, M.R. and T.P. Schultz (1983), “Estimating a household production function:
heterogeneity, the demand for health inputs, and their effects on birth weight”, Journal of Political
Economy 91: 723-746.

Rosenzweig, M.R. and K.T. Wolpin (1995), “Sisters, siblings, and mothers: the effect of teenage
childbearing and birth outcomes in a dynamic family context”, Econometrica 63: 303-326.

Santos Silva, J.M.C. and F.A.G. Windmeijer (1997), “Stopped-sum models for health care demand”,
presented at Sixth European Workshop on Econometrics and Health Economics, Lisbon.

Scott, A. and A, Shiell (1997), “Do fee descriptors influence treatment choices in general practice? A
multilevel discrete choice model”, Journal of Health Economics 16: 323-342.

Siddiqui, S. (1997), “The impact of health on retirement behaviour: empirical evidence from West
Germany”, Health Economics 6: 425-438.

Skinner, J. (1994), “What do stochastic cost frontiers tell us about inefficiency?”, Journal of Health
Economics 13: 323-328.

Stern, S. (1996), “Semiparametric estimates of the supply and demand effects of disability on labor
force participation”, Journal of Econometrics T1: 49-70.

Sutton, M. and C. Godfrey (1995), “A grouped data regression approach to estimating economic and
social influences on individual drinking behaviour”, Health Economics 4: 237-247.

Sutton, M. and A.M. Jones (1997), “Levels and styles of drinking: a LDV simultancous equations
approach”, mimeo, Univeristy of York.

Terza, 1.V, (1997), “Estimating count data models with endogenous switching: sample selection and
endogenous treatment effects”, Journal of Econometrics, forthcoming.

Ullah, A. (1988), “Non-parametric extimation of econometric functionals”, Canadian Journal of
Economics 21: 625-658.

van Doorslaer, E.K.A. (1987), Health, knowledge and the demand for medical care. (van Gorcum,
Assen/Maasricht).

van der Gaag, J. and B. Wolfe (1991), “Estimating demand for medica) care: health as a critical factor

for adults and children”, In G. Duru and J.H.P. Paelinck, eds., Econometrics of Health Care, (Kluwer,
Amsterdam) 3 1-58.

72



van de Ven, W.P.M.M., and J. van der Gaag, (1982), “Health as an unobservable: a MIMIC model for
health care demand”, Journal of Health Economics 1: 157-183.

van de Ven, W.P.M.M. and E.M. Hooijmans (1991), “The MIMIC health status index”, In G. Duru
and J.H.P. Paelinck, eds., Econometrics of Health Care, (Kluwer, Amsterdam) 19-29.

van de Ven, W.P.M.M. and B.M.S. van Praag (1981), “The demand for deductibles in private health
insurance” Journal of Econometrics 17: 229-252.,

van Vliet, R.CJ.A. and B.M.S. van Praag (1987), “Health status estimation on the basis of MIMIC
health care models”, Journal of Health Economics 6: 27-42.

Vitaliano, D.F. and M. Toren (1994), “Cost and efficiency in nursing homes: a stochastic frontier
approach”, Journal of Health Economics 13: 281-300.

Wagstaff, A. (1986), “The demand for health. Some new empirical evidence”, Journal of Health
Economics 5: 195-233.

Wagstaff, A. (1989a), “Econometric studies in health economics”, Journal of Health Economics 8: 1-
51,

Wagstaff, A. (1989b), “Estimating efficiency in the hospital sector: a comparison of three statistical
cost frontiers”, Applied Economics 21 659-672.

Wagstaff, A. (1993), “The demand for health: an empirical reformulation of the Grossman model”,
Health Economics 2: 189-198.

Wasserman, J. W.G. Manning, J.P. Newhouse and J.D. Winkler (1991), “The effects of excise taxes
and regulations on cigarette smoking”, Journal of Health Economics 10: 43-64.

Windmeijer, F.A.G. and JM.C. Santos Silva (1997), “Endogeneity in count data models; an
application to demand for health care”, Journal of Applied Econometrics 12: 281-294.

Wolfe, B. and J. van der Gaag, J. (1981), “A new health status index for children”, In J. van der Gaag
and M. Perlman, eds., Health, economics, and health economics, (North-Holland Amsterdam) 283-
304.

Yen, S.T. and A M. Jones (1996), “Individual cigarette consumption and addiction: a flexible limited
dependent variable approach”, Health Economics 5: 105-117.

Zimmerman Murphy, M. (1987), “The importance of sample selection bias in the extimation of
medical care demand equations”, Eastern Economic Journal 13: 19-29.

Zuckerman, S., J. Hadley, and L. lezzoni (1994), “Measuring hospital efficiency with frontier cost
functions”, Journal of Health Economics 13: 255-280.

73





