The DH Register of Cost-Effectiveness Studies:
A Review of Study Content and Quality.

James Mason
Michael Drummond

DISCUSSION PAPER 128
THE DH REGISTER OF COST-EFFECTIVENESS STUDIES:
A REVIEW OF STUDY CONTENT AND QUALITY.

James Mason
Michael Drummond

February 1995
The Authors

James Mason is a Research Fellow and Michael Drummond is Professor of Economics at the Centre for Health Economics, University of York.

Acknowledgements

The project was funded by the Department of Health. The following individuals offered comments on a draft of the quality assessment scheme and assisted in the reviews of studies in the Register of Cost-Effectiveness Studies: Karen Bloor, Douglas Coyle, Paul Dolan, Claire Gudex, Anne Mason and Gerry Richardson. Officials of the Department of Health also offered useful comments and suggestions. The views expressed are those of the authors and not necessarily those of the DH.

Further Copies

Further copies of this document are available (at price £5.00 to cover the cost of publication, postage and packing) from:

The Publications Secretary
Centre for Health Economics,
University of York,
Heslington, York, YO1 5DD.

Please make cheques payable to the University of York. Further details of other papers can be obtained from the same address, or telephone York (01904) 433648 or 433666.
Abstract

The Department of Health has recently published a register of economic evaluations of health care treatments and programmes. The objective of the register is to assist health care decision makers in assessing the value for money from alternative ways of allocating scarce resources. If the register is to be useful, it is important that decision makers have an appreciation of the methodological quality of the studies contained in the register, and hence the confidence that can be placed in the results.

This discussion paper gives details of an approach for assessing the methodological quality of economic evaluations. A worked example of a search in the register is presented and discussed. Some summary findings of the studies contained in the first published version of the register are presented together with a listing of the studies included. The interpretation of the existing register and the future reporting of economic evaluations are discussed.
Introduction

An important information requirement for health care decision making is evidence on the relative value for money from health care interventions. Such evidence is provided by economic evaluations of health care programmes and treatments, which compare their relative costs with their relative consequences (Drummond, Stoddart and Torrance, 1987). Now that more economic evaluations have been conducted, it has become common to compare the cost-effectiveness of different interventions in terms of the cost per life-year or cost per quality-adjusted life-year (QALY) gained.

The growing trend in making such comparisons has led to considerable discussion and debate (Birch and Gafni, 1992; Gerard and Mooney, 1993; Mason et al., 1993; Drummond et al., 1993; Gafni and Birch, 1993; Laupacis et al., 1993; Johannesson and Weinstein, 1993; Birch and Gafni, 1993; Birch and Gafni, 1994; Mason 1994). In particular there are concerns about constructing rankings, or 'league tables' since these have led to simplistic judgements about the superiority of one programme or treatment over another.

However, decisions have to be made and it would make sense to retain and strengthen economic considerations: scarce resources must be used wisely. Therefore, it is important that decision makers gain as much as possible from published economic evaluations and are able to use the available economic data intelligently. This includes knowing when not to use the available data and when to commission work addressing local circumstances more directly.

The Economics and Operational Research Division of the Department of Health assembled a register of cost-effectiveness studies containing details of over 200 economic evaluations. The Centre for Health Economics at the University of York was commissioned by the Department to review these studies. Consequently, the Department of Health has published a pilot Register of Cost-Effectiveness studies (RCES) containing details of 147 economic evaluations (Department of Health, 1994). The availability of the RCES was announced in an NHS Executive Letter (NHS Executive, 1994) on 28th September 1994. Copies of the register have been distributed to Regional General Managers, Regional Directors of R&D and Regional and District Directors of Public Health.

The RCES is presented not as a ranking or 'league table' but as an alphabetical listing of studies. If the RCES is to be useful, it is important that decision makers have an appreciation of the methodological quality of studies contained in the register, and hence the confidence that
can be placed in the results. This discussion paper gives details of an approach for assessing the methodological quality of economic evaluations and applies it to the studies contained in the RCES. Use of the register is illustrated by a search for studies addressing lung cancer.
Study Assessment

There are a number of textbooks on the methodology of economic evaluation in health care (Drummond et al., 1987; Luce and Elixhauser, 1990) and basic methodological principles have emerged. Often these are presented in the form of a checklist of questions to ask about published studies (Drummond et al., 1987). These checklists were not directive enough for the purpose of assessing the studies in the register and so an assessment template was devised. An abbreviated version of the assessment scheme is set out in Table 1. The focus of assessment was to extract from each paper the data and methods that comprise the analysis and to summarize consequent limitations. All studies were reviewed by the primary investigator (JM) with confirmatory reviews provided by health economist colleagues (see acknowledgements): conflicts were resolved by discussion.

Basic study description

We recorded the full study title, the names of the authors and the journal (source) in which the study was published. Apart from enabling the user to locate the original paper, these details may give some clues to the quality of the work. However, a 'good quality' journal does not necessarily imply a 'good quality' study, as many medical journals have not been very well equipped to refereed economic studies until recently.

We also recorded the source of funding for the study when this was mentioned, because of possible sponsorship bias (Hillman et al., 1991). However, many published studies do not give the funding source: this is likely to be rectified in the future (International Committee of Medical Journal Writers, 1993).

Studies were categorised by disease, intervention type and ICD-9 code. In future the now available morbidity related ICD-10 coding should prove a superior alternative to ICD-9.

