Addressing global challenges in assuring the safety of robotics and autonomous systems

Key
- Funders
- Demonstrator projects
- Collaborative links
- Programme Fellows

Contents
Welcome 4
A year in numbers 6
International Community 8
Public Engagement 10
Education and Training 12
Body of Knowledge and Foundational Research 14
Advancing regulations 16
Plans into policy: the journey of healthcare regulations 18
Demonstrator Projects 22
The Future 34
Welcome

This year has been quite unexpected in many ways. The COVID-19 pandemic has affected us all. It has changed the way we work while bringing additional creativity and strength to our collaborations.

When I wrote this welcome letter for our 2019 review I could never have imagined what lay ahead in 2020. But we have accomplished much of what we planned and achieved additional successes along the way.

Again our team in York has grown. We have strengthened our work in the ethics and governance of autonomous systems, expanded our technical expertise, and enhanced our industrial experience through the recruitment of new research associates and engineers.

We have increased our funding of real-world research by commissioning an additional £1.2M of demonstrator projects. These projects span a variety of sectors and are all working with regulatory bodies to move their work from safety processes towards the introduction of standards and regulations.

This year has clearly demonstrated just how much we will all benefit from the introduction and adoption of autonomous systems, and the work we’re doing to ensure this is done safely is more important now than ever before.

We are proud of what we have achieved this year and look forward to continuing global, multidisciplinary collaborations in 2021 to ensure safe autonomous systems are a reality for us all.

Professor John McDermid OBE FREng
Programme Director

2020 has been a year unlike any we have known in living memory where the COVID-19 pandemic has brought the understanding of risk into public focus.

2020 has been a year unlike any we have known in living memory where the COVID-19 pandemic has brought the understanding of risk into public focus.

The public understanding of risk has been an important area of Foundation activity for several years. Our World Risk Poll has started to track global attitudes to risk and what people across the globe really worry about and what they have experienced. Through the poll we have started to build a picture of people’s views on topics including climate change, food safety, the digital world, and their health, safety and wellbeing at work.

The introduction of autonomous technologies has the potential to reduce the risks that people are concerned about, however, their introduction is not without risk itself. Our partnership with the University of York has created a global resource for ensuring autonomous technologies are introduced safely.

The Programme connects the brightest minds in industry and academia to together solve the challenges of assuring the safety of autonomous systems: learning from multiple sectors to create solutions which will stand the test of time and be usable across domains and across geographic boundaries.

Professor Richard Clegg FREng
Chief Executive
Lloyd’s Register Foundation

The University of York exists for public good. The work of the Assuring Autonomy International Programme supports this vision through the creation of strong partnerships: partnerships built on a shared commitment to the safe introduction of autonomous technologies.

Established from a collaboration between the University and Lloyd’s Register Foundation, the Programme connects researchers, developers and regulators to start to agree the new principles and rules for safe AI, robotics, and autonomous systems.

By working in partnership across the globe, across disciplines and sectors we can help industry to prove that their systems are safe, help regulators to set consistent safety standards, and empower people to be confident users of the technologies that are increasingly evident in our lives.

Professor Kiran Trehan
Pro-Vice-Chancellor for Partnerships and Engagement, University of York
A year in numbers

Research

14 active demonstrator projects

£35.1M funding leveraged

Education and training

119 people

140 healthcare professionals trained

Public engagement

5 public focus groups

28 pieces of media coverage

79% consumer media
21% industry media

International community

Body of Knowledge

- More than 4,500 unique page views
- Accessed in more than 6 countries
- 21 pieces of guidance available

Worked across 5 continents

UK – 8
Germany – 4
Australia – 1
Belgium – 1
Brazil – 1
France – 1
Iran – 1
Norway – 1
UAE – 1
USA – 1

20 Programme Fellows

140 healthcare professionals trained
International Community

This year we have seen changes in our way of working, but we have capitalised on online networking and collaboration tools to enable us to form new global partnerships and strengthen existing ventures.

Earlier this year we launched our online Body of Knowledge and have been pleased to find that its guidance has been accessed thousands of times by people across at least three continents. We have also continued to work across the globe through our research, Fellowship scheme and other networks.

Europe

We now have 11 demonstrator projects in place across European countries, totalling more than £2 million of funding. These projects cover a range of domains including agriculture, automotive, healthcare and manufacturing.

We are delighted that Dr Radu Calinescu is the Principal Investigator on an EPSRC-funded Trustworthy Autonomous Systems Node in Resilience. The project will fund a multidisciplinary team across the five universities involved to develop a comprehensive toolbox of principles, methods, and systematic approaches for the engineering of resilient autonomous systems. We have made good headway in the automotive domain this year. In particular we launched “Assuring the safety of highly automated driving: state-of-the-art and research perspectives”, written by AAIP Fellow Professor Simon Burton and Dr Richard Hawkins. We continue our partnership with Five, working with them on perception research, and are pleased to be part of Zenos’s UK Connected and Autonomous Mobility (CAM) work as a CAM Creator.

We continue to build on our strengths in the healthcare domain. Dr Chiara Picardi and Dr Ana Macintosh were both part of the Assurance Safety for Assistive Robots in Health and Social Care workshop at the European Robotics Forum (ERF) in Malaga, Spain, led by our partners Bristol Robotics Laboratory. In spring we had a paper published in the World Health Organization Bulletin. “AI in healthcare: accountability and safety” considers the possibility of patient harm caused by the decisions of an AI-based clinical tool, focusing on two aspects: moral accountability and safety assurance. We are also collaborating with clinicians, statisticians, patient groups, and patient safety and health innovation experts on a project to evaluate the safety of a pioneering AI healthcare Command Centre in a Bradford hospital.

