
Review of WinBUGS 1.4
Mary Kathryn COWLES

WinBUGS, a software package that uses Markov chain Monte
Carlo (MCMC) methods to fit Bayesian statistical models, has
facilitated Bayesian analysis in a wide variety of applications
areas. This review shows the steps required to fit a Bayesian
model with WinBUGS, and discusses the package’s strengths
and weaknesses. WinBUGS is highly recommended for both
simple and complex Bayesian analyses, with the caveat that
users require knowledge of both Bayesian methods and issues
in MCMC.

KEY WORDS: Bayesian analysis; MCMC.

1. INTRODUCTION

WinBUGS is general-purpose software for fitting arbitrarily
complex Bayesian models using Markov chain Monte Carlo
(MCMC) methods. The stated aim of its developers is to make
practical MCMC methods available to applied statisticians. A
brief search for recently published papers referencing Win-
BUGS turned up applications in food safety, forestry, mental
health policy, AIDS clinical trials, population genetics, pharma-
cokinetics, pediatric neurology, and other diverse fields, indicat-
ing that Bayesian methods with WinBUGS indeed are finding
widespread use.

In the Bayesian framework, there may be information about
model parameters θ available to the user before data are col-
lected. This information is quantified by putting a probability
distribution p(θ), called the “prior,” on the parameters. The in-
formation regarding model parameters contained in the data
y from the new study is expressed in the “likelihood,” which
is proportional to the distribution of the observed data given
the model parameters, p(y|θ). The information in the likeli-
hood and prior is combined to produce an updated probabil-
ity distribution—the “posterior distribution” or p(θ|y)—which
is the basis of Bayesian inference. Proportional to the product
of the prior and the likelihood, the posterior distribution theo-
retically is always available. However, in realistically complex
models, the analytic computations often are intractable, particu-
larly the required integrations to obtain the normalizing constant
of the joint posterior distribution and the calculations of poste-
rior marginal distributions of individual parameters of interest.
For typical high-dimensional models, even standard numerical
integration techniques are inadequate.

Markov chain Monte Carlo (MCMC) methods (Metropolis et
al. 1953; Geman and Geman 1984; Gelfand and Smith 1990) en-
able the drawing of samples from the joint posterior distribution

Mary Kathryn Cowles is Associate Professor, Department of Statistics and
Actuarial Science and Department of Biostatistics, The University of Iowa, Iowa
City, IA (kate-cowles@uiowa.edu).

of model parameters. Characteristics of the joint and marginal
posterior distributions (e.g., posterior means and credible sets)
can be estimated from these samples. Thus, Bayesian inference
can proceed without the need for intractable analytic or numer-
ical integrations. A Markov chain is a sequence of random vari-
ables, X0,X1,X2, . . . , that is characterized by its “transition
kernel.” The transition kernel is a probability distribution from
which the values of any element, say Xj+1, of the Markov chain
are drawn, conditional only on the values of the preceding ele-
ment, Xj . Initial values X0 must be provided. Subject to certain
conditions, the sequence of draws constituting a Markov chain
will converge in distribution to draws from a limiting distribution
called the “stationary” or “target” distribution. The trick in using
MCMC for Bayesian analysis is the construction of the transi-
tion kernel such that the stationary distribution of the resulting
Markov chain is the joint posterior distribution of interest.

WinBUGS enables the user to specify a Bayesian model,
either by drawing a directed graph (see, e.g., Lauritzen and
Spiegelhalter 1988) or by using an S-like language. The soft-
ware then determines the transition kernel for a Markov chain
to generate samples from the joint posterior distribution of the
unknown quantities in the model. Using either a graphical user
interface or a script, the user specifies the number of parallel
MCMC chains to be run, the number of iterations, the model
unknowns to monitor for analysis and reporting, and the types
of convergence assessment and output summaries. The final re-
sult is numeric and graphical summaries of the estimated uni-
variate marginal posterior distributions of the requested model
quantities.