Alternatives assessed

Cost-effectiveness estimation involves the relative performance of a health care intervention and an alternative (comparator). Good studies always give an adequate description of both the intervention and the comparator, but this is sometimes lacking. Often the implicit comparison may be 'doing nothing' or 'current care'. Apart from being a methodological deficiency, inadequate description of the alternatives greatly reduces the usefulness of a published study, since the user needs to know whether the results of the evaluation relate to his or her own setting. Sometimes the same study considers a wide number of alternatives.
TABLE 1: Analysis assessment scheme (abbreviated)

<table>
<thead>
<tr>
<th>Section</th>
<th>Notes/Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Source</td>
<td>
Item number: For paper, article, study etc.
Number of entries
Entry number
Reviewer
Author(s)
Title
Journal
Date
Volume, Number, Pages
Funding Source</td>
</tr>
<tr>
<td>2 Medical area</td>
<td>Disease field: Blood cancer, heart disease, mental illness, mental health, respiratory illness, stroke, etc.
ICD-9 code
Intervention type
Broad terms: care counseling, physical therapy, surgery, etc.</td>
</tr>
<tr>
<td>3 Medical evidence</td>
<td>QI/ARV model type of study
X Randomized Controlled Trial (RCT)
P Other prospective controlled trial (CT)
F Meta-analysis of RCTs
M Internal Meta-analysis of RCTs
E Epidemiological cohort model (model of survival and disease)
R Retrospective case-control study
Q Other</td>
</tr>
<tr>
<td>4 Economic question</td>
<td>Intervention description: Use of treatment, patient sample characteristics and setting of treatment
Intervention description (cont.)
Comparator description: QALY, LTV, LS
Outcomes in summary cost-effectiveness ratio
Type of change
Comparator type
Technology date</td>
</tr>
<tr>
<td>5 Benefit description</td>
<td>Description of health states: e.g. Rostrum classification, author description, etc.
Health State Valuation: A Author
Health and Quality, values: B Author
Literature
Year valued?
Where valued?</td>
</tr>
<tr>
<td>6 Cost description</td>
<td>Published cost date
Cost date
Cost Resource data
Cost inclusions
Incremental cost?</td>
</tr>
<tr>
<td>7 Allowance for uncertainty</td>
<td>Sensitivity analysis
M Multiple parameter variation
N None
P Probabilistic variation
Were the parameters selected and ranges of values adequately justified?
Baseline (discount rate 0%), lowest, highest values</td>
</tr>
<tr>
<td>8 Summary findings</td>
<td>QALY or LTV saved and discount rate (v)
Cost-LTE and discount rate (v)
Cost-LTE and discount rate (v)
Cost-LTE and discount rate (v)</td>
</tr>
<tr>
<td>9 Entry specific notes</td>
<td>1 Resource cost
2 Notes on health effects
Notes on costs
Notes on costs
General</td>
</tr>
<tr>
<td>10 General study notes</td>
<td>Resources cost
Notes on health effects
Notes on costs
General</td>
</tr>
</tbody>
</table>
Our original intention was to develop a classification scheme for the interventions and alternatives used in studies. This would have two elements. The first would relate to the type of change being examined i.e. did the evaluation concern the replacement of existing care, augmentation of what was currently available, programme expansion/retraction or a completely new field? The second element would relate to the type of alternative assessed: current practice, minimum practice, a placebo, another new technology, or 'doing nothing'. In practice this classification was unworkable since interventions and comparators could often legitimately be coded in several ways, and our coding could therefore mislead decision makers for whom current practice is different. Instead we decided to give a full description of intervention and comparator programmes. This should enable a decision maker to assess the relevance of the study.

Place and date

It is important to assess whether a particular study is likely to be past its 'sell-by' date. Health technologies change over time, affecting both costs and benefits.

Potentially there are three dates relating to cost data in an economic study: these are:

1. the date of resource measurement;
2. the date of costing of resources; and
3. the date to which costs are reflated to arrive at a common year for internal consistency and publication purposes (the 'published cost').

Ideally one would like to record the technological date of the medical evidence used in studies. However, studies seldom reported this information. Since many studies included epidemiological data of some kind, such data could relate to decades before the study. Trial data generally has a date of origin within a decade of publication date; with other study designs this can not be presumed.

Despite these limitations, the publication and cost dates give information on the context in which a given study was undertaken. We believe that the age of studies has been largely neglected by compilers of cost-effectiveness rankings in the past, with many of the studies included being well past their 'sell-by' date. A user may be further misled because of the common practice of reflating costs to a recent year when publishing rankings of study findings. A simplistic updating of costs for inflation will only suffice when relative costs of health resources do not change and when technological change is absent.
The classification of place of study was confined to the country (or countries) in which the major data collection took place. This is not always straightforward; some economic studies may use clinical data generated in another country and then apply local cost data. We believe the problems of transferability to be greater for economic data than for clinical data, although they are not absent in either case. There are also wide variations in clinical practice or health service organization within countries.

However, it is known from the limited number of studies already carried out that the cost-effectiveness of interventions vary by location (Drummond et al., 1992). In an ideal world published studies would give much more information about local practice patterns, resource availability, demography and relative prices. This is largely lacking at the moment. Therefore users should not simply accept or reject studies from other countries without careful consideration of the likely differences between settings.

Comparison involving cost data from different countries also raises the additional issue of exchange rate conversions. Simple published exchange rates are subject to fluctuations and may be misleading. Adjustments should be made using purchasing power parities (PPPs). Some analysts argue that, where possible, PPPs should be specific to medical goods and services (Gray, 1989). However, it is arguable that health PPPs are still at a developmental stage and unreliable since they feature an inadequate selection of services. A further methodological concern is that while health PPPs capture the relative cost of health technology purchases between countries they fail to capture relative wealth (and thus ability to pay, which diffusely influences price) reflected in Gross Domestic Product (GDP) PPPs. A comparison of health and GDP PPPs indicates that the choice may be important. Table 2 shows the conversion factors for expressing health care expenditures from three sample countries in £, sterling (derived from OECD, 1993).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0.409</td>
<td>0.252</td>
<td>0.426</td>
<td>0.349</td>
<td>0.462</td>
<td>0.362</td>
<td>1.37</td>
</tr>
<tr>
<td>France</td>
<td>0.092</td>
<td>0.075</td>
<td>0.083</td>
<td>0.071</td>
<td>0.091</td>
<td>0.093</td>
<td>1.12</td>
</tr>
<tr>
<td>United States</td>
<td>0.520</td>
<td>0.260</td>
<td>0.550</td>
<td>0.321</td>
<td>0.600</td>
<td>0.337</td>
<td>1.83</td>
</tr>
</tbody>
</table>

TABLE 2: PPP Conversions to £, sterling.
Averaging data over the three years available, GDP PPPs value an American dollar spent on health 1.83 times higher than that obtained by health PPPs, when expressed in £s sterling. A further issue here is that each particular health technology reported in a study involves a small bundle of goods and services: PPPs may be very imprecise at this level while accurately reflecting a macroeconomic picture.