As well as funding a new demonstrator project, SAFEMUV, which is undertaking research into the assurance of autonomous unmanned aerial vehicles that carry out safety-critical inspection tasks, we also continue to collaborate with the European Robotics for Inspection and Maintenance (RIIMA) Network on the safety and certification of inspection and maintenance robotics. Most recently we launched a new report “Review of legal frameworks, standards and best practices in verification and assurance for infrastructure inspection robotics”, which provides a single point of reference on the safety, regulatory and liability issues for operating inspection and maintenance robots in the EU.

Asia

The TIGARS demonstrator project concluded earlier this year. The team made good progress in the assurance of autonomous vehicles, as well as headway in the international standards arena through work with regulators in both Japan and the UK.

We were pleased to welcome new Programme Fellow Tarek Nakkach to York earlier this year to introduce him to the AAIP team and other collaborators at York. Tarek is Regional Legal Counsel for UKIMESA Hewlett Packard Enterprise. His multidisciplinary work is looking at issues around the liability and ethics of autonomous systems and he has written a number of blog posts for AAIP on the topic.

Australasia

The ATM demonstrator project continues at the Australian National University, with preliminary evaluation of the testing mechanism and software framework on a high-fidelity autonomous car simulator underway.

We are continuing our conversations with the Trusted Autonomous Systems Defence Cooperative Research Centre to consider how we might work together on areas such as training, research, and Body of Knowledge guidance.

North America

We have been involved in a number of conferences and events linked to partnerships in North America. In February Dr Colin Paterson presented on our AMLAS (Assurance of Machine Learning for Autonomous Systems) process at the Safe AI workshop in New York. Since then we have been refining and validating the process to develop a practical handbook for safety engineers and developers.

Dr Richard Hawkins presented at the 10th annual ISO26262 conference, which was held online instead of in the USA. His presentation considered the challenges to the safety assurance of autonomous driving.

We were delighted to host an experts’ workshop to prepare for the first International Congress for the Governance of AI (ICGAI). Working with Congress leader Wendell Wallach from Yale University, we brought together experts from across the globe to discuss minimising and managing system failures.

South America

We have continued to work with Fellow Genaína Rodrigues who has investigated research challenges associated with the modelling, verification, planning and simulation of multi-robot systems. In collaboration with her graduate students and Radu Calinescu’s York AAIP team, she is developing a goal-oriented modelling approach for robot mission specification. Genaína and her research group are also developing a lightweight simulation environment capable of handling larger multi-robot systems than those supported by traditional simulation environments, such as Gazebo.

More information about working with us: bit.ly/aaipworkwithus

AAIP research workshop, online, October 2020

Minimising and managing system failures workshop, London, February 2020
Public Engagement

The use of artificial intelligence (AI) and machine learning is more evident every day: banking systems that manage your money, predicting when and how much to save; TV that recommends what to watch next based on previous viewing. We might be happy to use these advisory systems, appreciating the benefits they bring. What if this AI or autonomy was used in a safety-critical situation such as in a car or a hospital? Would we want to know more about the risks?

This year our public engagement work asked that question. We held five focus groups to talk with people about their opinions on technology and autonomy generally and in relation to two specific scenarios: autonomous cars and healthcare.

Attitudes towards technology

The groups we spoke with mostly enjoyed the benefits of technology, such as saving time or enabling them to connect with family and friends across the world. They could also see benefits for wider society, for instance more environmentally-friendly transport options or improved medical treatments.

Autonomous vehicles

“It’s acceptably safe” is how one member of a focus group described driving a car at the moment. “It’s clearly not safe, but it’s a means of getting around so I’m more than happy to take the risk,” they continued.

When considering autonomous vehicles, the groups divided into three main categories - supporters, potentials and rejectors. Supporters suggested that the technology can outperform humans, would maximise leisure time and would be less stressful than driving.

Rejectors were very sceptical, had a mistrust of the technology and were not always keen to listen to more detail about it. They had concerns about the impact of an increasing use of technology in our lives. These were mostly around an over-reliance or an intrusion of technology, and a worry that the technology could go wrong. Some were also concerned that technology moved too fast and was more for company profit than to help society.

The things that I find too fast are things that I feel are driven by capitalists where they’re just trying to get you to buy the new model and old ones become obsolete.

You know, shopping. It’s saving us having to go out, so we’ve got more time for ourselves. Even booking an appointment at the doctors now I do it online.*

They had concerns about the impact of an increasing use of technology in our lives. These were mostly around an over-reliance or an intrusion of technology, and a worry that the technology could go wrong. Some were also concerned that technology moved too fast and was more for company profit than to help society.

Are we still the master of the technology? Or do you develop a robot or a program that does the thinking for us?*

* ABS does a pump 500 times a minute. We can’t pump like that.

It’s like when you take your driving theory test and particularly when you see the hazards, they’re not actually something happening yet but as a human you can say, right, I think that person might be thinking about crossing the road, where a computer couldn’t necessarily judge.*

The discussions highlighted an inherent trust in the healthcare sector, with wide acceptance of the use of the autonomous infusion pump, and a clear understanding of the benefits.

They’re professionals, they know what they’re doing and, yeah, I would completely accept it.*

So I think we just have to assume that they’ve got systems and controls in place within their organisation to make sure that the machine works.*

I think if it would save health professionals time, like nurses, then it does sound like it would be a very good thing, if it was reliable enough.*

The groups still have reservations about the use of the technology, but generally their verdict was much more positive than in the automotive scenario.

* I’d still be a little concerned…

If it was one computer on one person not a problem, because that’s what it is basically now. But if it was ten people [monitored by one computer] there is still a chance that something could go wrong.*

The groups saw two key barriers to the introduction of autonomous cars: infrastructure and the level of autonomy offered.

There was an unease about the use of autonomous vehicles alongside current cars, with groups worried that until the infrastructure is in place to fully support autonomous cars, the mix of old and new technology on the road would be riskier.

I consider the most dangerous time will be the interface between a mix of autonomous vehicles and when other drivers are still on the road.*

Cars which still require a safety driver to be alert at all times were thought to be “pointless”. Some of the people were onboard with autonomous vehicles, but they wanted to be able to hand over full control to the system.