Use of MCMC methods, including WinBUGS, for Bayesian
inference requires knowledge and skill beyond statistical model-
ing. The choice of initial values may affect convergence substan-
tially. Other decisions include the choice to run a single Markov
chain or several independent chains initialized at different val-
ues, and the selection of the number of early iterations to discard
before the sampler is judged to have converged closely enough
to the target distribution to provide reasonable inference. Fur-
thermore, because the samples produced by a Markov chain are
correlated, a larger number of samples are required for a desired
degree of accuracy in estimation than would be the case with in-
dependent samples. Literature containing recommendations on
how to deal with these issues in MCMC use includes Brooks
(1998), Cowles and Carlin (1996), and Gilks, Richardson, and
Spiegelhalter (1995).

2. BACKGROUND

“BUGS,” an acronym for “Bayesian inference Using Gibbs
Sampling,” began in 1989 as a statistical research project at the
Medical Research Council Biostatistics Unit in Cambridge, UK.
The original form of the software, now referred to as “classic
BUGS” was written in Modula-2 and could be compiled and
run under DOS and some Unix implementations. To fit a model
to data, BUGS requires three input files: one containing a spec-

330 The American Statistician, November 2004, Vol. 58, No. 4 c© 2004 American Statistical Association DOI: 10.1198/000313004X8515

ification of the model in the BUGS language, one containing
the data, and the third containing initial values for the Markov
chain. A simple command-line interface then drives the BUGS
session, either interactively or in background mode by means of
a script. The output of BUGS is samples drawn from the joint
posterior distribution of the model unknowns. Because classic
BUGS provides only limited facilities for checking convergence
and summarizing the distributions of the samples, a separate out-
put postprocessor is generally used for these purposes. Classic
BUGS works only for Bayesian models in which all univariate
full conditionals are either standard probability distributions or
log-concave functions. Although versions 0.5 and 0.6 are still
available, classic BUGS no longer is undergoing development.

The first release of WinBUGS, a complete rewrite of BUGS
for Windows, appeared in 1997. Its new features included a
sophisticated graphical user interface (GUI), flexible variate-
generation methods that enable fitting much broader classes of
models than had been possible with classic BUGS, and built-
in facilities for numerical and graphical univariate summariza-
tion of the samples produced and for rudimentary convergence
assessment. Ongoing development of WinBUGS is conducted
jointly by the MRC Biostatistics Unit and the Imperial College
School of Medicine at St Mary’s, London. The current release,
on which this review is based, is version 1.4, dated January 2003.

3. OBTAINING WINBUGS

An “educational” version of WinBUGS, in which the number
of nodes in a single model is limited to 100 (except that it will
run all the examples in the on-line help) can be downloaded from
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.

Users must register online in order to obtain the “key” file that
transforms the educational version into the unrestricted version.
However, as cheerfully stated in the WinBUGS license agree-
ment window, “The current fee is zero dollars ($0).”

4. FITTING BAYESIAN MODELS INTERACTIVELY
IN WINBUGS

We will illustrate the use of WinBUGS by fitting a simple
normal hierarchical model to the peak discharge data in Table
4-4 of Montgomery (1991). These data are measurements taken
at a watershed using four different methods of measuring peak

Figure 1. Simple model displayed by the Doodle facility in WinBUGS.

discharge. Six measurements were taken using each method.
The response variable is peak discharge in cubic feet per sec-
ond. As recommended by Montgomery, we used the square root
transformation to stabilize variance.