Our primary reporting of study results was in the local currency and at the published cost date (see page 5, item 3) used in the study itself. However, in order to facilitate appropriate comparison between studies we adjusted the local currency to £s sterling using GDP PPPs (OECD, 1993) and then reflated the estimates to mid-1991 prices (NHSME, 1993).

Medical evidence

It is obvious that an economic evaluation is only as good as the medical evidence on which it is based. Therefore we included a detailed classification of medical evidence where the information in the published studies permitted.

The main classification related to the basic type of clinical evidence. Economic evaluations draw variously on data from randomized controlled trials (RCT), formal meta-analyses (Sacks et al., 1987) of RCTs (with comprehensive literature search and clear admission criteria), informal meta-analyses (of studies immediately to hand), epidemiological cohort models, prospective (non-randomized) controlled trials, retrospective case control studies and other sources.

Some studies use a mixture of evidence. For example, the study by Schulman et al. (1991) on drug therapy for people with asymptomatic HIV infection used RCT data on disease progression, extrapolated to survival by use of an epidemiological model. In our classification this was placed under 'epidemiological cohort model' since the RCT evidence did not relate to the final endpoint used in the economic evaluation. However, sometimes classification was difficult since it is common for an economic evaluation, even when based on an RCT, to extrapolate survival data, add assumptions or generally broaden the scope of the assessments made. Therefore the economic assessments seldom exactly match the clinical data.

Where the economic study was based on a prospective clinical study, usually an RCT, further information was recorded when this was available. Items included the adequacy of patient selection, single or multicentre location, the percentage of non-respondents, the randomization method, the size of the trial, the drop out rate, the adequacy of statistical power, the type of blinding, the comparability of treatment groups at baseline, the primary outcome measure (with
p value if given) and the type of analysis (i.e. intent-to-treat or treatment-completers). Few published economic evaluations presented these data, and this section was completed for only a few studies in the RCES.

Resources included in the costing were listed where the study gave details. Giving full details of the (quantities of) resources used in an evaluation is desirable since it may permit validation and recosting by decision makers in other settings.

Benefit measurement and valuation

On some occasions the medical evidence from clinical studies is a direct input to the economic evaluation. This would be the case for a trial of a lifesaving intervention where the main clinical endpoint was length of survival. However, in most cases the derivation of a measure of economic benefit requires further analysis. For example, intermediate clinical endpoints are often used to predict, by modelling techniques, the number of life years gained; descriptive quality of life data are sometimes used to construct a health status index; and health status indices are used, in conjunction with survival data, to calculate the number of quality-adjusted life-years (QALYs) gained from therapy.

We documented the methods used in the economic studies to derive measures of benefit, either from the clinical data, or by the collection of additional information. For example, we recorded whether the main economic benefit measure was lives saved, life years gained or quality-adjusted life-years gained. We also documented the use of any descriptive health status (quality of life) measures, such as the Nottingham Health Profile.

Where health status preference values (or utilities) were calculated, we recorded the source of health state valuation (e.g. patients, clinicians, general public) and whether the associated health state utilities were obtained by direct measurement, derived from the literature, or obtained from a published value matrix (e.g. that developed by Rosser). If direct measurement was used, the measurement approach (e.g. time trade-off, visual analogue scale) was recorded. Finally, the benefits were reported, where available, for the different discount rates used in the study.

Cost measurement and valuation

There are a number of important methodological features of the costing employed in published studies. First, the cost boundary can consist of health care costs falling on health services only, or include those health costs falling on other agencies; the patient and their family), or include indirect costs arising from production losses. The relevant range of costs depends on the perspective, or viewpoint, of the study. Where the range in a study was unusual this was
commented on in the study notes.

Secondly, the years of data collection, relating to both resource quantities and costs, were recorded and a note made of any adjustment of cost estimates for inflation. Thirdly, the costs were reported, where available, for the different discount rates used in the study. Finally, costs were reported in their original currency and a note made of any other methodological issues relating to costing.

Allowance for uncertainty in estimations

Estimates in economic evaluations are often subject to uncertainty, because assumptions have to be made, because estimates are imprecise, or because of methodological controversy. Uncertainty is usually dealt with in economic evaluations by undertaking a sensitivity analysis, where the values of parameters are varied to see whether they greatly affect study results.

We recorded whether a sensitivity analysis was performed, the method used, and the ranges (from lowest to highest estimate) specified. There is currently no standardized procedure of assessing uncertainty in economic evaluations (Briggs et al. 1994). For the purposes of the RCES, we considered an adequate sensitivity analysis to be one that identified the sensitive parameters and then meaningfully justified the range of values used. The most sensitive parameters in each study were also noted.

Presentation of study results

Finally, we recorded the study results, as reported in the published study. Typically, these were in the form of an incremental cost per life year, or quality-adjusted life year, gained, reported with various discount rates. We also noted fundamental miscalculations or deficiencies in the presentation of results, ways in which the presentation of cost-effectiveness ratios could potentially mislead the user and other points coming to the attention of the person reviewing the study.
Using the register

The RCES is currently available in hard copy form. This consists of a hierarchical series of tables (Figure 1) with an introduction and user guide. The (shaded) flow lines shown indicate how each table in the RCES can be cross-referenced. A full categorisation of the content of studies is found in Table E. However the user can consult Table A to clarify the meaning of data entries and codes or refer to Tables B-D which provide indexes to studies by disease, ICD code or intervention type. Table A is shown in abbreviated form in this discussion paper as Table 1 on page 4.

FIGURE 1: Searching with the Register Hard-Copy

Table E can be used to search rapidly for studies by author, by publication date, disease field, ICD-9 code, intervention type, outcome model, and outcome type (QALY, Life-Year, Lives-Saved). When studies are identified, the user records the item number and tables containing data entries. Entries are always found in Tables F and J (summary findings and notes), and sometimes found in Tables G-I depending on the study.

When extracting data from the register, it is important for users to be able to gauge the quality of information, particularly when the intention is to make comparisons between health technologies. The quality of medical evidence in studies varies widely, from a well-conducted RCT that used economic endpoints to undisguised clinical opinion; most evidence falls
somewhere in between. Most economic evaluations involve some form of modelling of disease and survival: if the methods and assumptions are reported then these will have been recorded. Users should also consider the dates relating to publication and cost data, the country of origin and costing methodology. Particular attention should be given to the precise details of the intervention and its comparator. These points are illustrated in a worked example, which makes reference to tables in the RCES: the relevant extracts are reproduced in Figure 2. Definitions for Table headings in Figure 2, if not self explanatory, may be found on page 4.

