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Abstract

Mathematical statistics uses two major paradigms, conventional (or frequentist), and Bayesian.
Bayesian methods provide a complete paradigm for both statistical inference and decision mak-
ing under uncertainty. Bayesian methods may be derived from an axiomatic system, and hence
provideageneral, coherent methodology. Bayesian methods contain as particular cases many of
the more often used frequentist procedures, solve many of the difficulties faced by conventional
statistical methods, and extend the applicability of statistical methods. In particular, Bayesian
methods make it possible to incorporate scientific hypothesis in the analysis (by means of the
prior distribution) and may be applied to problems whose structure is too complex for conven-
tional methods to be able to handle. The Bayesian paradigm is based on an interpretation of
probability as arational, conditional measure of uncertainty, which closely matches the sense
of theword *probability’ in ordinary language. Statistical inference about a quantity of interest
is described as the modification of the uncertainty about its value in the light of evidence, and
Bayes' theorem precisely specifies how this modification should be made. The special situa-
tion, often met in scientific reporting and public decision making, where the only acceptable
information is that which may be deduced from available documented data, is addressed by
objective Bayesian methods, as a particular case.

1. Introduction

Scientific experimental or observational results generally consist of (possibly many) sets of data
of thegeneral form D = {x;, ..., x,}, wherethe z;'sare somewhat “homogeneous’ (possibly
multidimensional) observations x;. Statistical methods are then typically used to derive con-
clusions on both the nature of the process which has produced those observations, and on the
expected behaviour at future instances of the same process. A central element of any statistical
analysisisthe specification of a probability model which isassumed to describe the mechanism
which has generated the observed data D as afunction of a (possibly multidimensional) param-
eter (vector) w € €2, sometimesreferred to asthe state of nature, about whose value only limited
information (if any) is available. All derived statistical conclusions are obviously conditional
on the assumed probability model.

* Thisisan updated and abridged version of the Chapter “ Bayesian Statistics’ published in the volume Probability
and Satistics (R. Viertl, ed) of the Encyclopedia of Life Support Systems (EOL SS). Oxford, UK: UNESCO, 2003.



J. M. Bernardo. Bayesian Satistics

Unlike most other branches of mathematics, conventional methods of statistical inference suffer
from the lack of an axiomatic basis; as a consequence, their proposed desiderata are often
mutually incompatible, and the analysis of the same data may well lead to incompatible results
when different, apparently intuitive procedures are tried: see Lindley (1972) and by Jaynes
(1976), for many instructive examples. 1n marked contrast, the Bayesian approach to statistical
inference is firmly based on axiomatic foundations which provide a unifying logical structure,
and guarantee the mutual consistency of the methods proposed. Bayesian methods constitute a
complete paradigm to statistical inference, a scientific revolution in Kuhn (1962) sense.

Bayesian statistics only require the mathematics of probability theory and the interpretation
of probability which most closely corresponds to the standard use of this word in everyday
language: itisno accident that some of the moreimportant seminal bookson Bayesian statistics,
such as the works of de Laplace (1812), Jeffreys (1939) and de Finetti (1970) or are actually
entitled “ Probability Theory”. The practical consequences of adopting the Bayesian paradigm
are far reaching. Indeed, Bayesian methods (i) reduce statistical inference to problems in
probability theory, thereby minimizing the need for completely new concepts, and (ii) serveto
discriminate among conventional statistical techniques, by either providing alogical justification
to some (and making explicit the conditions under which they are valid), or proving the logical
inconsistency of others.

The main consequence of these foundations is the mathematical need to describe by means
of probability distributions al uncertainties present in the problem. In particular, unknown
parameters in probability models must have ajoint probability distribution which describes the
available information about their values; this is often regarded as the characteristic element
of a Bayesian approach. Notice that (in sharp contrast to conventional statistics) parameters
are treated as random variables within the Bayesian paradigm. This is not a description of
their variability (parameters are typically fixed unknown quantities) but a description of the
uncertainty about their true values.

Animportant particular case ariseswhen either no relevant prior informationisreadily available,
or that information is subjective and an “objective” analysis is desired, one that is exclusively
based on accepted model assumptionsand well-documented data. Thisisaddressed by reference
analysis which uses information-theoretic concepts to derive appropriate reference posterior
distributions, defined to encapsulate inferential conclusions on the quantities of interest solely
based on the supposed model and the observed data.