Let disch[i, j] represent the square root of the jth measure-
ment of peak discharge (j = 1, . . . , 6) taken by the ith method
(i = 1, . . . , 4). The model parameters are mu[i], i = 1, . . . , 4,
the subpopulation mean of all possible measurements taken by
method i at this watershed at this time; theta, the overall
population mean of the means from all possible measurement
methods at this watershed at this time; sigma2.btw, the vari-
ance between subpopulation means from different measurement
methods; and sigma2.with, the variance between different
measurements taken by the same method. WinBUGS requires
that the normal distribution be parameterized in terms of its
mean and precision, the latter being the inverse of the vari-
ance. We will define tau.btw and tau.with as the inverses
of sigma2.btw and sigma2.with, respectively. With “∼”
denoting “is distributed as” and all normal distributions param-
eterized as Normal(mean, precision), the full Bayesian model
is:

1. Likelihood

disch[i,j] | mu[i], tau.with
˜ Normal(mu[i], tau.with),
i = 1 . . . 4, j = 1 . . . 6.

2. Second stage

mu[i] | theta, tau.btw
˜ Normal(theta, tau.btw),
i = 1 . . . 4

3. Priors
theta ∼ Normal(0, 10−6)
tau.with ∼ Gamma(0.001, 0.001)
tau.btw ∼ Gamma(0.001, 0.001)

The priors at the third stage are a vague normal prior (i.e., with
very small precision) on theta, and vague gamma priors on
tau.btw and tau.with. We note here that the vague prior
on tau.btw works satisfactorily for this dataset because the
data values within each group are well separated from those in
other groups; such a prior generally does not work well for this
model.

4.1 Specifying the Model

Simple models may be specified graphically using the drag-
and-drop “Doodle” facility in WinBUGS. The doodle for our
example is shown in Figure 1.

WinBUGS automatically generated the following model-
specification code from the doodle in Figure 1:

model
{

theta ˜ dnorm(0.0,1.0E-6)
for(i in 1 : methods) {

mu[i] ˜ dnorm(theta,tau.btw)
}

The American Statistician, November 2004, Vol. 58, No. 4 331

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents

disch[,1] disch[,2] disch[,3] disch[,4] disch[,5] disch[,6]
0.583 0.346 1.109 0.837 1.323 0.346
0.954 1.715 1.463 1.536 1.691 2.133
2.512 2.893 3.122 2.468 3.134 2.691
4.141 3.438 3.309 4.147 3.788 4.101
END

Figure 2. Tabular format for data for example.

for(i in 1 : methods) {
for(j in 1 : samples) {

disch[i , j] ˜ dnorm(mu[i],
tau.with)

}
}
tau.btw ˜ dgamma(0.0001,0.0001)
tau.with ˜ dgamma(0.0001,0.0001)
sigma2.btw <- 1 / tau.btw
sigma2.with <- 1 / tau.with

}

Alternatively, the user may simply write model-specification
code as text. (Complex models must be specified in this way.)
Each stage of the Bayesian model (likelihood and all levels of
priors) must be defined using WinBUGS 1.4’s 23 probability dis-
tributions, 28 functions, and S-like looping structure. Probability
distributions that are not part of WinBUGS’ built-in set may be
introduced at either the likelihood or prior stages of the model
using methods documented in the section of the user manual en-
titled “Tricks: Advanced Use of the BUGS Language.” Although
WinBUGS’ model-specification language has no explicit struc-
ture for if/then logic, clever use of the “step” function often is a
workable substitute.

Since WinBUGS can compute transformations of parameters,
it is easy to direct WinBUGS to transform simulated values of
precision parameters into the corresponding values of variance
parameters, as is done in the last two lines of the example code.

4.2 Providing Data and Initial Values

Fitting the model requires the following additional inputs: the
data and values for all model constants, and a set of initial values
for each parallel chain.

