

HOW TO DISTINGUISH BETWEEN PLANE SYMMETRIES

Recognition Chart for Plane Periodic Patterns

Type	Lattice	Rotation	Highest	Non-trivial	Helpful	
			Order	Glide	Generating	Distinguishing
Reflections	Region	Properties				
p1	parallelogram	1		no	no	1 unit
p2	parallelogram	2		no	no	1/2 unit
pm	parallelogram	1		yes	no	1/2 unit
pg	rectangular	1		no	yes	1/2 unit
cm	rhombic	1		yes	yes	1/2 unit
pmm	rectangular	2		yes	no	1/4 unit
pmg	rectangular	2		yes	yes	1/4 unit
						parallel reflection axes
pgg	rectangular	2		no	yes	1/4 unit
cmm	rhombic	2		yes	yes	1/4 unit
						perpendicular reflection axes
p4	square	4		no	no	1/4 unit
p4m	square	4		yes	yes	1/4 unit
						4-fold centres on reflection axes
p4g	square	4		yes	yes	1/4 unit
						4-fold centres <i>not</i> on reflection axes
p3	hexagonal	3		no	no	1/3 unit
p3m1	hexagonal	3		yes	yes	1/6 unit
						all 3-fold centres on reflection axes
p31m	hexagonal	3		yes	yes	1/6 unit
						<i>not</i> all 3-fold centres on reflection axes
p6	hexagonal	6		no	no	1/6 unit
p6m	hexagonal	6		yes	yes	1/12 unit

Notes:

- (1) A rotation through an angle of $360^\circ/n$ is said to have order n . A glide-reflection is non-trivial if its component translation and reflection are not symmetries of the pattern.
- (2) A smallest region of the plane having the property that the set of its images under the translation group covers the plane is called a unit of the pattern.
- (3) A generating region is a smallest region whose images under the full symmetry group of the pattern cover the plane.