Getting started with WINbugs
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1. Introduction

This session introduces three new models each of which will teach another aspect of winBUGs. They can be done in any order.

2. A hierarchical model

WinBUGs is very useful for analysing a class of models known as hierarchical or multi-level models. In this type of model we typically have groups of observations from each of a set of units (e.g. a unit may be a person and we may have a set of observations from each person; or a unit may be a clinic and we have a set of patients from each clinic).

For these models we may fit a model to each unit, which gives one or more parameters per unit. Then we model the parameters of the distribution of units (sometimes called hyper-parameters). 

This type of madel is also the one that underlies the classical analysis of variance with random effects. This is easy to analyse for balanced designs where we have exactly the same numbers of observations in each group. But the analysis with unbalanced data is more difficult. WinBUGs allows an exact analysis for unbalanced data. 

The winBUGs procedure is go round all the individual unit parameters and the hyperparameters in each cycle of updating. The conditional distributions are generally easy to specify. This is a very simple example of this type of model.

2.1 Example 5

This text to be added from old notes
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3. Inference with interval censored data.

3.1 Example 3 (again)

Returning to example 3, we had 5 values of the reduction in blood pressure produced by a drug given as  2    3    3    1     0.   Now it is obvious that these data have been rounded to the nearest whole number. What difference would this make to our inference? We might expect that it would increase our estimate of the variance to some extent – but by how much? We can check this out with WINbugs. 

This is an example of data measured with error and the BUGS 0.5 manual (check the page) has a very useful section about such problems.

We can easily adapt the code for example 3 to do this. We introduce a new vector node xtrue that is the unobserved true values of x. The ith element of xtrue  is normally distributed with mean mu and preceision tau, but restricted to the range from x[i]-0.5 to x[i]+0.5. If we replace the line inside the loop in example 3 with

llim[i]<-x[i]-0.5

ulim[i]<-x[i]+0.5

truex[i] ~ dnorm(mean,tau) I(llim[i],ulim[i])
This will allow us to make inferences for mean and sd corrected for the rounding. Also, we can obtain posterior distributions for the unobserved elements of xtrue.  

First we will compare inferences for uncorrected and corrected analyses. The differences we expect here are small, so we need to run the sampler for many iterations to obtain precise estimates. I have re-run model 3 for 100,000 iterations, after an initial run of 1000 and give the results below.

You should set up this new model, enter the data , compile and  initialise (you can use geninits for xtrue) .  Then save the same number of samples from the new model that corrects for the rounded values. Be sure to monitor mean sd and also the unobserved xtrue vector.

Calculate stats for mean and sd and complete the table below giving mean, median and credible interval for the corrected analysis.



 node
 mean
           
2.5%
   median
97.5%

_____________________________________________________

uncorrected
mean
1.799


0.1914
1.800
3.400


corrected      mean

uncorrected
sd
1.633


0.7799
1.421
3.763

corrected 
sd

______________________________________________________

How have the estimates changed ?__________________________________

Is this of any practical relevence here? ______________________________

When might it be more important?__________________________________

Now look at kernel density estimates for xtrue, and sketch their form in the top row of boxes below, putting values on the X axis for each plot

	
	
	
	

	xtrue[5] (x[5]=0)
	xtrue[4]  (x[4]=1)
	xtrue[1] ] (x[1]=2)
	xtrue[2],xtrue[3]

x[2]=x[3]=3


4. Using more than one chain

WinBUGS allows you to use more than one chain of samples.  This is a good idea, especially where you have a problem where the conditional distributions are not just simple distributions.

4.1 Example 6 A non-linear model for estimating the LD50, LD90, LD95 etc.

An experiment is carried out to measure the extent to which doses of a new anti-cancer drug will inhibit the growth of cancer cells. The drug is incubated with doses of the cells, and the response in terms of tumour growth – measured from enzyme fluorescence – is found for each dose. Three replicates are measured at each of 4 doses. The results are shown below.


Preliminary investigations suggest that this dose response curve may be fitted by an exponential dose-response curve of the form  y = a exp(-b x)  with a random normal error term. 