Data can be provided to WinBUGS in one of two formats,
either in a list format similar to that used by S-Plus and R or
in tabular (rows and columns) format. Scalar constants must be
provided in the list format. Here is a data list for our example,
containing both the constants and the actual data. Note that the
required format for a two-dimensional array of data does not
exactly match that output by S-Plus or R, so a small amount of
either manual editing or special programming in S-Plus or R is
required to produce it.

list(methods = 4, samples = 6,

disch = structure(.Data=

c(0.583, 0.346, 1.109, 0.837, 1.323, 0.346,

0.954, 1.715, 1.463, 1.536, 1.691, 2.133,

2.512, 2.893, 3.122, 2.468, 3.134, 2.691,

4.141, 3.438, 3.309, 4.147, 3.788, 4.101),

.Dim = c(4,6)))

Alternatively, we could have split this input into two parts, a
list for the constants:

list(methods = 4, samples = 6)

and a table for the actual data (see Figure 2). Note that column
headings are required for tabular data, and that the keyword
“END” followed by a carriage return must appear following the
last line of data.

We wished to run five parallel chains. Below are the five
widely dispersed sets of initial values we used. Note that Win-
BUGS requires initial values to be provided for all precision pa-
rameters, but is able to generate random initial values for most
other types of parameters as long as they have proper priors.
However, asking WinBUGS to generate its own initial values
for parameters with vague priors can result in such poor choices
of initial values that computational problems result. Thus, it of-
ten is wise for the user to provide initial values even for those
parameters for which WinBUGS is capable of generating them.
This was done in this example.

list(mu = c(1,2,3,4), tau.with = 1,

tau.btw = 1, theta = 2.24)

list(mu = c(2.24, 2.24, 2.24, 2.24),

tau.with = 0.01, tau.btw = 10000,

theta = 2.24)

list(mu = c(0.75,1.5,3,4), tau.with = 5,

tau.btw = 0.0001, theta = -2.5)

list(mu = c(-5, 0, 5, 10), tau.with = 0.001,

tau.btw = 0.001, theta = 2.5)

list(mu = c(-100, -50, 0, 50),

tau.with = 0.000001, tau.btw = 0.00001,

theta = -25)

4.3 Running the Chains

To run the model, the user selects “Model Specification” from
a pull-down menu, summoning the “Specification Tool” (see
Figure 3). The user then steps through checking the model syn-
tax, loading the data, compiling the model, and loading initial
values by highlighting keywords in the appropriate input files
and then clicking the respective button. If data or initial values
are in multiple files, the steps to load data and to load initial val-
ues are executed repeatedly. WinBUGS may give error messages
at any step in the process. The user cannot proceed to the next
step until corrections have been made in the input file causing
the errors.

After the model has been checked and compiled and the data
and initial values loaded, the user must tell WinBUGS which
quantities in the model should be “monitored”—that is, should
have their samples retained for output analysis. This is done by

332 Statistical Computing Software Reviewss

Figure 3. Screenshot of WinBUGS’ Specification Tool.

typing the name of each desired node into the “node” window
of the Sample Monitor Tool (Figure 4) and clicking “set.”

The Update Tool is then used to request the number of itera-
tions to be run. After the samples have been generated, output
analysis is requested by selecting one of the monitored nodes (or
typing an asterisk in the node window to request output for all
monitored nodes) and clicking on an output button in the Sample
Monitor Tool.

4.4 Analyzing the Output

History plots and the Brooks-Gelman-Rubin diagnostic may
assist in determining how many initial iterations should be dis-
carded (burn-in) and whether sufficient iterations have been run.
Showing the trajectories of the samples of a particular parameter
produced by each chain (different colors for different chains),
the history plot enables qualitative determination of whether the
chains, started at dispersed initial values, have coalesced and
are drawing from a common distribution. History plots (Figure
5) may also be restricted to show one chain at a time to deter-
mine whether any one or more individual chains show aberrant
behavior.

The “bgr” button produces a graphical version of the Gelman
and Rubin diagnostic (Figure 6) as modified by Brooks and Gel-
man. See the WinBUGS on-line documentation and Brooks and
Gelman (1998) for details on interpreting this diagnostic.

