Cancer stem cells are the only cells within a tumour that can maintain (tumourigenic) and initiate new tumour growth (metastasis). They often represent a small fraction of the total number of cells within a tumour.

IDENTIFICATION AND ISOLATION

Prostate (cancer) stem cells can be identified and isolated by using a combination of antibodies to the cell surface markers: CD133+ α2β1 integrin and CD44.

Cross-section of the normal prostate showing rare stem cells in red (CD133+α2β1/CD44+).

POTENTIAL OF CANCER STEM CELLS

In vitro

INVASION

Graph showing invasive capacity of prostate cancer stem cells (red) compared to normal cells (blue). This experiment is important because it gives an indication of the cell's ability to metastasize.

SELF-RENEWAL

Graph showing that only cancer stem cells can self-renew. This is an important characteristic of stem cells.

In vivo

COMPARISON OF PROSTATE TUMOUR HISTOLOGY

Patient xenograft

Macroscopic image of liver metastasis from xenograft.

TUMOURS DERIVED FROM CD133 (CANCER STEM) CELLS

INITIATION

Histology of tumours derived from CD133 cancer cells, stained for the prostate cancer marker AMACR (A) and cytokeratin (B). Tumours were derived from 100 CD133+ cells. Nests of epithelial cells were observed within the surrounding prostate. AMACR stain of graft derived from 5 x 10^5 unselected tumour cells (C).