Getting started with WINbugs

SESSION 1

Notes by Gillian Raab, June 1999 Updates for WINbugs 1.3 January 2001

11.
Preliminaries

1.1.
Where to get the WINbugs software
1
1.2.
Other programs for processing BUGS output
1
1.3.
Manuals
1
1.4.
Starting win BUGS
2
2.
Overview of model fitting
2
2.1.
Specifying the model
2
2.2.
Generating the samples - updating
3
2.3.
Storing values and summarising results
3
3.
Example 1 - a simple proportion
4
3.1.
Specifying a prior
4
3.2.
Inference from data
5
4.
Example 2 : Two proportions
6
5.
Summary
7

1. Preliminaries

1.1. Where to get the WINbugs software

From the web site of the MRC Biostatistics Unit in Cambridge. The BUGS home page is http://www.mrc-bsu.cam.ac.uk/bugs/Welcome.html

Once you have downloaded the files you need to email the BUGS project for a key that will let you use the full version.

1.2. Other programs for processing BUGS output

There are two packages that can be used with Splus or R (also public domain). They are CODA and BOA. You can get both from the BUGS web site. I will not be discussing these on this course, though I will touch briefly on the format of the BUGS output that you can use to read into these packages.

1.3. Manuals

· The winBUGS manual available online. It gives details of how to do things in winBUGS but you need to refer back to earlier manuals for more description of each example..

· WinBUGS examples, volumes 1 and 2 with explanations, available online. These include the ones in the earlier sets of examples. You might find it helpful to browse the hard copies of the earlier manual’s examples to see the range of topics..

· Manual for version 5 of BUGS- available as a postscript file from the BUGS web site. This is the manual with the most comprehensive description of the package.

· Examples for BUGS 5 volumes 1 and 2..

· Addendum to the manual and additional examples for version 6 of BUGS - available as a postscript file from the BUGS web site.

These manuals build on each other, so you really need to have the whole set to understand the programs. A good way to attack a problem you want to set up is to go to the volumes of examples and find one that is like your problem. You can then adapt their code to run on your problem.

The BUGS website also contains some slides of a tutorial introduction by David Spiegelhalter and many other useful links.

1.4. Starting win BUGS

· Click on the winBUGS icon or program file. You will get a message about the license conditions that you can read, and then close. Now explore the menus

· HELP - you see manuals and examples. When you click on examples, you can open them in something called a compound document that allows programs graphs and explanations to be there together. The file surgical: institution ranking would be a good one to look at first, as it is not too complex.

· FILE - allows you to open existing files, or to start a new file to program your own example in the BUGS language.

· DOODLE - NEW is what you need to use to start a file for a new model specified in graphical format.

2. Overview of model fitting

2.1. Specifying the model

The first stage in model fitting is to specify your model in the BUGS language. This can either be done graphically (and then code written from your graph) or in the BUGS language. See examples.

You then go to the model menu and you will get a specification tool with buttons.

[image: image4.png]Specification Tool

check model
rum of chains [T

P

Click on the check model button. Any error messages will appear in the grey bar at the bottom of the screen. If all is well, you will get the message ”model is syntactically correct” in the grey bar at the bottom of the screen. You will also see that the compile and load data buttons will have their text darkened You are now ready for the next steps using these buttons. Leave this tool, and the other tools, open

Dat can be entered either in list format or in rectangular format (see examples below). Once you have typed in your data, highlight either the word list or the whole set of data. You can use the load data button on the specification tool to read the data in to winBUGs.

You are now ready to compile your model using compile button on the specification tool. Again, check error messages. If all is well you will get a “model compiled” message.

All nodes that are not given as data, or derived from other nodes, need to be given initial values. This is done with the specification tool menu either by setting them specifically from values you type in (set inits button) or by generating a random value from the prior (gen inits button). WinBUGS 1.3 allows you to run nore than one chain at the same time; see specification tool above. If you want more chains you will need to set different initial values for each one.

2.2. Generating the samples - updating

You are now ready to generate samples and to examine the simulated output. To start the sampler, go to model and then update and you will get an updating tool.