The “beg,” “end,” and “thin” fields in the Samples tool enable
the user to select which iterations will be used in computing the

Figure 4. Screenshot of WinBUGS’ Sample Monitor Tool.

summaries of the estimated posterior distributions of model un-
knowns. Among the available options for summarizing these es-
timated posterior distributions are density plots (smoothed ker-
nel density plots for continuous quantities and bar graphs for
discrete ones; see Figure 7) and tabular summaries (see Figure
8). The table columns represent the node name; the estimated
mean and standard deviation of the posterior distribution; the
autocorrelation-adjusted standard error of the estimated poste-
rior mean; the 2.5%, 50%, and 97.5% quantiles of the posterior
distribution; the iteration number of the first iteration used in
the estimation (i.e., the first post-burn-in iteration); and the total
number of sample values used in the estimation.

The “Coda” button on the Samples tool enables exporting
the samples to external text files for further analysis outside of
WinBUGS.

The “Compare” tool offers facilities for comparing the pos-
terior distributions of sets of model parameters. Figure 9 shows
boxplots to compare the posterior distributions of the mu pa-
rameters for the four different measurement methods.

WinBUGS can compute the deviance information criterion
(DIC; Spiegelhalter, Best, Carlin, and van der Linde 2002),
which is useful in comparing the fit of two or more models
for the same data. To compute the DIC, WinBUGS evaluates
the log-likelihood at each iteration of the sampler, using the
parameter values from that iteration. In the DIC output table,
“Dbar” is −2 times the sample average of the log-likelihoods;
“Dhat” is −2 times the log-likelihood evaluated at the posterior
mean of the parameters; “pD,” calculated as Dbar − Dhat, is
the effective number of parameters in the model; and the “DIC”

Figure 5. History plot of output for one parameter from three chains.

The American Statistician, November 2004, Vol. 58, No. 4 333

Figure 6. Graphical version of BGR diagnostic for one parameter.

(Dbar+pD) is the comparative index of model fit, with smaller
values indicating better fit.

Dbar = post.mean of -2logL; Dhat = -2LogL
at post.mean of stochastic nodes

Dbar Dhat pD DIC
disch 21.222 16.011 5.211 26.433

4.5 Comparing the WinBUGS Output With Other Results

Statisticians who use iterative maximization methods for fre-
quentist statistical estimation (e.g., the algorithms employed by
proc mixed and proc nlin in SAS for mixed and nonlin-
ear models, respectively) are aware that such methods can fail to
converge or can converge to minor rather than global maxima.
The same types of pitfalls, and more, are possible with MCMC.
Among the recommendations of Cowles and Carlin (1996), as
well as other authors, to guard against erroneous inference is to
check the output of any MCMC sampler against results obtained
in other ways. For example, the frequentist or empirical Bayes
model that is most similar to the desired Bayesian model might
be fit using standard statistical software. For this purpose, we
used proc mixed in version 9.1 of SAS to obtain empirical
Bayes estimates of the parameters of our model using the REML
estimation method. Because we specified such vague priors in
our Bayesian model, we would expect close correspondence be-
tween the two sets of estimates. However, due to the right skew-
ness in the posterior distributions of the two variances (refer to
the plot of the estimated Bayesian posterior marginal density of
sigma2.with; the shape of the plot forsigma2.btw is even
more skewed), we would expect the Bayesian posterior means
to be larger than the maximum likelihood or REML estimates,
which correspond to the modes of the likelihood.

Proc mixed produced the following point estimates: mu[1]
= 0.78, mu[2] = 1.59, mu[3] = 2.80, mu[4] =
3.80, sigma2.btw = 0.134, sigma2.with = 1.79,
theta = 2.24. As expected, the empirical Bayes point es-
timates of the mus and theta are very close to the estimated
Bayesian posterior means, while the REML point estimates of
the two components of variance are smaller than the estimated
Bayesian posterior means (only a little smaller than the Bayesian
posterior medians). This is evidence that our MCMC sampler is
indeed drawing from a reasonable approximation to the true pos-
terior distribution. (Additional appropriate comparisons, such as
posterior standard deviations with frequentist standard errors,
are not shown.)