Example: What is the evidence of the cost-effectiveness of lung cancer treatments?

Extract from Table B: Index to studies by narrow and broad disease terms

- lung cancer, 40, 143; see also: non-small cell, small cell
- non-small cell lung cancer, 52, 105
- small cell lung cancer, 77

Searching Table B, five possible studies are identified. Examining Table E (Figure 2) to find out more about these studies, all studies are from the USA or Canada. Examining the study titles and the Intervention type field it appears that two items are preventive (40, 143) and three involve treatment (52, 77, 105). It is useful to confirm this impression by examining the Economic description fields in Table F since study titles are sometimes vague or misleading. As mentioned previously, all items will have information recorded in Tables F and J (summary findings and notes). Examining the TABLE field in Table E, all items (unusually) in this search have entries for trial data (Table G), one study has quality-of-life data (Item 77, Table H), and three studies have a sensitivity analysis recorded (Table I). Some studies address more than one question and thus may have several entries in the RCES: only one entry is selected here from each study. The findings in each of the tables are examined in turn.

Outcome model

Interestingly the two preventive studies both used a modelling approach based on a formal meta-analysis (statistical combining of trial evidence), whereas the studies involving treatment are all based on RCTs. Since trial data is potentially available for all five studies, each has an entry in Table G. An examination of Table G shows that very little is known about the trials entering the meta-analyses in the preventive studies other than that both studies (GP advice and nicotine gum) performed a thorough review of the medical literature and extracted one-year cessation from smoking data. The three treatment studies provide more information and it is possible to assess the size and methodology of the trials. It is noteworthy that all three studies feature truncated survival
measurement and it is interesting to see if these survival findings are used directly in the economic analyses or extrapolated in some manner. None of the treatment studies recorded whether their analyses were conducted on an intention-to-treat or treatment completers basis. This is clearly a concern since considerable bias may be introduced with an analysis of treatment completers.

QALY, Life-Years gained, Life-Years saved.

All five studies reported outcome as life-years saved; one study (Item 77, Goodwin et al) estimated quality-of-life. Table H shows that the authors used 7 descriptive health states and obtained a valuation of quality of life from a sample of seven patients and fourteen health service staff. The study authors do not record when in the progression of disease the patient measurements were taken or if health worker and patient valuations differed.

Summary Findings.

All five studies reported findings in terms of a cost per life-year saved ratio; one study reported a cost per QALY (Table F). For illustration, note that Cummings et al (Item 40) have incorporated the cessation rate achievable from smoking, at one year, into a disease model; the health effects have been modelled over the life-expectancy of those treated (Outcome duration). Only the direct costs of intervention up to 1 year have been included (cost duration, cost boundary); the study is recent as is the cost data. Goodwin et al (Item 77, entry 1) have extrapolated the trial survival data since outcome duration in the economic model is life-long (L); their costing model includes direct health service and patient costs as well as costs falling on other agencies. Register users should note the different modelling assumptions that are involved and consider their potential impact on the cost-effectiveness ratios reproduced in these tables. Both the preventive studies feature discounting of future costs and benefits at 5%. When either costs or benefits are measured over a duration of more than several years then it is usually only appropriate to compare results from different studies which use the same discount rate. The exception is for studies where costs and benefits are measured over only a few years. Then, the effect of discounting is relatively unimportant and such studies can be compared, on an individual basis, with any other study using any discount rate.
Sensitivity Analysis.

Two of the entries selected (77 and 143) featured a sensitivity analysis adjudged to be 'adequate' for the purposes of the register. The study by Cummings et al (40) also conducted a sensitivity analysis but not for the entry selected. The range reported in the study by Goodwin et al reflects different assumptions about hospitalization rates necessary for treatment. Where sensitivity analyses are conducted adequately in studies these give a useful feel for the confidence readers should place in the result. It is difficult to advise register users as to how they should place studies without a (complete) sensitivity analysis alongside those with one.

Notes (Table J, not reproduced here)

Considering the study by Cummings et al, the notes in Table J indicate that the analysis of disease progression is based upon extrapolations from observational data: the possibilities are that intervention will not achieve all of the differences seen to naturally occur between different groups of people, and that intervention may have unwarranted side-effects. The therapeutic treatments have the common feature that they involve the comparison of one treatment with another. Goodwin et al (Item 77) actually state that the relative survival of a cohort with supportive care only is unknown but that such an 'intervention' would be unacceptable to society! It is important to consider the treatment options presented in the register and where possible to assess if any intervention is appropriate.
Extract from Table E: Description of studies in the Register (see Table 1, page 4, for heading definitions)

| Item | Author | Citation | Journal | Date | Yr/No/Page | Nationally | Disease field | Intervention type | Funding sources | Outcome model | QALY, LY, LS | Sens Q, A? |
|------|--------|----------|---------|------|------------|------------|---------------|-----------------|----------------|---------------|-------------|-------------|-----------|

Extract from Table F: Summary findings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Cummings SR, Rubin SM, Osterc G</td>
<td>Opportunistic brief advice and booklet from a physician to quit smoking, follow-up visit two weeks after cessation: mean, age 45-50</td>
<td>Advice by a physician to quit smoking</td>
<td>6/1989</td>
<td>0</td>
<td>LL</td>
<td>Ty</td>
<td>H</td>
<td>Y</td>
<td>Y US $</td>
<td>1984</td>
<td>4000</td>
<td>0.5</td>
</tr>
<tr>
<td>77</td>
<td>Goodman PJ, Field R, Evans WK, Pater J</td>
<td>Chemotherapy for (terminal) advanced small-cell lung cancer: Cyclophosphamide, doxorubicin (Adriamycin) and vincristine (CAV) alternating with etoposide and cisplatin (EP)</td>
<td>CAV only</td>
<td>u/1088</td>
<td>X</td>
<td>LL</td>
<td>LL</td>
<td>HPA</td>
<td>Y</td>
<td>CAN $</td>
<td>1995</td>
<td>2360</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*One study entry selected from a number found in the RCES.