If I got an autonomous car I’d want to be chilling in the back.*

The driver expected to be paying attention to what was going on outside the car while it was in full computer mode? If it was, what’s the point of full computer mode?*

Healthcare

To demonstrate the use of AI in healthcare, the groups were given a scenario of a hospital ward using an autonomous infusion pump to provide medication.

The focus groups enabled us to distil some key themes that we will take forward to develop a much larger study of the public’s perception of the risks of autonomous technologies.

Next steps
This year we focused on the key audience of developers and safety engineers. We have created a range of opportunities for them to develop their skills, knowledge and behaviours.

A
s some of our demonstrator projects come to an end, we have seen an increase in high-quality case studies and practical guidance informed by their real-world experiences. This has enabled us to focus on developing three key education and training opportunities for those developing autonomous technologies.

Academic education
In September 2020 we launched the development of Advanced Topics in Safety – our new 10-credit module for the University of York’s MSc in Safety-Critical Systems Engineering. This module is our first formal academic education opportunity in the safety of autonomous systems. It represents an opportunity for students to broaden their system engineering knowledge with an insight into the challenges to safety processes and product safety and initial approaches to addressing the challenges of autonomous systems. Over the coming year we will build on our academic education offer with further embedding of material into the modules of the MSc in Safety-Critical Systems Engineering and advice to academic education providers on how to embed safety into their robotic and autonomous system courses.

Industrial education
In partnership with NHS Digital we launched a new training programme for those working in health IT and clinical risk management to give them an understanding of the use of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare. The course builds on previous workshops run for clinicians in partnership with NHS Digital, and we will deliver more in 2021. It covers:
- introduction to AI and ML
- the challenges of AI and ML in health and social care
- assurance of ML
- safety requirements and data management for ML
- training and verification of ML
- safety cases for ML in a clinical setting

Over the coming year, we will build on our professional development education offer by working with industrial organisations to develop and embed robotics and autonomous system safety engineering education into their competency and professional development schemes. We will offer a series of webinars to the AAIP community.

Developing young safety professionals
We are delighted to be working with the Safety-Critical Systems Club to launch the Safety Futures Initiative (SFI), for young and early-career safety professionals. The initiative brings together early-career professionals to:
- gain experience
- share knowledge
- build a community around the specialised interest area of safety engineering and assurance

As a young professional it can be difficult to find opportunities to learn about system safety. This initiative will build a community of like-minded individuals to share ideas, experiences and develop together in the field of system safety. As we move more and more to a world of autonomous systems we need to ensure that those who will be developing and working with these complex and often safety-critical systems have the knowledge, skills and behaviours that are needed.”

Nikita Johnson, SFI Lead

Clinical practice and the efficiency of healthcare provision will benefit from the introduction of AI and autonomy, but patient safety must still be our priority. Understanding these technologies and how they could change the clinical setting is important for everyone within our organisation. The training workshop provided by the AAIP was delivered perfectly for our audience of clinicians and other NHS staff and the feedback has been very positive.”

Sean White, Senior Safety Engineer, NHS Digital

We could develop a bespoke training course for your organisation: bit.ly/aaipeducation
Our research focus this year has brought together the practical guidance developed for the Body of Knowledge with our foundational research on the key challenges that remain at the heart of the safety assurance of autonomous systems.

Over the year, we have assembled the practical guidance in the Body of Knowledge with expert advice from our research project teams and other AIP collaborators. This has been prepared from across the globe by the key audience of safety engineers and regulators.

We have also been advancing our research on some of the core technical issues that remain for the safety assurance of autonomous systems and have established a new structure to focus our work. This includes five key pillars of research:

1. Assurance of machine learning
2. Safety assurance of understanding in autonomous systems
3. Safety assurance of decision making in autonomous systems
4. Safety assurance of autonomous systems in complex environments
5. Social acceptability of autonomous systems

We are developing a manual for each of these areas. This will be based on sound research and empirical evaluation.

The guidance provides practical notes, examples, and links to the Body of Knowledge, creating a complete handbook for safety engineers, developers, and regulators.

More than the sum of its parts

Each guidance document will stand alone as an essential component for assuring that aspect of an autonomous system. However, assurance of autonomous systems must consider all aspects in the broad context of development, operation, and approval. Used together, the guidance documents will help to ensure a credible and compelling assurance case is created for an autonomous system.

Assurance of machine learning

Our published AMLAS process (Assurance of Machine Learning for use in Autonomous Systems) has been developed into our first guidance document. This has been peer-reviewed by experienced engineers from multiple industry domains and our Fellows (who had a first glimpse of the new process).

AMLAS comprises:

- A set of assurance activities that integrate with the development of ML components
- Defined assurance artifacts relating to those activities
- Safety case patterns to guide the development of a compounding safety case for ML components

AMLAS provides a practical and coherent approach

Using AMLAS

We are currently creating an online resource for all of the guidance documents. This will provide an interactive, accessible way to use them. In the interim, we have published an interactive PDF of AMLAS which is available to download for free from our website.

Download the AMLAS: bit.ly/amlas

Advancing regulations

Regulations and standards could be the make or break point for autonomous systems. The technology developers continue to make remarkable progress and the AAP and others are introducing practical guidance for the assurance of autonomous systems.

Yet without appropriate rules and principles in place to guide their introduction and use, we may end up with technology that cannot be safely deployed.

Healthcare

We have made good progress in the healthcare domain, through both demonstrator projects and the work of our researchers and collaborators in industry. We worked with NHS Digital to bring together experts from the health and social care regulatory bodies to discuss a whole system approach to the safe introduction of AI to the NHS. This discussion took place in the context of existing consideration development, assurance and deployment of the AI system. We also considered the role of regulative processes for software safety governance and the body of work on how to support the use of AI.

A demonstrator project, led by NHS Digital and other regulatory partners,
Advancing regulations

Regulations and standards could be the make or break point for autonomous systems. The technology developers continue to make remarkable progress and the AAIP and others are introducing practical guidance for the assurance of autonomous systems. Yet without appropriate rules and principles in place to guide their introduction and use, we may end up with technology that cannot be safely deployed.