4.6 Using a Script to Run WinBUGS in Batch Mode

A new feature introduced in version 1.4 of WinBUGS is the
scripting facility, an alternative to the menu/dialog-box interface
that makes it possible to automate routine analysis, to drive Win-
BUGS from other programs such as S-Plus or R, and to carry out
simulation studies involving WinBUGS analysis. Commands in
the script language substitute for menu selections and dialog-box
entries. Running WinBUGS in batch mode requires a file con-
taining the script in addition to the model-specification file, the
data file(s), and a separate file of initial values for each desired
MCMC chain.

5. PLATFORMS ON WHICH WINBUGS RUNS

Written in Component Pascal, WinBUGS depends on the
Black Box component, which is available only for Windows
platforms. Efforts have been made to run WinBUGS under
Linux using Wine and VMware. Martyn Plummer reports (http:
//www-fis.iarc.fr/bugs/wine/) that a bug first introduced into
Wine in a 2001 release prevents the WinBUGS buttons from
responding to clicks. However, WinBUGS can run under Wine
using the script interface. The Frequently Asked Questions sec-
tion of the WinBUGS Web page states, “Others have reported
successful and stable running under VMWare.”

6. SAMPLING METHODS IN WINBUGS

WinBUGS uses the Gibbs sampling algorithm to construct the
transition kernels for its Markov chain samplers. Each iteration
of a Gibbs sampler involves drawing a new value for each pa-
rameter from its “full conditional distribution”—the conditional
probability distribution of that parameter given the current val-
ues of all other quantities in the model. During compilation,
WinBUGS chooses a method to draw samples from each the
full conditional distribution of each model parameter. Such sam-
pling is done univariately except in the case of explicitly defined
multivariate nodes and, if the user has so indicated, vectors of
coefficients in generalized linear models. Samples from continu-
ous conjugate full conditionals are drawn directly using standard
algorithms. For nonstandard but log-concave full conditionals,
derivative-free adaptive rejection sampling (Gilks 1992) is used.

The slice-sampling algorithm (Neal 1997) used by WinBUGS
for non log-concave densities on a restricted range has a tuning
phase of 500 iterations.

The random walk Metropolis algorithm (Metropolis et al.
1953) is used in WinBUGS for nonconjugate continuous full
conditionals with an unrestricted range. The standard deviation
of the normal proposal distribution is tuned over the first 4,000
iterations to obtain an acceptance rate of between 20% and 40%.

Figure 7. A posterior density plot.

334 Statistical Computing Software Reviewss

node mean sd MC error 2.5% median 97.5% start sample
mu[1] 0.7747 0.1594 0.001823 0.4628 0.7748 1.089 501 7500
mu[2] 1.588 0.1608 0.001802 1.27 1.587 1.916 501 7500
mu[3] 2.795 0.1583 0.00191 2.478 2.795 3.111 501 7500
mu[4] 3.798 0.1586 0.001911 3.485 3.798 4.115 501 7500
sigma2.btw 5.202 20.83 0.3268 0.5519 2.262 23.61 501 7500
sigma2.with 0.1507 0.05442 8.017E-4 0.07801 0.1401 0.2888 501 7500
tau.btw 0.5637 0.4737 0.00654 0.04236 0.4421 1.812 501 7500
tau.with 7.406 2.404 0.03509 3.463 7.136 12.82 501 7500
theta 2.231 1.104 0.01287 0.06966 2.237 4.334 501 7500

Figure 8. Tabular summary for estimated posterior distributions.

Samples from the tuning phases of both the slice-sampling
and Metropolis algorithms are ignored in the calculation of all
summary statistics, although they will appear in trace plots.