In this paper it is assumed that probability distributions may be described through their proba-
bility density functions, and no distinction is made between arandom quantity and the particul ar
values that it may take. Bold italic roman fonts are used for observable random vectors (typ-
icaly data) and bold italic greek fonts are used for unobservable random vectors (typically
parameters); lower case is used for variables and upper calligraphic case for their dominion
sets. Moreover, the standard mathematical convention of referring to functions, say f, and
gz Of & € X, respectively by f(x) and g(x), will be used throughout. Thus, p(@|C') and
p(x | C) respectively represent general probability densities of the random vectors @ € © and
x € X under conditions C, so that p(6|C) > 0, [;p(6|C)dé = 1, and p(x|C) > 0,
[y p(x|C)de = 1. Thisadmittedly imprecise notation will greatly simplify the exposition. If
the random vectors are discrete, these functions naturally become probability mass functions,
and integrals over their values become sums.

Density functions of specific distributions are denoted by appropriate names. Thus, if z isa
random quantity with anormal distribution of mean . and standard deviation o, its probability
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Table 1. Notation for common probability density and probability mass functions

Name Probability Density or Probability Mass Function Parameter (s)

Beta Be(x|a, B) = iy (1 — @), @ € (0,1) a>0,3>0
Binomial Bi(z|n,0) = (1) 6"(1—60)"*, z€{0,...,n} ne{l,2,...},0€(0,1)
Exponential Ex(z]0) =0e %, x>0 6>0
ExpGamma Eg(z|a,B) = (m;giﬂ v x>0 a>0,3>0
Gamma Ga(z |, B) = % 2o le P 1 >0 a>006>0
NegBinomial Nb(z|r,0) = 60" ("t"") (1 —0)*, z € {0,1,...} re{1,2,...},0€(0,1)
Normal N |, 0) = L exp [-4 (52)°]  z e R pER o>0
Poisson Pn(z|\) =e 22 €{0,1,...} A>0

Student Si(z |, 0,0) = F(ng) = 1+ ("”;")2}_(”“)/2, T€R  pER 0>0,a>0

density function will be denoted N(x | i1, o). Table 1 containsthe definitions of the distributions
used in this paper.

Bayesian methods make use of the the concept of intrinsic discrepancy, avery general measure
of the divergence between two probability distributions. The intrinsic discrepancy §{pi, p2}
between two distributions of the random vector x € X described by their density functions
p1(x) and p;(x) isdefined as

. p1(x) p2(x)
d{p1,p2} = min { /Xpl(w) log (@) dx, /ng(:l:) log (@) d:n}. (1)
It may be shown that the intrinsic divergence is symmetric, non-negative (and it is zero if, and
only if, p1(x) = p2(a) amost everywhere); it isisinvariant under one-to-one transformations
of x. Besides, itisadditive: if ¢ = {z1,...,z,} and p;i(x) =[], ¢i(x;), then é{p1,p2} =
nd{q1,q2}. Last, but not least, it is defined even if the support of one of the densitiesis strictly
contained in the support of the other.

If p1(x | 6) and p2(x | X) describe two alternative distributionsfor datax € X', one of whichis
assumed to betrue, their intrinsic discrepancy d{p1, p2 } isthe minimum expected log-likelihood
ratio infavour of the true sampling distribution. For example, theintrinsic discrepancy between
a Binomial distribution with probability function Bi(r | n, ¢) and its Poisson approximation
Pn(r|ng),isd(n,¢) = > . Bi(r|n,¢)log[Bi(r|n,¢)/Pn(r|neg)] (since the second sum
diverges); it is easily verified that §(10,0.05) ~ 0.0007, corresponding to an expected likeli-
hood ratio for the Binomial when it is true of only 1.0007; thus, Bi(r | 10,0.05) is quite well
approximated by Pn(r | 0.5).

Theintrinsic discrepancy servesto define auseful type of convergence; a sequence of densities
{pi(x)}3°, convergesintrinsically to adensity p(x) if (and only if), lim; . 6{p;, p} = 0, i.e,
if (and only if) the sequence of the corresponding intrinsic discrepancies converges to zero.
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The intrinsic discrepancy between two probability families P; = {pi1(x|6,1), 6; € ;) and
Py = {p2(x | 62), 82 € O2) isnaturaly defined as the minimum possible intrinsic discrepancy
between their elements,

0{P2, P2y =~ min  d{pi(x|61), p2(x]62)}. (2)

1€61 0260,

This paper contains a brief summary of the mathematical foundations of Bayesian statistical
methods (Section 2), an overview of the Bayesian paradigm (Section 3), a description of useful
inference summaries, including (point and region) estimation and hypothesis testing (Section
4), an explicit discussion of objective Bayesian methods (Section 5), the detailed analysis of
a simplified case study (Section 6), and a final discussion which includes pointers to further
issues which could not be addressed here (Section 7).

