Evaluation of biological remains from excavations at Bolton Common (site code: TSEP 243)

by

Allan Hall, Stephen Rowland, Harry Kenward and John Carrott

Summary

A series of sediment samples from deposits revealed by excavations at Bolton Common, were submitted for an evaluation of their bioarchaeological potential.

Two of the samples (Sample 1, Context 2014 and Sample 3, Context 2005) gave modest assemblages of both plant and invertebrate remains. The biological remains recovered from larger subsamples of these deposits would provide information of use in interpreting these cuts. The ecological information so gained would also be valuable in an area and time period (assuming this can be confirmed and refined) for which such data are limited—radiocarbon (AMS) dating of the biological remains recovered should be employed if artefactual or stratigraphic dating is not available.

KEYWORDS: Bolton Common; evaluation; late prehistoric; plant remains; charred plant remains; invertebrate remains

Authors’ address:

Palaeoecology Research Services
Environmental Archaeology Unit
Department of Biology
P. O. Box 373
University of York
York YO10 5YW

Prepared for:

Humber Field Archaeology
The Old School
Northumberland Avenue
Hull HU2 0LN

Telephone: (01904) 433846/434475/434487
Fax: (01904) 433850
20 November 2000
Evaluation of biological remains from excavations at Bolton Common (site code: TSEP 243)

Introduction

An archaeological evaluation excavation was carried out by Hum伯 Field Archaeology at Bolton Common (NGR: XX), between 17 and 24 November 1999, as part of a series of interventions along the line of the British Petroleum Teeside to Humber pipeline.

A series of sediment samples (‘GBA’/‘BS’ sensu Dobney et al. 1992) were recovered from the deposits. The only artefacts recovered of use in dating the deposits were two sherds of handmade late prehistoric pottery recovered from Trench 2 (one from a ditch fill and the other from a pit fill).

All of the material was submitted to the EAU for an evaluation of its bioarchaeological potential.

Methods

The sediment samples were inspected in the laboratory. Three of the samples were selected for investigation and their lithologies were recorded, using a standard pro forma, prior to processing, following the procedures of Kenward et al. (1980; 1986), for recovery of plant and invertebrate macrofossils. The washovers and residues were examined for plant remains. The washovers were also examined for invertebrate remains, and the residues were examined for other biological and artefactual remains.

Table 1 shows a list of the submitted samples and notes on their treatment.

Results

The results are presented in context number order. Archaeological information, provided by the excavator, is presented in square brackets.

Context 2005 [Ditch fill. Contained late prehistoric pottery, possibly Iron Age]
Sample 3/T (2 kg sieved to 300 microns with washover)

Moist (locally wet), mid to dark greyish brown, plastic, slightly humic slightly clay sand with patches of pale buff sand.

This subsample yielded only a small residue of about 40 cm³ of sand and ?iron pan and a small washover of a few cm³ of fine (to 5 mm) charcoal and very decayed plant detritus, much of it embryos from water-plantain (Alisma) fruits—likely to represent deposition in shallow water. There were also traces of charred root/twig material (to 5 mm) which may have come from heather (Calluna vulgaris (L.) Hull).

Invertebrates were very decayed (E = 4.5 on the scale of Kenward and Large 1998). There were several ?Notaris sp. (waterside) and some aquatic and terrestrial taxa. Some of these remains could be identified with care, and a very large subsample would provide some useful ecological information if this were of particular interest.

Context 2014 [Primary fill of ditch cutting that from which Context 2005 (above) came. Undated, possibly Iron Age]
Sample 1/T (2 kg sieved to 300 microns with paraffin flotation)

Moist (locally wet), unconsolidated (locally brittle), bright orange (mottled with pale grey) fine sand and more or less black amorphous organic sediment with a fine sand component—internally black, locally weakly panned, and traces of plant detritus.

There was a small residue of about 150 cm³ of which about one third by volume was sand and gravel, the latter consisting of iron-concreted sand grains, perhaps from iron pan. The remainder was herbaceous detritus including fragments of tree leaves. Preservation was often excellent, the small fragments of a variety of mosses present generally still retaining chloroplasts. Notable amongst the vegetative remains were leaves and leafy shoot fragments of gorse, Ulex (probably U. europaeus L.),
as well as some legume pod fragments which also
seemed to be from this plant. Also notable in the
sample were some large capsule segments of violet or
pansy (Viola sp(p)), probably from one of the
woodland violets, since there were some short, fat
seeds more typical of this group than the field
pansies. Overall, the deposit appeared to have formed
in water, as some of the material was stained black
with iron sulphide (though some material was orange
with oxidised iron), and the most abundant plant
remains were achenes of water-crowfoot (Ranunculus
Subgenus Batrachium). However, a diverse group of
plants of marsh, wet meadow and waste places was
present and the record of traces of cinders indicates
some human influence, though no clear component of
waste from human habitation was recognised.

Insect remains were moderately abundant and often
well preserved (there were whole froghopper,
Auchenorhyncha spp., heads, for example). Aquatics
were rare, and deposition may have been in a shallow
swampy pool with some litter, perhaps overhung by
trees (Otiorhynchus singularis (Linnaeus) and
Acalles sp. may have been associated with these).
This was an unusual assemblage of remains. It should
be recorded fully, and a larger subsample should be
analysed (and preferably also fully recorded) to
provide a wider range of taxa and in the hope of
recovering species of use as indicators of climatic
change.

Discussion and statement of potential

The plant and invertebrate remains show
potential for further investigation. Some
additional processing and study (particularly
of the insect assemblages) would perhaps
allow further reconstruction of the
conditions in and around these cuts.
Recovered biological remains could also
provide material for radiocarbon dating
(AMS) of the deposits.

Recommendations

Additional material from samples 1 and 3
(Contexts 2014 and 2005) should be
processed and the biological remains
recorded in some detail to allow
reconstruction of conditions in and around
these cuts. The ecological information so
gained would also be valuable in an area and
time period (assuming this can be confirmed
and refined) for which such data are limited.
Radiocarbon (AMS) dating of the biological
remains recovered should be employed if
artefactual or stratigraphic dating is not
available.

Retention and disposal

All of the current material should be retained
for the present.

Archive

All material is currently stored in the
Environmental Archaeology Unit,
University of York, along with paper and
electronic records pertaining to the work
described here.

Acknowledgements

The authors are grateful to Ken Steedman of
Humber Field Archaeology for providing the
material and the archaeological information,
and to English Heritage for allowing AH and
HK to contribute to this report.
References


Table 1. List of examined sediment samples from excavations at Bolton Common, with notes on their treatment.

<table>
<thead>
<tr>
<th>Context</th>
<th>Sample</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3</td>
<td>2 kg sieved to 300 microns with washover</td>
</tr>
<tr>
<td>2014</td>
<td>1</td>
<td>2 kg sieved to 300 microns with paraffin flotation</td>
</tr>
<tr>
<td>2019</td>
<td>5</td>
<td>2 kg sieved to 300 microns with washover</td>
</tr>
</tbody>
</table>