7. GEOBUGS

Originally developed as a spatial-analysis add-on to Win-
BUGS by a team at the Department of Epidemiology and Pub-
lic Health of Imperial College at St Mary’s Hospital London,
GeoBUGS now is included as part of the WinBUGS 1.4 distri-
bution. It enables exchanging map files between WinBUGS and
S-Plus, ArcInfo, and Epimap; fitting Bayesian geostatistical and
conditional autoregressive models to spatial data; and mapping
the results.

8. DOCUMENTATION AND RESOURCES FOR
LEARNING

The documentation built into WinBUGS is unusually good,
and a multitude of other resources exist for learning WinBUGS
and sharing expertise with other users.

The “Help” menu in WinBUGS provides both a printable
user manual and two volumes of worked examples. The user
manual includes a tutorial and clear documentation of the model-

Figure 9. Boxplots for comparing posterior marginal distributions.

description language, all menus and dialog boxes, and the script
facility. Documentation of GeoBUGS, including a complete user
manual, is provided under the “Map” pull-down menu.

Additional WinBUGS examples, links to a wealth of on-line
resources concerning Bayesian analysis in general and Win-
BUGS in particular, and instructions for joining the users’ e-
mail listserv are available on the BUGS/WinBUGS Web page
(see the URL under “Obtaining WinBUGS,” Section 3).

9. ADD-ONS FOR WINBUGS

Several auxiliary pieces of free software facilitate the use of
WinBUGS.

Two R packages, R2WinBUGS (developed by Andrew Gel-
man, Sibylle Sturtz, and Uwe Ligges for the Windows plat-
form only) and rbugs (developed by Jun Yan for either Linux
with Wine or Windows) permit driving script-based WinBUGS
sessions from within R. Enabling R to automate generation
of data files and initial values files in the format required by
WinBUGS and to process the samples output by WinBUGS,
these packages greatly facilitate simulation studies. Both may
be downloaded from the Comprehensive R Archive Network at
http://cran.r-project.org/.

PKBugs, developed by David Lunn, is an interface for spec-
ifying complex population pharmacokinetic/pharmacodynamic
(PK/PD) models in WinBUGS software. It is available at http:
//www.med.ic.ac.uk/divisions/60/pkbugs web/home.html.

The Bayesian Output Analysis system (BOA), developed by
Brian Smith, is a menu-driven suite of S-Plus/R routines that
offer a much wider range of convergence-assessment and output-
analysis features than those built into WinBUGS. Both the S-
Plus version and the R package may be downloaded from http:
//www.public-health.uiowa.edu/boa/, and the R package is also
available at the CRAN Web site given above.

10. DRAWBACKS

Like any other software, WinBUGS has some drawbacks. As
general-purpose software, it is not optimized for specific mod-
els, and consequently run-times may be very long. For very
large datasets, memory limitations may prevent the use of Win-
BUGS. There are some models that even the newest version of
WinBUGS cannot fit; for example, spatiotemporal models with
highly structured covariance structures.

Error reporting is one of the weakest points of WinBUGS. If
computational problems arise during a WinBUGS run, execu-

The American Statistician, November 2004, Vol. 58, No. 4 335

http://cran.r-project.org/
http://www.med.ic.ac.uk/divisions/60/pkbugsweb/home.html
http://www.med.ic.ac.uk/divisions/60/pkbugsweb/home.html
http://www.public-health.uiowa.edu/boa/

tion stops and a window headed “Trap” appears. The contents of
the window are generally unintelligible. This can be extremely
frustrating, expecially for a novice user. Fortunately, the user
manual gives clear suggestions on solutions to try for different
types of traps, with a better choice of initial values often suffic-
ing.

Obtaining valid results with WinBUGS requires that the user
have knowledge of both Bayesian modeling and MCMC-related
issues, especially selection of initial values and convergence as-
sessment. As stated on the WinBUGS Web page, “The programs
are reasonably easy to use and come with a range of exam-
ples. Considerable caution is, however, needed in their use, since
the software is not perfect and MCMC is inherently less robust
than analytic statistical methods. There is no in-built protection
against misuse.”