Extract from Table G: Trial data

<table>
<thead>
<tr>
<th>Item</th>
<th>Author</th>
<th>Treatment description</th>
<th>Control description</th>
<th>Date</th>
<th>Nationally</th>
<th>Funding model</th>
<th>Study type</th>
<th>SM Centre</th>
<th>Duration</th>
<th>Select</th>
<th>Power</th>
<th>Random</th>
<th>trial size</th>
<th>Drop-out</th>
<th>%</th>
<th>Blinding</th>
<th>Hypothesis</th>
<th>Analysis</th>
<th>Comp</th>
<th>Primary outcome</th>
<th>p-value</th>
<th>QLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Cummings SR, Rubin SM, Osterc G</td>
<td>Advice by a physician to quit smoking</td>
<td>No intervention</td>
<td>6/1989</td>
<td>USA</td>
<td>F</td>
<td>EF</td>
<td>u</td>
<td>Y</td>
<td>1 year cessation rate</td>
<td><0.05</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Dillman RD, Seagre SL, Propert KJ et al</td>
<td>Induction chemotherapy (cisplatin and vinblastine) plus high-dose radiation (60 Gy over a 6-week period) for stage III non-small-cell lung cancer</td>
<td>High-dose radiation alone</td>
<td>4/1990</td>
<td>CAN</td>
<td>u</td>
<td>X</td>
<td>M</td>
<td>3y</td>
<td>155</td>
<td>14%</td>
<td>H</td>
<td>u</td>
<td>N</td>
<td>Survival</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Goodman PJ, Field R, Evans WK, Pater J</td>
<td>Chemotherapy for (terminal) advanced small-cell lung cancer: CAV alternating with etoposide and cisplatin (VP)</td>
<td>Cytosine-arabinoside, doxorubicin (Adriamycin) and vincristine (CAV)</td>
<td>u/1088</td>
<td>CAN</td>
<td>u</td>
<td>X</td>
<td>M</td>
<td>median</td>
<td>t</td>
<td>285</td>
<td>u</td>
<td>H</td>
<td>u</td>
<td>N</td>
<td>Mean survival</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Jaakkimainen L, Goodman PJ, Pater J et al</td>
<td>Chemotherapy for (terminal) advanced non-small cell lung cancer: Vindesine and cisplatin</td>
<td>Placebo</td>
<td>u/950</td>
<td>CAN</td>
<td>u</td>
<td>X</td>
<td>M</td>
<td>median</td>
<td>t</td>
<td>94</td>
<td>44</td>
<td>50</td>
<td>H</td>
<td>u</td>
<td>N</td>
<td>Mean survival</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Cottet G, Huse DM, Delea TE, Cotzold GA</td>
<td>Addition of nicotine gum, to smoking cessation.</td>
<td>Placebo gum</td>
<td>12/986</td>
<td>USA</td>
<td>CG</td>
<td>EF</td>
<td>u</td>
<td>Y</td>
<td>1 year cessation rate</td>
<td><0.05</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Extract from Table H: QoL estimation

<table>
<thead>
<tr>
<th>Item</th>
<th>Author</th>
<th>Date</th>
<th>Disease field</th>
<th>Outcome model</th>
<th>Nationally</th>
<th>Description of health states</th>
<th>Health state evaluation</th>
<th>Valuation tool</th>
<th>Health utility valuation</th>
<th>Intervention QALYs</th>
<th>Comparison QALYs</th>
<th>Scale</th>
<th>Benefit</th>
<th>Health</th>
<th>S-E included</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Goodman PJ, Field R, Evans WK, Pater J</td>
<td>u/1088</td>
<td>small cell lung cancer, neoplasm</td>
<td>CAN</td>
<td>7 descriptive states</td>
<td>P=7, H=14</td>
<td>CR, SG</td>
<td>0.297</td>
<td>0.292</td>
<td>0.100</td>
<td>[2]</td>
<td>patient</td>
<td>LL</td>
<td>N</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Extract from Table I: Sensitivity analysis

<table>
<thead>
<tr>
<th>Item</th>
<th>Author</th>
<th>Funding sources</th>
<th>Study type</th>
<th>Intervention cost</th>
<th>Comparison cost</th>
<th>Currency</th>
<th>Published cost, 1991 (S)</th>
<th>Range ± CLS, 1991 (S)</th>
<th>Range ± QALY, 1991 (S)</th>
<th>Range ± QALY, 1991 (S)</th>
<th>Sensible parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Goodman PJ, Field R, Evans WK, Pater J</td>
<td>u</td>
<td>X</td>
<td>LL</td>
<td>LL</td>
<td>HPA</td>
<td>2365</td>
<td>[0,0]</td>
<td>24214</td>
<td>Rate of hospitalization</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Cottet G, Huse DM, Delea TE, Cotzold GA</td>
<td>CG</td>
<td>EF</td>
<td>X</td>
<td>LL</td>
<td>HPA</td>
<td>3408</td>
<td>[5,5]</td>
<td>1690, 18225</td>
<td>Effectiveness of gum</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2: Sample extracts from RCES tables
Register content

Two hundred and two studies were obtained and subjected to methodological review. It was found that 100 of these reported a cost-effectiveness ratio, in cost per life saved, cost per life-year gained, or cost per quality-adjusted life-year (QALY) gained. All 100 studies are included in the RCES discussed here.

Another 47 of the 202 studies were also included since they provided useful information for health care decision makers. These consisted of:

- studies where benefits were not aggregated (e.g. to a QALY), but which represented best useful economic evidence;

- studies that required a simple costing exercise in order to interpret the results in a cost-effectiveness framework; and

- studies that could be interpreted as a cost-minimization analysis.

A list of the 147 studies included in the RCES is listed in the Appendix, in alphabetical order. Fifty-five studies were excluded from the main RCES because they were irretrievably flawed, constituted a review or duplicate of another study, or contained information too partial to be useful. A table, listing these studies, together with reasons for exclusion, was not included in the published version of the RCES.

Since some studies addressed more than one technology or stratified findings by age or gender, the 100 studies reporting summary cost-effectiveness ratios gave rise to 407 entries in the register. The content of the RCES in terms of outcome measure used is shown in Table 3. Although the register does not currently contain an exhaustive list of all available studies it nevertheless provides useful evidence of the kinds of studies that have been conducted in the last two decades.