The regulatory landscape is complex and interwoven. Each domain and country is different. Many sectors have numerous regulatory bodies and countries across the world enforce compliance of regulations in different ways, making progress slow and challenging.

In 2020 we started our work with regulators to move us towards the introduction of new principles for safe AI, robotics, and autonomous systems. The COVID-19 pandemic has slightly impacted our progress, but through collaborations with partners and demonstrator projects we have begun work in numerous domains. We know that we must collaborate to advance this work and 2020 has given us an opportunity to make connections where needed.

Healthcare

We have made good progress in the healthcare domain, through both demonstrator projects and the work of our researchers and collaborators. In February, we worked with NHS Digital to bring together experts from the health and social care regulatory bodies to discuss a whole system approach to the safe introduction of AI in the NHS. The discussion was focused at the system-level; considering development, assurance and deployment of AI tools as closely interconnected elements.

We examined and evaluated existing processes for software safety governance in the NHS and considered how to support the use of AI. A demonstrator project, led by NHS Digital and other regulatory partners, has been funded by the Programme. This project (Safety Assurance Framework for Machine Learning in the Healthcare Domain) will produce concrete guidelines for the safety governance of autonomy in the NHS and considered how to support the use of AI.

Automotive

Through numerous regulatory workshops in the UK and Japan the TIGARS project (see page 22) furthered work in the international standardisation area. In particular, Kanagawa University has used the project’s standardisation activities to support revisions of numerous ISO/IEC/IEEE standards.

We also published “Assuring the safety of highly automated driving: state-of-the-art and research perspectives”, written by Professor Simon Burton, one of our Programme Fellows, and Dr Richard Hawkins. This new report presents a framework for assuring the safety of highly automated driving systems, which is the first step if we are to be able to regulate these vehicles.

Maritime

We have been working with BMT and Maritime UK to identify ways in which we can impact the governance of this complex and interconnected sector as the introduction of autonomy becomes more widespread. In 2021 we will hold a workshop with key stakeholders from maritime and beyond to assess the challenges in governing the movement of goods from one UK port to another, when autonomy and AI are applied in various ways either on the vessels themselves or through the use of autonomous vehicles portside.

Healthcare

We have made good progress in the healthcare domain, through both demonstrator projects and the work of our researchers and collaborators. In February, we worked with NHS Digital to bring together experts from the health and social care regulatory bodies to discuss a whole system approach to the safe introduction of AI in the NHS. The discussion was focused at the system-level; considering development, assurance and deployment of AI tools as closely interconnected elements.

We examined and evaluated existing processes for software safety governance in the NHS and considered how to support the use of AI. A demonstrator project, led by NHS Digital and other regulatory partners, has been funded by the Programme. This project (Safety Assurance Framework for Machine Learning in the Healthcare Domain) will produce concrete guidelines for the safety governance of autonomy in the NHS and considered how to support the use of AI.

Automotive

Through numerous regulatory workshops in the UK and Japan the TIGARS project (see page 22) furthered work in the international standardisation area. In particular, Kanagawa University has used the project’s standardisation activities to support revisions of numerous ISO/IEC/IEEE standards.

We also published “Assuring the safety of highly automated driving: state-of-the-art and research perspectives”, written by Professor Simon Burton, one of our Programme Fellows, and Dr Richard Hawkins. This new report presents a framework for assuring the safety of highly automated driving systems, which is the first step if we are to be able to regulate these vehicles.

Maritime

We have been working with BMT and Maritime UK to identify ways in which we can impact the governance of this complex and interconnected sector as the introduction of autonomy becomes more widespread. In 2021 we will hold a workshop with key stakeholders from maritime and beyond to assess the challenges in governing the movement of goods from one UK port to another, when autonomy and AI are applied in various ways either on the vessels themselves or through the use of autonomous vehicles portside.
Healthcare has an array of systems and tools that make use of artificial intelligence (AI) or machine learning (ML). Some have been approved. For example, a Deep Learning Image Reconstruction system, developed by GE Medical Systems, has been approved by the FDA in the US. While healthcare standards and regulations are in place, challenges lie in the suitability of these to provide effective oversight of such technology. In 2020 we worked with UK health and social care regulatory bodies to make headway with the resources and examples needed by regulatory bodies to support the safe introduction of AI and ML in healthcare.

Plans into policy: the journey of healthcare regulations

QUARTER ONE, 2020
Identifying the challenges

In January 2020 NHSX convened a senior-level roundtable meeting with organisations involved in the regulation of AI in healthcare in the UK. The group identified several actions needed to enable the UK to become a world leader in AI in healthcare, including using a joined-up approach to the work needed.

QUARTERS TWO AND THREE, 2020
Project development and approval

NHSX Digital worked with the organisations from the roundtable discussion, along with manufacturers of healthcare technology, healthcare trusts and others, to lead the development of an ASPI demonstrator project proposal.

NHS Digital has identified the need for robust methods to assure the use of artificial intelligence (AI) or machine learning (ML) technologies and support compliance with the associated regulation.

The group had identified the need for robust methods to assure the use of AI in the NHS and endorsed the need to create a demonstrator project that is led by NHSX to enable safety assurance frameworks to support the use of AI and ML in the NHS.

In January 2020, NHSX convened a senior-level roundtable meeting with organisations involved in the regulation of AI in healthcare in the UK. The group identified several actions needed to enable the UK to become a world leader in AI in healthcare, including using a joined-up approach to the work needed.

SAFR

Safety assurance framework for machine learning in the healthcare domain (SAFR)

The project aims to publish outputs as guidance for regulatory bodies and industry partners who wish to work with us to progress regulations and standards in other domains.

