
Bayes rules
A once-neglected statistical technique may help to explain how the

mind works

SCIENCE, being a human activity, is not immune to fashion. For example,
one of the first mathematicians to study the subject of probability theory was
an English clergyman called Thomas Bayes, who was born in 1702 and died in
1761. His ideas about the prediction of future events from one or two examples
were popular for a while, and have never been fundamentally challenged. But
they were eventually overwhelmed by those of the “frequentist” school, which
developed the methods based on sampling from a large population that now
dominate the field and are used to predict things as diverse as the outcomes of
elections and preferences for chocolate bars.

Recently, however, Bayes’s ideas have made a comeback among computer
scientists trying to design software with human-like intelligence. Bayesian rea-
soning now lies at the heart of leading internet search engines and automated
“help wizards”. That has prompted some psychologists to ask if the human
brain itself might be a Bayesian-reasoning machine. They suggest that the
Bayesian capacity to draw strong inferences from sparse data could be crucial
to the way the mind perceives the world, plans actions, comprehends and learns
language, reasons from correlation to causation, and even understands the goals
and beliefs of other minds.

These researchers have conducted laboratory experiments that convince them
they are on the right track, but only recently have they begun to look at whether
the brain copes with everyday judgments in the real world in a Bayesian man-
ner. In research to be published later this year in Psychological Science, Thomas
Griffiths of Brown University in Rhode Island and Joshua Tenenbaum of the
Massachusetts Institute of Technology put the idea of a Bayesian brain to a
quotidian test. They found that it passes with flying colours.

Prior assumptions

The key to successful Bayesian reasoning is not in having an extensive, unbiased
sample, which is the eternal worry of frequentists, but rather in having an ap-
propriate “prior”, as it is known to the cognoscenti. This prior is an assumption
about the way the world works—in essence, a hypothesis about reality—that
can be expressed as a mathematical probability distribution of the frequency
with which events of a particular magnitude happen.

The best known of these probability distributions is the “normal”, or Gaus-
sian distribution. This has a curve similar to the cross-section of a bell, with
events of middling magnitude being common, and those of small and large mag-
nitude rare, so it is sometimes known by a third name, the bell-curve distribu-
tion. But there are also the Poisson∗ distribution, the Erlang distribution, the
power-law distribution and many even weirder ones that are not the consequence

∗In this summary (but not in the original paper) the term ‘Poisson distribution’ is used
when the gamma distribution is meant.

1



of simple mathematical equations (or, at least, of equations that mathematicians
regard as simple).

With the correct prior, even a single piece of data can be used to make mean-
ingful Bayesian predictions. By contrast frequentists, though they deal with the
same probability distributions as Bayesians, make fewer prior assumptions about
the distribution that applies in any particular situation. Frequentism is thus a
more robust approach, but one that is not well suited to making decisions on
the basis of limited information—which is something that people have to do all
the time.

Dr Griffiths and Dr Tenenbaum conducted their experiment by giving in-
dividual nuggets of information to each of the participants in their study (of
which they had, in an ironically frequentist way of doing things, a total of 350),
and asking them to draw a general conclusion. For example, many of the partic-
ipants were told the amount of money that a film had supposedly earned since
its release, and asked to estimate what its total “gross” would be, even though
they were not told for how long it had been on release so far.

Besides the returns on films, the participants were asked about things as
diverse as the number of lines in a poem (given how far into the poem a single
line is), the time it takes to bake a cake (given how long it has already been in
the oven), and the total length of the term that would be served by an American
congressman (given how long he has already been in the House of Representa-
tives). All of these things have well-established probability distributions, and
all of them, together with three other items on the list—an individual’s lifespan
given his current age, the run-time of a film, and the amount of time spent on
hold in a telephone queuing system—were predicted accurately by the partici-
pants from lone pieces of data.

There were only two exceptions, and both proved the general rule, though
in different ways. Some 52% of people predicted that a marriage would last
forever when told how long it had already lasted. As the authors report, “this
accurately reflects the proportion of marriages that end in divorce”, so the
participants had clearly got the right idea. But they had got the detail wrong.
Even the best marriages do not last forever. Somebody dies. And “forever”
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is not a mathematically tractable quantity, so Dr Griffiths and Dr Tenenbaum
abandoned their analysis of this set of data.

The other exception was a topic unlikely to be familiar to 21st-century
Americans—the length of the reign of an Egyptian Pharaoh in the fourth millen-
nium BC. People consistently overestimated this, but in an interesting way. The
analysis showed that the prior they were applying was an Erlang distribution,
which was the correct type. They just got the parameters wrong, presumably
through ignorance of political and medical conditions in fourth-millennium BC
Egypt. On congressmen’s term-lengths, which also follow an Erlang distribu-
tion, they were spot on.

Indeed, one of the most impressive things Dr Griffiths and Dr Tenenbaum
have shown is the range of distributions the mind can cope with. Besides Erlang,
they tested people with examples of normal distributions, power-law distribu-
tions and, in the case of baking cakes, a complex and irregular distribution.
They found that people could cope equally well with all of them, cakes in-
cluded. Indeed, they are so confident of their method that they think it could
be reversed in those cases where the shape of a distribution in the real world is
still a matter of debate.

To prove the point, they actually did such a reversal in the case of telephone-
queue waiting times. Traditionally, these have been assumed to follow a Poisson†

distribution, but some recent research suggests they actually follow a power law.
Analysing the participants’ responses suggests that a power law, indeed, it is.

How the priors are themselves constructed in the mind has yet to be investi-
gated in detail. Obviously they are learned by experience, but the exact process
is not properly understood. Indeed, some people suspect that the parsimony
of Bayesian reasoning leads occasionally to it going spectacularly awry, with
whatever process it is that forms the priors getting further and further off-track
rather than converging on the correct distribution.

That might explain the emergence of superstitious behaviour, with an ac-
cidental correlation or two being misinterpreted by the brain as causal. A fre-
quentist way of doing things would reduce the risk of that happening. But by
the time the frequentist had enough data to draw a conclusion, he might already
be dead.
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The paper referred to is ‘Optimal predictions in everyday cognition’. T L
Griffiths and J R Tenenbaum, Psychological Science 17 (9), 767–773.

†See previous footnote
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