[image: image5.png]Update Tool

refiesh [100

updates

update [thin [teration [0 |

T overtelas T adapting

You can select how many updates you get for each press of the update button and how often the screen is refreshed to show how sampling is proceeding. For some methods of updating winBUGS will not permit you to store samples until after an ‘adapting’ phase. In these cases the ‘adapting’ button will be ticked. The over-relax button only applies to some methods of updating – see BUGS manual.

Updating does the sampling, but does not store any values. In MCMC methods you usually want to run the sampler for some time (perhaps 1000 iteration) to be sure it is stable before you start storing values.

Leave your updating tool open – you will be needing it again.

2.3. Storing values and summarising results

Updating does the sampling, but does not store any values. In MCMC methods you usually want to run the sampler for some time (perhaps 1000 iterations) to be sure it is stable before you start storing values. After an initial run values go to the inference menu and samples and you will get a sample monitoring tool.

[image: image6.png]node Eha‘"&li— to IT percentiles

beg |1 end [O0D000 i [T | (5o

) %
clear i | wace | bistoy | densiy

y y | B2

el

stats | coda | quenties| GRdag| autoC |35

You start by entering the parameters you want to monitor in the node box, and for each one press set. If you also press trace you will see a plot of the samples as they are generated. Now go back to the updating tool and generate some samples.

Now go back to the your sampling tool to look at the various ways of displaying your results or summary statistics. The most useful buttons are:-

history - shows you a plot of all the samples you have generated

density - gives a kernel density estimate of the posterior

stats - gives summary statistics including mean, s.d., median and percentiles that can be set with the panel on the right. These can be used for credible intervals. You will alos get a MonteCarlo error for the mean that will indicate how well the mean of the posterior has been estimated from your number of samples.

AutoC – a plot of the autocorrelation in the chains

The winBUGS manual explains the other buttons.

3. Example 1 - a simple proportion

3.1. Specifying a prior

Inference is required for the proportion (pi) in the example in the lecture for session 1 (sample data with 4 unemployed people from a total of 14). We need to start by specifying the prior for what we believe about the proportion of unemployed people. Remember that this is the parameter that represents what could be thought of as the average proportion for all members of the population. It is NOT the proportion you will get from the data. Your prior can be as informative or non-informative as you like.

You can select a member of the beta family, and you can also decide that you want to restrict its range to something narrower than the complete range (0,1) by setting lower and upper bounds.

WHAT IS YOUR CHOSEN PRIOR? ____________________________________
Specify it first as a directed graph or doodle, using the doodle new menu. Use the help doodle menu to see how to do this. As pi is a random parameter, we set it as a stochastic node, and we can then we can specify its properties interactively. Here I have chosen a beta prior with a and b set to 1 (this gives a flat prior), but with upper and lower limits. You should substitute your prior.

[image: image1.wmf]pi

pi

name:

pi

type:

stochastic

density:

dbeta

a

1

b

1

lower bound

0.1

upper bound

0.6

AT this stage we would usually enter the data, but we will start by just using BUGS to look at samples from our prior.

Now we need to write the code for this using the doodle, write code menu. This opens another menu with the following BUGS code to define the model.

model;

{

 pi ~ dbeta(1,1)I(0.1, 0.6)

}

Use the model specification tool to check and set up this model (section 2.1). Miss out the DATA step, as we don’t have any data yet. You can use geninits to generate a random sample from the prior as a starting value.

Before you produce results we suggest that you go to options and click use log, which will put all your results together in a single log file. Use the instructions in the section above (sections 2.2 and 2.3) to get samples from this prior.

Complete this summary of your results

How many samples have you stored?____________________

What is the mean value of  for you’re the samples from the prior? ____________

Sketch the form of your prior from the kernel density estimate

See answers session1 para3.1 for the kind of results you should have obtained

3.2. Inference from data

The results from a small sample of 14 people are now available. A total of n = 14 people were surveyed and r =4 of them were unemployed. These data [r] will have a binomial distribution with proportion [pi] and denominator [N]. Now go back to your doodle and add a node to set N as a constant, and r as a random variable. Then add edges to show which node passes information top which other node, like this - showing how r is defined. N is set as a constant.