Please contact Sarah Heathwood, Partnership and Communications Manager at assuring-autonomy@york.ac.uk

QUARTER FOUR, 2020
Project kick-off and introductory work

The SAFR project started in the last quarter of 2020. The project had started work to publish the literature review to understand the scope and adequacy of existing resources to support successful regulation of ML technologies in the healthcare domain.

Creating resources to help manufacturers and other stakeholders to meet the regulatory requirements for their AI/ML healthcare tools, and support compliance with the associated regulation?

The group identified the need for robust methods to assure the use of AI in the NHS and endorsed the need to create a demonstrator project that is led by NHSX to enable safety assurance frameworks to support the use of AI and ML in the NHS.

The primary conclusions from the discussion focussed on the approach to the safe introduction of AI in the NHS.

This brought together NHS Digital, NHSX, the Medicines and Healthcare products Regulatory Agency (MHRA), NHS England, NHS Improvement and others to discuss a whole system approach to the safe introduction of AI in the NHS.

The project aims to publish outputs as guidance for regulatory bodies and industry partners who wish to work with us to progress regulations and standards in other domains.

SAFR

Safety assurance framework for machine learning in the healthcare domain (SAFR)

The group had identified the need for robust methods to assure the use of artificial intelligence (AI) or machine learning (ML) technologies and support compliance with the associated regulation.

The project aims to publish outputs as guidance for regulatory bodies and industry partners who wish to work with us to progress regulations and standards in other domains.

Please contact Sarah Heathwood, Partnership and Communications Manager at assuring-autonomy@york.ac.uk

2021
An invitation to work with us and replicate the process in your domain

We are already in the process of following this successful process in other domains. We welcome discussions from regulatory bodies and industry partners who wish to work with us to progress regulations and standards in other domains.

Please contact Sarah Heathwood, Partnership and Communications Manager at assuring-autonomy@york.ac.uk

2021
An invitation to work with us and replicate the process in your domain

We are already in the process of following this successful process in other domains. We welcome discussions from regulatory bodies and industry partners who wish to work with us to progress regulations and standards in other domains.

Please contact Sarah Heathwood, Partnership and Communications Manager at assuring-autonomy@york.ac.uk
People need to have confidence that autonomous systems will do what they expect. That might be the engineer designing a new feature, the safety expert validating an edge case, the operator interacting with the system, the public whose lives could be impacted, or the insurer that needs to foot the bill if something goes wrong.

Demonstrator Projects

O ur demonstrator projects all progress the understandability of robotics and autonomous systems (like) in different domains. They contribute pragmatic, evidence-based techniques that can be used by developers, regulators and others to ensure the systems they develop are safe for users and others who come into contact with them. This year we invested a further £1.2M in four new projects, across a range of new domains including maritime and agriculture.

We have been working with BMT and Maritime UK to identify ways in which we can impact the governance of this complex and interconnected sector as we can. The TIGARS project (see page 22) is an example of this work. In particular, we have used the project's standard-based activities to support revisions of numerous ISO/IEC/IEEE standards. Through numerous regulatory workshops in the UK and Japan, the TIGARS project team (with a funded position in the international standardisation area) in particular, Kansai University has used the project's standard-based activities to support revisions of numerous ISO/IEC/IEEE standards.

Maritime
We have been working with BMT and Maritime UK to identify ways in which we can impact the governance of this complex and interconnected sector as we can. The TIGARS project (see page 22) is an example of this work. In particular, Kansai University has used the project's standard-based activities to support revisions of numerous ISO/IEC/IEEE standards.

We also published our evidence for assuring the safety of highly automated driving (e.g. autonomous vehicles) in a workshop with key stakeholders from various domains, including maritime. In 2021 we will hold another workshop with key stakeholders from maritime and beyond to assess the applicability of our state-of-the-art and research evidence for maritime.

We also work with key stakeholders from healthcare to regulators, developers and users of AI and digital technology that can help influence the governance of autonomy in the NHS.

We have been working with BMT and Maritime UK to identify ways in which we can impact the governance of this complex and interconnected sector as we can. The TIGARS project (see page 22) is an example of this work. In particular, Kansai University has used the project's standard-based activities to support revisions of numerous ISO/IEC/IEEE standards.

The goal of the Safe-SCAD project is to deliver methods for assuring the safety of shared control in semi-autonomous driving. The team has developed a high-fidelity driving simulator to collect data about a human’s response time and physiological signals in different driving scenarios. From this, they developed DeepFame, a novel deep neural network based method that predicts the driver's intention (at 96% accuracy), time (at 90% accuracy) and quality of takeover (at 80% accuracy).

The team investigated the applicability of safety controllers to a variety of road scenarios. They applied DeepFame to the systems of a car as a basis for the development of a safety controller for local road users. Furthermore, they have developed methods for finalising the design of a safety controller. The team has also developed state-of-the-art tools, namely, LIME, SHAP and Integrated Gradients, for explanation of neural networks, and has applied them to the “Takeover” neural network. The result of the analyses is a set of high-importance input features that can be used to understand and verify the network; this can also be used as a tool to compress the network.

The team has defined the safety controller’s requirements for a handover safety controller that will exploit the predictability of the neural network and ensure compliance with the requirements for its verification results, and provide a clearer availability analysis and improvement system. The team plans to use the Safe-SCAD controller in the driving simulator and conduct more human subject experiments to evaluate the performance of Safe-SCAD system. The results of the human evaluation will be used in the design of the controller. The research team will also reach out to regulators and industry partners to discuss the insights learned in this project.

Project partners:
- University of Virginia
- Carnegie Mellon University
- University of York

The Safe-SCAD project targets important barriers that prevent the use of shared control in automated vehicles, and thus has the potential to make a significant contribution to their safe adoption.

Lai Ping, Assistant Professor of Computer Science, University of Virginia
Towards identifying and closing gaps in assurance of autonomous road vehicles (TIGARS)

How can we improve the assurance of autonomous vehicles by adapting current engineering processes and technical analysis of first-generation autonomous systems?

TIGARS was an international research project which undertook research into techniques and engineering processes to address the assurance gaps and challenges for first-generation autonomous systems.