<table>
<thead>
<tr>
<th>Studies reporting a cost-effectiveness ratio</th>
<th>No. of studies</th>
<th>No. of entries</th>
<th>Entries with Cost/QALY</th>
<th>Entries with Cost/Life Year</th>
<th>Entries with Cost/Life Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>407</td>
<td>207</td>
<td>227</td>
<td>46</td>
</tr>
<tr>
<td>Other studies included in the register</td>
<td>47</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies excluded</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3: Summary of cost-effectiveness data in the RCES
A summary of entries, by ICD-9 coding, contributing cost-effectiveness ratios to the Register is shown in Figure 3. Some diseases could legitimately be classified under more than one code thus 407 entries contributed 434 entries by ICD-9 code. Most evaluations were concerned with neoplasms, or circulatory, genito-urinary and digestive disorders. Approximately half of the circulatory disorder entries (ICD-9 codes 390-459) related to serum cholesterol modification evaluations: these often generated results stratified by age, sex and risk factors. More than half of the genito-urinary disorder entries related to the management of renal failure.

![ICD Group Diagram](image)

FIGURE 3: Entries in the Register by ICD-9 code.

A summary of the kind of outcome models used is illustrated in Figure 4. Very few analyses have been based directly on the findings of RCTs, often considered the gold standard in clinical reporting. However, the preponderance of entries based on epidemiological cohort models or ‘other’ evidence is noteworthy. ‘Other’ studies include those that use, as their primary source of clinical data, uncontrolled patient case series or clinical opinion. Suitable RCT data is frequently unavailable to assess health care technologies, particularly at the time when implementation decisions are made. Consequently analysts often attempt to model the impact of health care services and procedures by drawing together the evidence available. Epidemiological cohort models indicate or suggest the impact on a patient cohort over time attributable to some risk factor modification. Evidence used may be drawn from observational studies or derived from trials using intermediate clinical endpoints. In Figure 4 this is seen as by far the most common form of evaluation found in the RCES.
The RCES is currently less comprehensive in its coverage for recent years. Figure 5 gives the number of studies and entries in the Register by year of publication. It can be seen that coverage beyond 1991 is sparse. This can be contrasted with the exponential rise in the number of published studies in recent years (Elixhauser et al., 1993).
Quality Issues

A number of points arise from the process of assessing the studies in the RCES. These reflect the content and reporting of studies.

1 Studies often had undefined or inappropriate objectives, hence the template used in the RCES examined what each analysis actually contained and addressed in its data and methods. It is essential for analysts at the outset to have a clear objective for their work. This may take the form of a question posed (e.g. how should we treat hypertension?), involve a certain viewpoint or perspective (e.g. taking the viewpoint of society, the patient, a drug company), but may be limited by available data (e.g. what is the relative value-for-money of two drugs which achieve reductions in blood pressure in elderly men in an English community care setting). Together these facets define the achievable objective of the analysis, guiding appropriate methodology, boundaries for inclusion of costs and benefits, findings and conclusions. A clear description of the treatment evaluated (who got what, where, how and when), the alternatives analysed and the setting of the study permits decision makers in other contexts to assess the relevance of consequent findings.

2 Considerable variation was found in the basic standard of reporting of analyses found in the RCES. For example, the year to which 'published' cost data related was ambiguous in about 25% of entries in the register. Potentially there are three dates relating to cost data in an economic study: these are:

I the date (or period) of resource measurement;

II the date (or period) of costing of resources; and

III the date to which costs are reflated to arrive at a common year for internal consistency and publication purposes (the 'published cost').

The funding source was undeclared for more than half of entries: there was no improvement in this rate in the studies reported since the beginning of 1990. Where an economic analysis was based on trial data (or a meta-analysis of trial data) the information given about the trial(s) conducted was seldom sufficient to assess its value.
For the 65 entries in the RCES using trial evidence, only

- 30% demonstrated that the patient sample was relevant to the economic study question being posed,

- 10% demonstrated that power calculations had been performed to determine sample size,

- 30% reported the rate of refusal to participate at the invitation stage of the trial,

- 30% reported the method, if any, of randomisation,

- 30% reported drop out rates,

- 33% demonstrated, at analysis, whether cohorts were comparable in important prognostic variables such as age and sex.

and most worrying, only

- 38% reported whether the analysis was on an intention-to-treat or treatment-completer basis.

3 The impact of health care technologies, in terms of resources and health outcome, has often been modelled since complete intervention data has seldom been available. Such modelling is likely to continue for the foreseeable future although it is likely that economic evaluations will be more commonly conducted alongside clinical trials (Drummond and Davies, 1991). However constructed, models involve assumptions and their use emphasises the need for transparent reporting of data methods and analysis. For example, the date of origin of epidemiological and outcome data entering into models is seldom presented. Sometimes data can relate to studies and populations 20 or 30 years old; the implications of this upon study findings needs to be discussed. For example, many evaluations of heart disease interventions draw on data from the Framingham Heart Study (Abbott et al 1987). Models can only be suggestive, they do not prove the value of health care interventions. Five studies in the RCES model the influence of cholesterol lowering on subsequent coronary disease in populations at risk. The studies suggest that through modelling the impact upon risk factors, obtained from observational studies, drug therapy will increase survival. However accumulation of trial evidence (Davey Smith et al 1993) has suggested that the effect of cholesterol lowering drugs in reducing mortality is not always beneficial and casts doubt on the validity of the findings of these studies. Future studies should clearly indicate
the technological date, or period, from which evidence of treatment effectiveness is drawn.

4 Quality-of-life data in the RCES were generally of illustrative quality, rather than reflecting precise estimates of health-related utility or preference. Forty-eight studies in the register, giving rise to 207 entries, reported cost/QALY data. There are broadly 3 aspects of quality-of-life estimation:

I The description used of the different levels of health status during and after treatment (e.g. a study may use the Rosser classification [Kind et al 1982] or define it's own health states).

II The assignment of patients under the various alternative treatments to health states during and after treatment. For example, is this achieved by clinical or patient opinion or some independent assessment?