Using this equation, find an expression for the LD50, the dose of the drug that will kill 50% of the cells interns of the parameters a and b.

See answers to questions in Session 3, session 4.1  for derivation and/or  paragraph below for answers

Once we have obtained estimates of a and b we can easily find estimates of the LD50 (lethal dose that kills 50% of cells) as LD50 = -log(0.5)/b, for the LD90 (since only 0.1 of cells are left alive, we get as LD90 = -log(0.1)/b and for LD95 we get the expression LD95 = -log(0.05)/b.

This model could be fitted by non-linear regression and we could obtain expressions for the LD50 etc. To obtain confidence intervals for the LD50 etc we would need to use approximate methods or complicated methods based on profile likelihoods. Using MCMC methods we can get exact inference for these derived quantities.

This is a non linear model, that is not so simple to fit by Gibbs sampling as other models. The way it is specified in winBUGS is easy, however. The file BUGS6.txt contains some code that will work that is printed below.

Notice that we have two sets of initial values, with different starts for a and b. This will allow us to run two chains so we can test when the Markov chain has become stationary.

Check the model and load the data.

Now ask for two chains on the specification tool.

Now compile the model and load the two sets of initial values – you can change these if you want.

Now go to the info menu and check the updating method for the nodes a and b. You will get

a UpdaterNormal.Updater
b UpdaterMetnormal.Updater

The method for a shows that the conditional distribution for a is Normal, as would have been the case for linear regression parameters. For b it indicates that Metropolis sampling has been used. 

Now go to the updating tool. You will see that the ‘adapting’ button is ticked.  This is to tell you that you cannot store samples yet. Run the sampler for 4000 samples and the tick will go. 

Now you should start monitoring a and b. Do some updating and then check the output from the following buttons for a,b and tau.

· Trace

· Quantiles

· Grdiag (Gelman-Rubin diagnostics)

These will show you whether the two chains have come together satisfactorly. If you are not satisfied with the result, then you should update some more and check again. Once your chains have come together you should start monitoring the ld50,ld90 and ld95 nodes. Complete this table:-

Results

Mean
95%  credible interval

LD50




LD90

LD95

Why might the results for LD90 and LD95 be unreliable? (HINT: look back at data and graph)

It would be interesting to compare these results with a frequentist analysis.













Dose    responses


(x) 	(y)


 0     	962 1030  938


 2    	689   667  697


 4    	452  445  424


 8   	235   168  193





model;


{


treat~dnorm(0,0.000001)


tau1~dgamma(0.001,0.001)


tau2~dgamma(0.001,0.001)


mean~dnorm(12,0.000001)


sd1<-sqrt(1/tau1)


sd2<-sqrt(1/tau2)


for (i in 1:20){


mu[i]<-treat*tr[i]+mucage[c[i]]


Y[i]~dnorm(mu[i],tau1)


}


for (i in 1:6){


mucage[i]~dnorm(mean,tau2)


}


}





c[] tr[]      Y[]	


1	0	12.99	


1	0	12.83	


1	1	14.10	


2	1	14.18	


2	1	14.37	


2	0	13.26	


2	0	13.94	


3	1	12.98	


3	1	13.54	


3	0	12.25	


3	0	12.73	


4	1	14.69	


4	1	14.27	





model;


{


# vague priors for a  b and tau


   a ~ dnorm( 0.0,1.0E-6)


   b ~ dnorm( 0.0,1.0E-6)


   tau ~ dgamma(0.001,0.001)


   sd <- sqrt(1 / tau)


   for( i in 1 : N ) {


     fit[i]<-a*exp(-b*x[i])


      y[i] ~ dnorm(fit[i],tau)


   }


# calculate LD50 LD90 and LD95


ld50<-(-log(0.5)/b)


ld90<-(-log(0.1)/b)


ld95<-(-log(0.05)/b)


}





data;


list(N=12,y=c(962, 1030, 938, 689, 667, 697, 


452, 445, 424, 235, 168, 193


),x=c(0, 0, 0, 2, 2, 2, 4, 4, 4, 8, 8, 8))








inits;


list(tau=1,a=1000,b=0.2)





linits;


list(tau=10,a=1000,b=.5)
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