11. SUMMARY

My own research involves developing Bayesian models for
biomedical and environmental applications. BUGS and early re-
leases of WinBUGS were unable to handle the models I needed,
so I had to code my own MCMC samplers in C. However, the
increased capabilities of WinBUGS versions 1.3 and 1.4 have
enabled me to fit almost all of my models in WinBUGS, thereby
both saving me time and enabling me to offer applied statisti-
cians a more user-friendly way of using my methods. Excep-
tions are models with complex and highly structured covariance
structures. I am convinced that, with clever programming tricks,
WinBUGS can fit most of the models that are likely to be needed
in applied practice in many disciplines. WinBUGS is reasonably
easy to use, and its built-in output-analysis features are sufficient
for most purposes.

In short, I highly recommend WinBUGS for Bayesian model
fitting, with the caveat that advice from a statistician experienced
with the use of MCMC is likely to be needed.

REFERENCES

Brooks, S. (1998), “Markov Chain Monte Carlo and its Applications,” The Statis-
tician, 47, 69–100.

Brooks, S. P., and Gelman, A. (1998), “Alternative Methods for Monitoring Con-
vergence of Iterative Simulations,” Journal of Computational and Graphical
Statistics, 7, 434–455.

Cowles, M. K., and Carlin, B. P. (1996), “Markov Chain Monte Carlo Conver-
gence Diagnostics: A Comparative Review,” Journal of the American Statis-
tical Assocation, 91, 883–904.

Gelfand, A. E., and Smith, A. F. M. (1990), “Sampling-Based Approaches to
Calculating Marginal Densities,” Journal of the American Statistical Associ-
ation, 85, 389–409.

Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 6, 721–741.

Gilks, W. (1992), “Derivative-Free Adaptive Rejection Sampling for Gibbs Sam-
pling,” in Bayesian Statistics 4, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid,
and A. F. M. Smith, UK: Oxford University Press, pp. 641–666.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov
Chain Monte Carlo in Practice, London: Chapman and Hall.

Lauritzen, S. L.,and Spiegelhalter, D. J. (1988), “Local Computations With Prob-
abilities on Graphical Structures and their Applications to Expert Systems”
(with discussion), Journal of the Royal statistical Society, Series B, 50, 157–
224.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953),
“Equations of State Calculations by Fast Computing Machines,” Journal of
Chemical Physics, 21, 1087–1091.

Montgomery, D. C. (1991), Design and Analysis of Experiments (3rd ed.), New
York: Wiley.

Neal, R. (1997), “Markov Chain Monte Carlo Methods Based on ‘Slicing’ the
Density Function,” Technical Report 9722, Department of Statistics, Uni-
versity of Toronto, Canada. Available on-line at http://www.cs.utoronto.ca/
∼radford/publications.html.

SAS Institute, Inc. (2004), SAS/STAT 9.1 User’s Guide, Cary, NC: SAS Institute
Inc.

Spiegelhalter, D. J., Best, N. G., Carlin, B. R., and van der Linde, A. (2002),
“Bayesian Measures of Model Complexity and Fit,” Journal of the Royal
Statistical Society, Series B, 64, 583–561.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003), WinBUGS 1.4
Manual.

336 Statistical Computing Software Reviewss

http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=1061-8600()7L.434[aid=20465]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=1061-8600()7L.434[aid=20465]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0162-1459()91L.883[aid=20468]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0162-1459()91L.883[aid=20468]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0162-1459()85L.389[aid=1981487]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0162-1459()85L.389[aid=1981487]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0021-9606()21L.1087[aid=20274]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0021-9606()21L.1087[aid=20274]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0039-0526()47L.69[aid=3094712]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=0039-0526()47L.69[aid=3094712]
http://www.cs.utoronto.ca/radford/publications.html
http://www.cs.utoronto.ca/radford/publications.html