The project researched resilience and safety requirements, open systems dependability, validation and verification of machine learning, security informed safety, and defence in depth and diversity. It conducted experimental trials with real-life demonstrator systems, and through numerous regulatory workshops in the UK and Japan the project furthered work in the international standardisation area.

The project concluded that an assurance approach based on argument-based mechanisms, specifically the Claims, Arguments, and Evidence (CAE) framework, will enable us to explore new mechanisms that could lead to advancements in safety assurance.

The team produced several TIGARS Topic Notes to support the development and evaluation of autonomous vehicles: www.adelard.com/tigars. These will be published by the UK Centre for the Protection of National Infrastructure as part of its guidance to industry.

Since the project concluded the project partners have been further developing and exploiting the results of TIGARS. This includes Witz and Nagoya University working on mobility as a service projects, that are taking place in several Japanese towns to demonstrate the value of safety assurance, building on the results of TIGARS.

Kanagawa University continues to be closely involved in standardisation activities. The standardisation work of the project has continued to support revisions of ISO/IEC 15026-2 Assurance case, ISO/IEC/IEEE 15026-4 Assurance in the life cycle and IEC 60300-1 Dependability management – Part 1: Guidance for management and application.

Adelard has been developing guidance and templates for safety cases for autonomous systems in a recent project and is also working for clients on the evaluation of security products and services that utilise AI/ML, building on the TIGARS work.

Project team
- Adelard LLP
- City, University of London
- Kanagawa University
- Nagoya University
- Witz Corporation

The TIGARS Experimental Vehicle

Sense-Assess-Explain (SAX)

How can we develop autonomous vehicles that can explain the decisions they take?

This project is designing, developing, and demonstrating autonomous vehicles that can:

- sense and fully understand their environment
- assess their own capabilities
- provide causal explanations for their decisions

The team at the Oxford Robotics Institute (ORI) has been researching and improving the efficacy of traditional (e.g. cameras and lasers) and non-traditional (e.g. radars and microphones) sensors for understanding the world around the vehicle, including dynamic objects and drivable surface as well as measuring the vehicle’s movement and location.

In the lab, the team is turning its attention to using this robust sensing to enable the vehicle to share and explain its observations of the environment in human-understandable terms via models of run-time capability.

The next steps are to expand off-road trials to new sites and diversify a planned dataset with urban, suburban, and motorway driving conditions.

Project partner
- University of Oxford

In this project, we have tried to push autonomous driving to its limits, in scenarios where untrained people could struggle. Trying to enable autonomy in these scenarios is forcing us to develop innovative techniques, showing that the field is far from solved yet. I hope our work can lead to new enthusiasm in the community and help the wide adoption of this technology in the near future.

Daniele De Martini, Postdoctoral Research Assistant at the ORI and Junior Research Fellow at Kellogg College
Safety Assurance of Autonomous Intravenous Medication Management Systems (SAM)

What if we could improve patient outcomes by using automated systems to administer just the right amount of medication at the right time to patients in intensive care units?

This project explored and addressed safety assurance challenges of robotic and autonomous systems (RAS) in healthcare using the example of intravenous (IV) medication management systems within an intensive care unit.

The focus of the study was the clinical system rather than the technology as such, and it looked at safety assurance challenges at the intersection of engineering and human factors.

Four use scenarios at different levels of automation and autonomy were identified. These were used to explore stakeholder perceptions about risk, handover, and the investigation of adverse events involving autonomous infusion devices.

Three complementary analysis approaches (Functional Resonance Analysis Method, Systematic Human Error Reduction and Prediction Approach, NHS Digital SMART approach) were used to explore the safety issues around the use of autonomous infusion technology in intensive care.

The project has made six recommendations aimed at technology developers, healthcare providers and regulators:

1. Developers should consider patient experience and the impact on the patient-clinician relationship.
2. Adoption of RAS should be accompanied by training to enable clinicians to maintain core clinical skills, and to educate clinicians about limitations of AI.
3. Healthcare providers should consider the introduction of new AI specialist roles.
4. Hazard analysis should be performed at the level of the clinical pathway or clinical system.
5. Developers should design for situation awareness, handover between clinicians and RAS, and human performance variability.

Safety of the AI Clinician

Moving on from prediction: the safe use of AI in making medical decisions about sepsis treatment.

The next step in the use of AI in healthcare is an AI-based decision support system (DSS) that can suggest medication doses, supporting a clinician to make a decision about medical care. The team at Imperial College London was the first to develop an algorithm (the AI Clinician) that provides suggested doses of intravenous fluids and vasopressors in sepsis.

This project is investigating how to assure the safety of the AI Clinician for sepsis treatment in intensive care. Through this, it will help to establish general regulatory requirements for AI-based DSS. The project is structured around three key objectives:

1. Review regulatory requirements in the UK and the USA - this will involve assessing the status of the current regulatory framework and any potential gaps, specifically for AI-based DSSs in healthcare.
2. Define the required behaviour of the AI-based DSS for sepsis treatment - this will cover performance and safety, how to translate these requirements into its design, and how to detect and mitigate deviations of the DSS from the required behaviour.
3. Deploy and test the DSS in pre-clinical safe settings - to gather evidence on the safety and assurance.

Project team
- Imperial College London
- University of York
- NHS Digital

We are delighted to be working with Imperial College London and NHS Digital on this project. By bringing together our AMLAS process with Imperial’s AI Clinician and NHS Digital’s representation of the assessment authorities, we will be able to generate and evaluate a safety case that we hope will help move the UK towards safe deployment of AI in the NHS.”

Dr Ibrahim Habli, AAIP

“"It is only natural that patients and their relatives have concerns where autonomous devices are used in a medical setting. I hope that patient involvement in the project helped to allay these concerns, because there is a real and vital need for this technology in the treatment of patients in ICU.”

