
6. A HIERARCHICAL MODEL

Applications of hierarchical models of the kind introduced by Lindley and
Smith (1972) abound in fields as diverse as educational testing (Rubin 1981),
cancer studies (DuMouchel and Harris 1983), and biological growth curves (Stre-
nio, Weisberg, and Bryk 1983). However, both Bayesian and empirical Bayesian
models are typically forced to invoke a number of approximations, whose conse-
quences are often unclear under the multiparameter likelihoods induced by the
modelling. See, for example, Morris (1983), Racine-Poon (1985), and Racine-
Poon and Smith (1990) for details of some approaches to to implementing hi-
erarchical model analysis. By contrast, a full implementation of the Bayesian
approach is easily achieved using the Gibbs sampler, at least for the widely used
normal hierarchical model structure.

For illustration, we focus on the following population grown problem. In
a study conducted by the CIBA-GEIGY company, the weights of 30 young
rats in a control group were meassured weekly for five weeks. The data are
given in Table 3, with weight measurements available for all five weeks. Later
we discuss the substantive problem of comparison with data from a treatment
group. Initially, however, we shall focus attention on the control group in order
to illustrate the Gibbs sampling methodology.

Table 3. Rat Population Growth Data: Control Group

Rat\Week 1 2 3 4 5 Rat\Week 1 2 3 4 5
1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323

10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324

NOTE: xi1 = 8, xi2 = 15, xi3 = 22, xi4 = 29, xi5 = 36 days; i = 1, ..., 30.

For the time period considered, it is reasonable to assume individual straight-
line growth curves, although non-linear curves can be handled as well. We also
assume homoscedastic normal measurement errors (nonhomogeneous varianes
can be accommodated as in the previous section), so that

Yij ∼ N(αi + βixij , σ
2
c ), i = 1, ..., k; j = 1, ..., ni,
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provides the full measurement model (with k = 30, ni = 5, and xij denoting
the age in days of the ith rate when measurement j was taken). The population
structure is modeled as(

αi

βi

)
∼ N

{(
αc

βc

)
,Σc

}
, i = 1, ..., k,

assuming independence throughout. A full Bayesian analysis now requires the
specification of a prior for σ2

c , µc = (αc, βc)
T , and Σc. Typical inferences of

interest in such studies include marginal posteriors for the population param-
eters (αc, βc) and predictive intervals for individual future growth given the
first-week measurement. We shall see that these are easily obtained using the
Gibbs sampler.

For the prior specification, we assume independence, as is customary, taking

[µc,Σ
−1
c , σ2

c ] = [µc][Σ
−1
c ][σ2

c ]

to have a normal-Wishart-inverse-gamma form:

[µc] = N(η, C),

[Σ−1
c ] = W ((ρR)−1, ρ),

[σ2
c ] = IG

(
ν0
2
,
ν0τ

2
0

2

)
.

Rewriting the measurement model for the ith individual as Yi ∼ N(Xiθ, σ
2
cIni

)
where θi = (αi, βi)

T and Xi denotes the appropriate design matrix and defining

Y = (Y1, ..., Yk)T , θ = k−1
k∑

i=1

θi, n =

k∑
i=1

ni,

Di = σ−1
c XT

i Xi + Σ−1
c ,

V = (kΣ−1
c + C−1)−1,

the Gibbs sampler for θ = (θ1, ..., θk), Σc, and σ2
c (a total of 66 parameters in

the above example) is straightforwardly seen to be specified by the conditional
distributions

[θi |Y, µc,Σ
−1
c , σ2

c ] = N{Di(σ
−2
c XT

i Yi + Σ−1
c µc), Di}, i = 1, ..., k

[µc |Y, {θ},Σ−1
c , σ2

c ] = N{V (kΣ−1
c θ + C−1η), V },

[Σ−1
c |Y, {θ}, µc, σ

2
c ] = W


[∑

i

(θi − µc)(θi − µc)
T + ρR

]−1

, k + ρ

 ,

[σ2
c |Y, {θ}, µc,Σ

−1
c ] = IG

(
n+ ν0

2
,

1

2

[∑
i

(Yi −Xiθi)
T (Yi −Xiθi) + ν0τ

2
0

])
(5)
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For the analysis of the rat growth data given above, the hyperparameter speci-
fication was defined by

C−1 = 0, ν0 = 0, p = 2, R =

(
100 0
0 0.1

)
,

[because C−1 = 0 the value of η disappears entirely from the full conditionals]
reflecting rather vague initial information relative to that to be provided by
the data. Simulation from the Wishart distribution for the 2 × 2 matrix Σ−1

c

is easily accomplished using the algorithm of Odell and Feiveson (1966): with
G(·, ·) denoting gamma distributions, draw independently from

[U1] = G

(
ν

2
,

1

2

)
,

[U2] = G

(
ν − 1

2
,

1

2

)
,

and

[N ] = N(0, 1);

set

W =

[
U1 N

√
U1

N
√
U1 U2 +N2

]
;

then if S−1 = (H1/2)T (H1/2),

Σ−1
c = (H1/2)TW (H1/2) ∼W (S−1, ν).

The iterative process was monitored by observing empirical Q–Q plots for suc-
cessive samples from αc, βc, σ

2
c , and the eigenvalues of Σ−1

c . Though the αi

and βi are of less interest, spot checking revealed satisfactory convergence, not
surprising in view of (5), which suggests that convergence for the θi is compa-
rable to that of µc. For the data set summarized in Table 3, convergence was
achieved with about 35 cycles of m = 50 drawings.
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