III The attachment of utilities or values to the health states: this may involve direct measurement, values taken from the literature, the author's opinion or use of a published value matrix (e.g. the Rosser matrix). Where valuation is by direct measurement, the number of clinicians, patients, relatives or others involved should be reported along with the measurement approach used (e.g. time trade-off or visual analogue scale). For patients and relatives giving values, also involved in treatment, when and where values are taken is also important.

For the 207 entries in the RCES the Rosser classification was the most common (38%). Another 30% of studies described their own health states. Valuation of health states in half of studies was by the authors themselves or from the published literature.

5 Conduct of sensitivity analyses was often unsatisfactory. For the RCES an adequate sensitivity analysis was defined to be one that demonstrated (rather than chose) the sensitive parameters and then meaningfully justified the range of values used for each parameter. Although 77 of the 147 studies in the register conducted some sort of sensitivity analysis, only in 27 studies were these considered adequate. Unfortunately, there is no standardized procedure of assessing uncertainty in economic evaluations (Briggs et al. 1994). Failure to conduct a comprehensive sensitivity analysis considerably reduces confidence in study findings. Udvarhelyi and colleagues state: 'Together, the inability to verify underlying assumptions and the inability to assess the robustness of conclusions based on them, lead to serious questions about the reliability of study findings'.

Page 20
The RCES provides a useful starting point for conducting a sensitivity analysis.

I Demonstrate which are the sensitive parameters in an analysis and which are not.

II State sources for the values applied to each parameter stating their meaning.

In addition the following are helpful:

III Use threshold analysis, i.e. show under what circumstances an intervention may fail to meet certain criteria such as no net benefit, or an 'excessive' cost-effectiveness ratio, alternatively, plot how cost-effectiveness varies with each sensitive parameter.

IV Use multi-parameter variation to construct best and worse case scenarios, again justifying the values used.

V RCTs address uncertainty, in the context of a trial through use of measured variation and the subsequent confidence intervals. When available, these confidence intervals should be used to construct high and low boundary cost-effectiveness ratios. However, such studies may still need to conduct further sensitivity analysis to address the external validity (or transferability) of their findings. This is likely to be necessary for both costs and consequences.

Economic analyses, particularly those involving modelling, were often highly technical. Each intervention and its associated disease can present unique problems for analysts introducing a legitimate degree of 'art' into the process. Further, space considerations can limit the amount of detail that analysts can convey. It is perhaps unsurprising then that reviewers commonly acknowledge a degree of subjectivity when attempting to interpret or apply criteria to studies. However, when analytic processes are careful explained the credibility of the findings are enhanced.

Most economic evaluations involve modelling and assumptions in their conduct. Further analysis is required to assess generalizability of findings to other settings. In this light it is inappropriate to use the RCES to construct 'rigid' cost-effectiveness rankings of interventions. When the context of the data are understood, even then the RCES reflects orders-of-magnitudes of cost-effectiveness.
Discussion

Decisions in health care are made as a result of a complex interplay of social, political, cultural and economic factors. The data presented in the RCES are one relevant input to this process. However, concerns have been raised that health care decision makers might use cost-effectiveness data, particularly those presented in rankings or 'league tables', in an unthinking way. Certainly we do not consider it appropriate to use cost-effectiveness data in the way they appear to have been used in Oregon (USA), whereby health policy makers have decided that State funding under the Medicaid programme will only be available for procedures down to a given cut-off point in a ranking (Hadorn, 1991). Cost-effectiveness data are useful mainly as a way of stimulating debate and of guiding further analysis at the local level. This is why the RCES has been developed not as a league table, but as a database of studies.

For the RCES to be useful, decision makers need to be confident that it is both comprehensive and reliable. It was mentioned earlier that the coverage of studies published since 1991 is not extensive, so users should bear this in mind when interpreting data on the first version of the register.

It is also clear, from the quality assessment, that economic evaluation is an inexact science. In particular, studies not directly based on RCT data involve many assumptions and are vulnerable to many biases. Therefore, in order that the true value of study findings can be assessed, full and frank reporting of methods, data and assumptions is required. In many cases it is not possible to assess the quality of studies because of inadequate reporting. In the future it would be useful if authors considered the assessment scheme set out in Table 1 when reporting methods and results.

The Department of Health has commissioned the NHS Centre for Reviews and Dissemination at the University of York to develop the register, in the light of feedback from users of the current version. The intent is to provide cost-effectiveness data to the NHS using a user-friendly free text database.
References

Elixhauser A, Luce BR, Taylor WR, Reblando J. Health care CBA/CEA: an update on the growth and composition of the literature. Medical Care 1993; 31 (7): JS1-JS11
References continued

International Committee of Medical Journal Writers. Conflict of interest. The Lancet 1993; 341: 742-3

References continued

Appendix - Studies included in the RCES

Alexander JM, Grant AM, Campbell MJ. Randomised controlled trial of breast shells and Hoffman’s exercises for inverted nipples. British Medical Journal. 18/4/92. 304: 1030-2

Anderson RW. Amanudine prophylaxis in influenza A. Personal communication. 5/4/91.

Anderson RW. Medical treatment of hypertension: an economic appraisal. Personal communication. 8/10/85.

Benth-Petersen P. Outcome of cataract surgery IV: socio-economic aspects. Acta Ophthalmologica. u/u/82. 69: 461-468

Bryan S, Parkin D, Donaldson C. Chiropody and the QALY; a case study in assigning categories of disability and distress to patients. Health Policy. 14/3/91. 18; 169-185

Bush JW, Chen MM and Patrick DL. Health status index in cost effectiveness: analysis of PKU program. Health Services Research. u/u/73?. 172-209

Appendix continued - Studies included in the RCES

Castellano AR, Nettleman MD. Cost and benefit of secondary prophylaxis for Pneumocystis carinii pneumonia. Journal of the American Medical Association. 14/7/91. 266; 6: 820-4

Clarke PR, Fraser NM. Economic analysis of screening for breast cancer. Report for the Scottish Home and Health Department. u/2/91.

Cretin S. Cost/benefit analysis of treatment and prevention of myocardial infarction. Health Services Research. 1/777. 174-189

Devine S. Screening blood donations for HTLV1: an economic appraisal. Internal DH Calc. 17/2/91.