Howard Grundy, patient’s relative

The intensive care set-up (photo credit: Dr Nick Reynolds, Royal Derby Hospital)
Assistive robots in healthcare

This project is investigating and evaluating the safety and regulatory requirements of close human-robot interaction (HRI) in domestic environments. It uses an overhead robotic system and the work is based around a series of experiments designed to validate a range of practical use-cases.

In combination with Environmental Survey Hazard Analysis (ESHA) the outcomes from workshops with stakeholders are being transformed into a set of functional and safety requirements. The next stage is to incorporate the use cases and scenarios into a detailed hazard analysis and design realistic experiments to assess the sensing and safety control requirements of the demonstrator platform.

The team has been using the data collected from the robot to develop the machine learning framework. They have developed some preliminary models which can detect the different transition states during a sit-to-stand activity and also detect the transition patterns of two different people.

Project team
- Bristol Robotics Laboratory, University of West of England
- Designability Charity Ltd

The PI, Praminda Caleb-Solly, has recruited a multidisciplinary team to develop a set of functional and non-functional requirements for physically assistive robots to provide mobility support. This work was followed up with a detailed use case analysis, using data from focus groups with domain experts in health and social care, and interviews with occupational therapists. These data have been carefully collected and analysed and provide a good foundation for future studies exploring physical human-robot interactions. I am very pleased to see the progress that has been made.”

Professor Nigel Harris, Director of Innovation and Growth, West of England Academic Health Science Network. CEO Designability Charity 2009-2019
The impact of Covid-19 on the ability to access facilities has led us to develop a sophisticated digital twin environment to support the development and testing of research methods, and facilitate their integration with real hardware. This has raised interesting questions about the extent to which digital twins can be used for assuring the safety of physical systems, but has also provided a framework to support training and remote operation of equipment — something our partners have raised as critically important in light of recent requirements around social distancing, both in terms of maintaining productivity and reducing risks to the health of staff.

Dr James Law, Acting Director and Director of Innovation and Knowledge Exchange, Sheffield Robotics

Assuring Long-term Autonomy through Detection and Diagnosis of Irregularities in Normal operation (ALADDIN)

节能 lives, improving ocean data collection, and supporting green energy — how we can all benefit from safe unmanned marine systems.

Without suitable regulatory guidelines, Marine Autonomous Systems (MAS) are currently piloted and monitored by experts, keeping operational costs high and limiting the scale of simultaneously deployed fleets. This project will increase the safety of MAS by helping the vehicles identify the cause of any adverse behaviours.

The ALADDIN team is developing a monitoring and classification tool that correctly detects and diagnoses unexpected vehicle behaviour due to system malfunctions or environmental disturbances. The system will be validated using the case study of autonomous underwater gliders.

In the absence of accepted international terminology, the team has introduced new vocabulary for defining healthy and irregular behaviour of MAS. The terminology is designed to be transferable to any Robotic and Autonomous System (RAS) technology, although failure modes are specific to each system. A procedure has been designed to autonomously label time-series data as either standard or anomalous, with human feedback used to correct and improve tagging performance.

In addition, a range of MAS deployment datasets have been selected for use in the remainder of the project, enabling the design of transferable solutions. Remote-sensing data will complement the datasets to capture the environmental disturbances during the deployments.

Project partners
- University College London
- National Oceanography Centre

At present, as a result of limited situational awareness, it can be very challenging for highly trained glider pilots to detect sudden events such as wing-loss. The monitoring and classification tool developed in ALADDIN will enable us to detect, understand and react to even subtle divergences from expected vehicle behaviour, giving us the opportunity to implement mitigation to safeguard the vehicle and its valuable scientific data cargo.

Dr Catherine Harris, National Oceanography Centre

Improving safety and productivity in manufacturing by studying human–robot interaction when using collaborative robots.

This project studied the safety-related human–robot behaviours (movements, layout occupation, voluntary/accidental contacts, near-misses, etc) in a prototype machining production setup. They worked with the machining department of a manufacturing company (CEMBRE) in Northern Italy that extensively uses robot applications and flexible manufacturing systems supplied by MCM.

RECOLL was particularly interested in human–robot behaviour when the operation needs frequent reallocation of human/robot tasks, a changeable position of the human worker, and potential physical interaction with the machines.

The team developed a method for the quantitative evaluation of the safety risk assessment procedures, in line with current standards. This methodology can be applied to a wide range of human–robot collaboration scenarios. It allows us to understand if the preliminary risk assessment correctly includes all the possible hazardous situations and if its conservative approach will affect the cell’s productivity.

Project team
- Machining Centers Manufacturing (MCM) SpA
- University of York
- National Research Council of Italy, Institute for Intelligent Industrial Systems and Technologies for Advanced Manufacturing

CSI: Cobot

Removing the cage and curtains: how can we assure the safety of cobots to support increased productivity in manufacturing?

The team began work by conducting a series of interviews with industry stakeholders to understand attitudes and concerns relating to robot safety. These helped to shape the direction of research and ensure the applicability of the designed safety systems. From this they have also developed a methodology to support the co-design of safe cobot processes, and increase knowledge of safety systems amongst stakeholders. The card-based activity helps to engage stakeholders in the design process whilst also building confidence in the systems being developed.

The team have also constructed a lab-based replica of an industrial cobot manufacturing cell, enabling them to locally deploy and test sensors, and train machine learning algorithms to detect and track people and robots working in the cell. In parallel, work has progressed on creating a digital twinning environment, including a representation of the physical cell, to provide a rich framework for analysing and controlling cobot processes both on- and off-line.

This has been extensively developed in response to Covid-19 (and in collaboration with other research projects) when access to physical systems has been restricted. The framework is enabling the team to develop, integrate, and test techniques digitally, and explore the extent to which assurance can be carried out on virtual models of systems.

Particular safety and security advances have been made in the areas of hazard analysis and visual sensing to identify potential hazards and safety issues before they occur; in security policies and threat modelling to understand and mitigate cyber security risks; and stochastic modelling, including the development of a preliminary safety controller which can robustly respond to, and recover from, potential safety issues.

