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1. Inferences for normal distributions

1.1 Example 3 Inferences for the normal mean and variance

Sample of 5 values of the reduction in blood pressure produced by a drug 

2    3    3    1     0

We want inference from the mean and standard deviation of the population they represent,  without bringing in any prior information.

1.2 Setting priors for means and variances

In BUGS we specify normal distributions in terms of their mean and precision.  The precision that is usually represented by  is just  1/2.

BUGS requires all priors to be proper.  For a prior the usual choice is a normal with a huge standard deviation that will cover a very wide range.  For example if we take the BUGS default of N(0,0.0000001) for , the BUGS default, then we are allowing a 95% prior credible interval between –2000 and +2000.  You can change this if it does not seem wide enough for your problem.

Priors for the s.d. are a bit more difficult. The BUGS manual suggests two ways of doing this  (Manual for BUGS version  0.5, section 9.2.2 page38).  Either you can set a flat prior for the variance, over a fixed range which gives a pareto prior for the precision, or you can use a member of the Gamma family for the precision, which is the conjugate prior for this problem. 

The BUGS manual recommends that you specify a vague prior for  as Gamma(0.001,0.001) ,and this is the defaults you will get if you write your model with a doodle. The bugs parameters stand for the shape parameter and the mean of the Gamma distribution (see manual for volume 5, page 17 and also winBUGS manual) . 

To help you to check if this prior will be vague enough for the standard deviation in your problem, or to try out alternatives, the EXCEL spread sheet PRIORS.XLS (second worksheet) can be used to check it out.

This worksheet can also be used to help you decide on suitable informative priors for a standard deviation.

See below for explanation.  See also information sheet of  PRIORS.XLS.
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Vague prior for  as Gamma(0.001,0.001) gives these priors for the s.d. and the log variance plotted over a range of the s.d. from 0.0001 to 100.

The lower curve for each plot (shown in pink if you are looking at this in colour) shows the cumulative distribution for the prior and its axis is on the LHS.  We can see that only well below 0.1 of the cumulative distribution lies below 100, so the rest must be spread out above this.  The right hand axis is for the other curve, which is the probability density. For the s.d. this is in red and peaked at zero, whereas for the log variance (shown in purple) it is fairly flat, but gently declining, in the range shown.

I hope that you will agree that this is pretty vague.

1.3 BUGS code

Now it is time to use BUGS for this  problem. We have 5 repeated values of the random variable (call it x), so we need to set up a plate in our doodle using the doodle help menu and write the code from it. Notice that  because we use tau to define the variability, we calculate the standard deviation from tau, with sd being a logical node. 

Then use the model specification tool (section 2.1) to define the model. For this model it is best to load an initial value for the parameter tau – any reasonable values will do – because geninits sometimes gives negative values. See example below. Even if you get then wrong the sampler will bring them into the correct range after a few samples. 

Use the updating and sample monitoring tools (sections 2.2 and 2.3) to get inference about the mean and standard deviation.
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Summary statistics from one run were

 Node   mean
     sd
 MC error
2.5%
median
97.5%
start
sample

  mean      1.789       0.8239
  0.007935
 0.1641
 1.787
 3.446
   1001       9000


  sd
 1.625
 0.8639
 0.01149
   0.7757
      1.428
           3.733  
 1001
 9000

This can be compared with frequentist results (from the t and chi-squared distributions) for the same problem that give the following estimates and confidence intervals.  Your results should be similar.

mean 1.8  95% confidence interval (0.18 to 3.41)

s.d.    1.30 95% confidence interval (0.78 to 3.74)


These results are very similar for the frequentist results for the mean the s.d.   The column MC error tells you to what extent simulation error contributes to the uncertainty in the estimation of the mean. Simulation errors in the 95% posterior credible interval (columns 2.5% and 97.5%) will be considerably larger because of the small numbers in the tails of the distribution. 

Examine the trace of all of your samples for the mean with the history button on the sampling tool. It should look very jagged if the samples are independent. Sketch its appearance for the mean below.

[image: image5.emf]0

2

4

6

8

10

-2 -1 0 1 2 3

Is there any evidence of autocorrelation in the chains (use the autoC button)________
If you want you can check answer under session 2 section 1.3 for how it should look

This is a complicated analysis for a simple problem. But it forms the building block for later examples.
2. Regression

2.1 Example 4: An ordinary LS regression example

The following data need to be fitted by linear regression.  They concern the fuel consumption (Y variable) and weight (X)of cars. 
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The plot shows the data along with the OLS fitted line. We can see that there is what appears to be a single influential point that may be an outlier.  The fitted regression line (calculated from the EXCEL spreadsheet for example 4) is given by 

	
	Coefficients
	Standard Error
	t Stat
	P-value
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	X Variable 1
	1.305
	0.356
	3.661
	0.0061


We can set up this model in WINbugs as shown here.
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The data are now entered, this time in rectangular format.  Highlight the data for Y and X first, and enter it with the load data button Then highlight the line with N and enter it.  (NOTE : You need to do 2 loads here)

Now generate samples and examine history traces for the estimated slope and intercept.