[image: image2.wmf]pi

r

N

r

name:

r

type:

stochastic

density:

dbin

proportion

pi

order

N

lower bound

upper bound

Now write the code again, as above and check the model with a model specification tool (you will be prompted about replacing the old model). Your code should look like this.

model;

{

 r ~ dbin(pi,N)

 pi ~ dbeta(1,1)I(0.1, 0.6)

}
Now you will have to enter the data. The following list format will do (notice that it has to be a capital N as BUGS is case sensitive).

list(N=14,r=4)

Type it below your model. Highlight the word list and press the load data button. If all is well you will get the message “data loaded”. Compile your model and generate initial values again.

Bugs now has data for a node with a distribution, so it will calculate the appropriate likelihood and prior for pi, and combine them into a posterior. It knows about conjugate priors, so the calculations will be quick and easy if you use a beta or uniform prior.

Carry on to generate samples in the same way as before and obtain traces and kernel density plots of your posteriors, along with summary statistics giving the mean, mode and percentiles of your posterior. The upper and lower percentiles are used to calculate credible intervals.

Complete this summary of your results

How many samples have you stored?____________________

What is the mean value of  for you’re the samples from the posterior? ____________

Sketch the form of your posterior from the kernel density estimate

How does this compare with the prior?_________________________________

What is the 95% credible interval for 

See answers session1 para3.2 for the kind of results you should have obtained
4. Example 2 : Two proportions

It is an easy step to go on from this to make inferences for the difference or even the ratio of two proportions. Suppose that we have another survey, perhaps some time later, and this time 12 different people were asked and 6 were unemployed; an increased unemployment rate from 28% (4/14) to 50% (6/12). But how precisely are we estimating these quantities? What is the evidence that the underlying rates for the two surveys is really different? We can see how much we know about the differences in the rates from these two small surveys by calculating a posterior for the difference or the ratio of these two rates.

To look at this we need to set up a second set of nodes for the new survey, identical to the first, but with different names. Then to get the differences and the ratios in the pis we define two new nodes of type LOGICAL, one calculates as pi2-pi and one as pi2/pi. The doodle you get should look something like this.

[image: image3.wmf]ratio

diff

pi2

N2

r2

pi

r

N

diff

name:

diff

type:

logical

link:

identity

value:

pi2-pi

Now generate code from it; it should look like this.

model;

{

 r ~ dbin(pi,N)

 pi ~ dbeta(1,1)I(0.1, 0.6)

 pi2 ~ dbeta(1,1)I(0.1, 0.6)

 diff <- pi2 - pi

 ratio <- pi2 / pi

 r2 ~ dbin(pi2,N2)

}

Add the data and initial values (non-informative priors would be appropriate) and monitor samples for the ratio and the difference.

FOR diff
WHAT IS YOUR posterior MEAN?__________

 MEDIAN?__________

 95% credible interval?________________________

FOR ratio
WHAT IS YOUR posterior MEAN?__________

 MEDIAN?_________

 95% credible interval?________________________

Is there evidence that these two proportions are different?____________________

Make a sketch of the posterior density for the difference

And for the ratio

See answers session1 para4 for the kind of results you should have obtained
5. Summary

So far you have learned basic BUGS and how to make doodles and save samples. This example was particularly easy because

· it used conjugate priors

· there was only one parameter (example 1)

· or two parameters whose posterior density and prior specification was independent of one another (example 2)

We know that BUGS works well and easily for this type of example. For more complicated examples, with lots of parameters we cannot be so sure. BUGS provides sets of diagnostics that allow you to check whether it is working properly. We will learn about them in later sessions.

Things can go wrong in using WINbugs (the manual contains a health warning). Using the examples in the manual is a safe path to tread though (at least mostly) - but always look critically at your results to see that they make sense. And always use the diagnostics too. You will learn about these in later sessions.