The next stage of the project will focus on integrating the safety methods with the digital twinning environment, and conducting initial testing.

Project partners
- University of Sheffield
- University of York

CSI: Cobot industrial case study robot cell and a representation of this in the digital twinning environment
Improving the safety of autonomous unmanned aerial vehicle (UAV) teams through the creation of a systematic robustness assessment process.

The SAFEMUV project has carried out a comprehensive analysis of the state-of-practice in the assurance processes for UAV-based applications. Based on insights derived from this analysis, and meetings with regulatory bodies and their industrial partners, the team has developed the concept of operations needed for delivering the safety analysis process.

The team has also started to implement a prototype pipeline to support the definition of multi-UAV system and scenario specifications from stakeholders. These specifications will be transformed into executable models for the simulator of the SAFEMUV demonstrator as well as the code required for the real multi-UAV application.

The next step involves the realisation of the safety analysis process for the SAFEMUV demonstrator. Lessons learnt will enhance the prototypical pipeline for the specification of collaborative multi-UAV inspection scenarios with key quality criteria that will support the analysis of these scenarios in simulation, lab-based settings and in the real-world. The developed pipeline will be generalisable to other application domains where robotic teams are employed.

Project team
- University of York
- SnT, University of Luxembourg
- Bonn-Rhein-Sieg University, Germany

Medium-sized AGV for soft-fruit production (MeSAPRo)

Using autonomous robotic systems to support human fruit pickers and reduce workplace accidents.

Researchers from Saga Robotics and the University of Lincoln have developed fleets of autonomous soft-fruit production robots that undertake tasks including monitoring, forecasting, harvesting and transportation in real-world fruit farm environments.

This project will complement existing work on developing the functionality and technical capabilities of the robotic system, by focusing on safety assurance of the soft-fruit production RAS:

- defining safety requirements for the sense-understand-decide-act components of the RAS
- developing methods to detect deviations from safe behaviour and ways to mitigate the effect of such deviations
- formally verifying the sensing, understanding and deciding components of the existing software stack for the RAS

With the help of industrial partner Berry Gardeners Growers, the team is developing several harvesting scenarios, which will help them to specify the interactions between humans and RAS.

Project team
- Lincoln Centre for Autonomous Systems, University of Lincoln
- Saga Robotics

Safety Assurance of Cooperating Construction Equipment in Semi-Automated Sites (SUCCESS)

Moving towards the use of a fleet of autonomous construction vehicles by assuring their safety when they work together as a systems-of-systems.

The SUCCESS demonstrator project explored numerous aspects in the safety assurance of cooperating systems-of-systems (SoS), with a special focus on the construction machinery domain. Specifically, the project:

- highlighted the challenges in hazard analysis of SoS
- demonstrated a digital twin-based approach for simulation and verification of safety requirements
- evidenced the potential of geofences for dynamic risk management
- outlined an end-end tool framework for safety analysis

The Volvo training simulators at Malardalen University were adapted and extended to form a digital twin of the Electric Site. The team will use this to verify the safety requirements of their collaborating autonomous systems and to implement and check multiple safety-critical scenarios.

In addition, the project team has shown the potential of different types of geofences for dynamic risk management during the operational phase. They also defined an end-to-end tool framework that incorporates both process and product-based evidences, safety contracts and dynamic assurance.

Project partners
- Malardalen University, Sweden
- Volvo Construction Equipment
- Safety Integrity AB

As an independent assessment body undertaking third party assessments we have been able to use the SUCCESS project’s work to determine what is feasible within existing regulations and safety standards and, when applicable, what could be used to support the development of future standards.

Henrik Thane, CEO, Safety Integrity AB

Read more about the project and the guidance developed: [bit.ly/soassuccess]

The ambition of this project was to run a fleet of autonomous vehicles in a real environment to identify ways to assure the safety of this complex SoS. The results and lessons learned on SUCCESS will be utilised through my work at Volvo Autonomous Solutions.

Stephan Baumgart, Pilot Safety Manager, Volvo Autonomous Solutions
The Future

In 2021, we will further develop the practical guidance we offer by creating a standalone website for industry and regulators, to provide a useable resource for the assurance and regulation of autonomous systems.

This resource builds on the work described earlier (see pages 12 and 13) on the five building blocks of safety assurance: assurance of machine learning, safety assurance of understanding in autonomous systems, safety assurance of decision making in autonomous systems, safety assurance of autonomous systems in complex environments, and social acceptability of autonomous systems. It will provide an accessible process for using the guidance developed in each of these key areas.

Our work on ethics will also be strengthened over the coming year. In 2020 we spoke with members of the public about their views on autonomous systems. One focus group suggested such technology needs to be “acceptably safe” and that’s what our work will consider: what does acceptably safe mean to the different stakeholders of autonomous systems? How can we ensure the system meets such requirements and how can we communicate this to those that need to know?

The year will bring our existing work on standards and regulations into sharper focus as we look to fund more demonstrator projects led by regulatory bodies. Building on our existing work with regulatory organisations, and using the practical guidance we have already developed, we want to move the community towards flexible standards and regulations that work for ever-evolving autonomous technologies.

As ever, the technology continues to advance and mature. Through our collaborations across the globe, our research and guidance are keeping pace and in 2021 this will help us to work with the community to pioneer the new global safety standards that will keep us all safe.

Work with us

The challenge of assuring the safety of RAS requires further funding, collaborative research, technology case studies, evolving regulations, and more. Contact us if you would like to collaborate with us and ensure that autonomous systems are designed, developed and introduced safely to benefit us all.

+44 (0) 1904 325345
assuring-autonomy@york.ac.uk
@AAIP_York
www.linkedin.com/company/assuring-autonomy
https://medium.com/assuringautonomy.medium.com/

7 – 10 September 2021
SAFECOMP 2021
safecomp2021.hosted.york.ac.uk

October 2021
Institute for Safe Autonomy opens