Sketch the appearance of the trace for the intercept parameter (a) below.

Is there evidence of autocorrelation in this chain?______________________

If you want you can check answer under session 2 section 2.1 for how it should look

2.2 Centering your Xs

You will notice that the chains have the appearance of being autocorrelated  (look at how the chains appear, and check the autocorrelations).  This has the effect of increasing the Monte-Carlo error of the intercept a.

The simple trick of centering the X variable sorts out this problem.  If we subtract 4 from all the X values, we will still get the same fitted line, but the intercept will now correspond to the fitted value for what is X=4 in the original data.  The regression for for the new variable (X-4) is

	
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	2.8910
	0.4525
	6.3896
	0.0002
	1.8476
	3.9344
	1.8476
	3.9344

	X Variable 1
	1.3051
	0.3565
	3.6611
	0.0064
	0.4831
	2.1271
	0.4831
	2.1271


If you are familiar with regression on EXCEL you could try this on the spread sheet.

To do the same thing in BUGS, all we need to do is to replace the line

mu[i] <- a + b * X[i]     by          mu[i] <- a + b * (X[i]-4)

You should now find that there is less autocorrelation in the chains and that the Monte-Carlo error is much lower. My results were

 Node      mean
           sd
 MC error
2.5%
median
97.5%
start
sample

  a             2.887       0.525
    0.00901
 1.83
 2.883
 3.944
 4001
 5000


  b
 1.306
 0.4118
 0.006661   0.4849
       1.302
           2.106           4001
   5000


agreeing well with the regression results. 

But what about that nasty outlier? Is it perhaps being too influential?

Go to the EXCEL spread sheet for example 4 and see what happens to the fitted line when you delete the point that is furthest from the line

New estimate of a _____________  Previous estimate____________________

New estimate of b_____________   Previous estimate_____________________

You should have found big changes

If you want you can check answer under session 2 section 2.2 for how it should look

In ordinary regression we are assuming normally distributed errors.  If we think that there might be outliers, then maybe we would do better to assume that the error distribution is some long tailed distribution, like a t-distribution.  We can do this easily in winBUGS by replacing the normal distribution for Y[] by a t distribution with some small number of degrees of freedom.  For example we will get really long tails from a t distribution with 2 degrees of freedom.

This makes the regression more robust to outliers.

To do this in winBUGS the line 

Y[i] ~ dnorm(mu[i],tau)

 becomes 

Y[i] ~ dt(mu[i],tau,2)

We now get a very different result, as shown by this output and graph. The regression is now what we call a resistant regression, that is not unduly influenced by outliers.  It works because the likelihood now recognises the possibility that one might find the odd point in the tails of the distribution.

 Node  mean
 sd
 MC error
2.5%
median
97.5%
start
sample

  a        2.677
 0.09927
 0.001141
 2.49
 2.673
 2.881
 4001
 18000


  b      0.5994     0.09314        9.461E-4
 0.4205
     0.5967
          0.795
4001
   18000


You could experiment with different values of the degrees of freedom for your t distribution and see how your slope parameter changes.

How does this compare with the fitted line with one data point removed?  

_________________________________________________________

If you want you can check answer under session 2 section 2.2 

2.3 Discussion questions

How would one select a value of t in practice?

Model choice is part of the prior, so should it be chosen before we see the data?

Could we use model averaging technique by allowing a variety of different t distributions to contribute to the posterior?

How might one set this up?

Some hints are in answers under session 2 section 2.3
model;


{


   mean ~ dnorm( 0.0,1.0E-6)


   tau ~ dgamma(0.001,0.001)


   sd <- sqrt(1 / tau)


   for( i in 1 : N ) {


      x[i] ~ dnorm(mean,tau)


   }


}








data;


list(N=5,x=c(2,3,3,1,0))








inits;


list(tau=1)	
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model;


{


   a ~ dnorm( 0.0,1.0E-6)


   b ~ dnorm( 0.0,1.0E-6)


   for( i in 1 : N ) {


     Y[i] ~ dnorm(mu[i],tau)


   }


   for( i in 1 : N ) {


      mu[i] <- a + b * X[i]


   }





   tau ~ dgamma(0.001,0.001)


   sd <- 1 / sqrt(tau)


}


data;


Y[]    X[]


3.4 5.5


3.8 5.9


9.1  6.5


2.2 3.3


2.6 3.6


2.9 4.6


2.0  2.9


2.7 3.6


1.9 3.1


3.4  4.9


list(N=10)


inits;


list(tau=1)
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