Drummond MF. Economic aspects of cataract. Ophthalmology. u/8/88. 95; 8: 1147-53

Evans RW. The economics of transplantation. Circulation. u/1/87. 75; 1: 63-76
Appendix continued - Studies included in the RCES

Garner TJ, Dardis R. Cost-effectiveness analysis of end-stage renal disease treatments. Medical Care. u/87. 25; 1: 25-34

Goel V, Detsky A. A cost-utility analysis of preoperative total parenteral nutrition. International Journal of Technology Assessment in Health Care. u/u/89. 5: 183-194

Gravelle HSE, Simpson PR, Chamberlain J. Breast cancer screening and health service costs. Journal of Health Economics. u/u/82. 1: 185-207

Hay JW, Daum RS. Cost-benefit analysis of two strategies for prevention of Haemophiles influenzae type b infection. Paediatrics. 3/9/87. 80;3: 319-29
Appendix continued - Studies included in the RCES

Hutchinson BG, Stoddard GL. Cost-effectiveness of primary tetanus vaccination among elderly Canadians. Canadian Medical Association Journal. 15/12/88. 139;1143-1151

Klarman HE, Francis JO, Rosenthal GD. Cost effectiveness analysis applied to the treatment of chronic renal disease. Medical Care. u/1/68. 6;1: 48-54

Kosasa TS, Abou-Sayf FK, Li-ma G, Hale RW. Evaluation of the cost-effectiveness of home monitoring of uterine contractions. Obstetrics and Gynecology. u/7/90. 76; 1 Suppl: 71S-75S

Kristein MM. The economics of screening for colo-rectal cancer. Social Science and Medicine. u/u/80. 14: 275-84
Appendix continued - Studies included in the RCES

Kristiansen IV, Eggen AE & Thelle DS. Cost-effectiveness of incremental programmes for lowering serum cholesterol concentration: is individual intervention worthwhile?. British Medical Journal. 11/5/91. 302: 1119-1122

Miller LV, Goldstein J, Kumar D and Dye L. Assessment of program effectiveness at the Los Angeles County-University of Southern California Medical Center. Chapter 36, book title unknown. u/u/81? 349-59

Morrison JC, Pittman KP, Martini RW, McLaughlin BN. Cost/health effectiveness of home uterine activity monitoring in a Medicaid population. Obstetrics and Gynecology. u/7/90. 76; 1 Suppl: 765-84S

Newns B, Drummond MF, Durbin GM, Culley P. Costs and outcomes in a regional neonatal intensive care unit. Archives of Disease in Childhood. u/u/84. 59: 1064-67

Nissinen A, Tuomilehto J, Ketkä T, Puska P. Cost-effectiveness of the North Karelia Hypertension Program. Medical Care. u/8/86. 24; 8: 767-780

O’Kelly TJ, Westaby S. Trauma centres and the efficient use of financial resources. British Journal of Surgery. u/10/90. 77;10: 1142-1144

Ohki G, Hasegawa T, Kumanou H et al. Why are cadaveric renal transplants so hard to find in Japan?. Health Policy. u/u/86. 6: 269-78

Appendix continued - Studies included in the RCES

Patel MS, Blacklock NJ, Rao PN. Economic evaluation of six scenarios for the treatment of stones in the kidney and ureter by surgery or extra-corporeal shock wave lithotripsy. Health Policy. u/u/87. 8: 207-225

Piper DW, Pym BM, Toy S et al. The effect of maintenance cimetidine on the medical, social and economic aspects of patients with chronic gastric ulcers. Medical Journal of Australia. 20/10/86. 145: 400-403

Porath A, McNutt RA, Smiley LM and Weigle KA. Effectiveness and cost benefit of a proposed live cytomegalovirus vaccine in the prevention of congenital disease. Reviews of Infectious Diseases. u/1/90. 12;1: 31-40

Read L, Pass TM, Komaroff AL. Diagnosis and treatment of dyspepsia: a cost-effectiveness analysis. Medical Decision Making. u/u/82. 2; 4: 415-438

Appendix continued - Studies included in the RCES

Schulman KA, Lynn LA, Glick HA, Eisenberg JM. Cost-effectiveness of low dose azidovudine therapy for asymptomatic patients with Human Immunodeficiency Virus (HIV) infection. Annals of Internal Medicine. 1/5/91. 114; 9: 798-802

Simon DG. A cost-effectiveness analysis of cyclosporine in cadaveric kidney transplantation. Medical Decision Making. u/10/86. 6; 4: 199-207

Sintonen H, Alander V. Comparing the costs of drug regimens in the treatment of duodenal ulcers. Journal of Health Economics. u/u/90. 9; 85-101

Smith, Cohen, Asscher. Evaluation of Renal Services in Wales. Unpublished. 15/2/89. 136-142

Standing Medical Advisory Committee (SMAC). Blood cholesterol testing: the cost-effectiveness of opportunistic cholesterol testing. Report to the Secretary of State for Health. 15/5/90.

Stange PV, Sumner AT. Predicting treatment costs and life expectancy for end-stage renal disease. New England Journal of Medicine. 16/2/78. 298: 372-8

Page 32
Appendix continued - Studies included in the RCES

Torrance GW, Zipursky A. Cost-effectiveness of antepartum prevention of Rh immunization. Symposium on Perinatal Hematology. 2/6/84. 11; 2: 267-81

Tosteson ANA, Rosenthal DI, Melton J, Weinstein MC. Cost effectiveness of screening perimenopausal white women for osteoporosis: bone densitometry and hormone replacement therapy. Annals of Internal Medicine. 15/10/90. 113; 8: 594-603

Wall BF, Russell JGB. The application of cost-utility analysis to radiological protection in diagnostic radiology. Journal of Radiology Protection. u/u/88. 8;4: 221-9

Weisbrod BA, Test MA, Stein LI. Alternative to Mental Hospital Treatment. II. Economic Benefit-Cost Analysis. Arch Gen Psychiatry. u/4/80. 37; 1 400-405

White CC, Koplan JP, Orenstein WA. Benefits, risks and costs of immunization for measles, mumps and rubella. American Journal of Public Health. 15/7/85. 75;7;739-744

Williams A. Screening for risk of CHD: is it a wise use of resources? In: Screening for risk of Coronary Heart Disease. Edited by M. Oliver, M Ashley-Miller and D. Wood. John Wiley and Sons Ltd. 6/6/87. 97-106