2. Foundations

A central element of the Bayesian paradigm isthe use of probability distributionsto describe al
relevant unknown quantities, interpreting the probability of an event asaconditional measure of
uncertainty, on a [0, 1] scale, about the occurrence of the event in some specific conditions. The
limiting extreme values 0 and 1, which are typically inaccessible in applications, respectively
describe impossibility and certainty of the occurrence of the event. This interpretation of
probability includesand extendsall other probability interpretations. Therearetwo independent
arguments which prove the mathematical inevitability of the use of probability distributions to
describe uncertainties; these are summarized later in this section.

2.1. Probability asa M easure of Conditional Uncertainty

Bayesian statistics uses the word probability in precisely the same sense in which this word
is used in everyday language, as a conditional measure of uncertainty associated with the
occurrence of a particular event, given the available information and the accepted assumptions.
Thus, Pr(E | C') is ameasure of (presumably rational) belief in the occurrence of the event E
under conditions C. It is important to stress that probability is always a function of two
arguments, the event E whose uncertainty is being measured, and the conditions C under which
the measurement takes place; “absolute” probabilities do not exist. In typical applications,
one is interested in the probability of some event E given the available data D, the set of
assumptions A which one is prepared to make about the mechanism which has generated the
data, and therelevant contextual knowledge K" which might beavailable. Thus, Pr(E | D, A, K)
isto beinterpreted as ameasure of (presumably rational) belief in the occurrence of the event F,
givendata D, assumptions A and any other availableknowledge K, asameasure of how “likely”
isthe occurrence of E inthese conditions. Sometimes, but certainly not always, the probability
of an event under given conditions may be associated with the relative frequency of “similar”
events in “similar” conditions. The following examples are intended to illustrate the use of
probability as a conditional measure of uncertainty.

Probabilistic diagnosis. A human population is known to contain 0.2% of people infected by a
particular virus. A person, randomly selected from that population, is subject to atest whichis
from laboratory dataknown to yield positive resultsin 98% of infected peopleand in 1% of non-
infected, so that, if V' denotes the event that a person carries the virus and + denotes a positive
result, Pr(+| V) = 0.98 and Pr(+ | V) = 0.01. Suppose that the result of the test turns out to
be positive. Clearly, one is then interested in Pr(V | +, A, K), the probability that the person
carries the virus, given the positive result, the assumptions A about the probability mechanism
generating the test results, and the available knowledge K of the prevalence of theinfectionin

4



J. M. Bernardo. Bayesian Satistics

the population under study (described here by Pr(V | K) = 0.002). An elementary exercisein
probability algebra, which involves Bayes' theorem in its simplest form (see Section 3), yields
Pr(V |+, A, K) = 0.164. Notice that the four probabilities involved in the problem have the
same interpretation: they areall conditional measures of uncertainty. Besides, Pr(V |+, A, K)
is both a measure of the uncertainty associated with the event that the particular person who
tested positiveisactually infected, and an estimate of the proportion of peoplein that population
(about 16.4%) that would eventually prove to be infected among those which yielded a positive

test. g

Estimation of a proportion. A survey isconducted to estimate the proportion 8 of individualsina
popul ation who share agiven property. A random sample of n elementsisanalyzed,  of which
are found to possess that property. Oneisthen typically interested in using the results from the
sample to establish regions of [0, 1] where the unknown value of # may plausibly be expected
to lie; this information is provided by probabilities of the form Pr(a < 6 < b|r,n, A, K),
a conditional measure of the uncertainty about the event that ¢ belongs to (a,b) given the
information provided by the data (r,n), the assumptions A made on the behaviour of the
mechanism which has generated the data (a random sample of n Bernoulli trials), and any
relevant knowledge K on the values of # which might beavailable. For example, after apolitical
survey in which 720 citizens out of a random sample of 1500 have declared their support to
aparticular political measure, one may conclude that Pr(6 < 0.5]720, 1500, A, K) = 0.933,
indicating a probability of about 93% that a referendum of that issue would be lost. Similarly,
after a screening test for an infection where 100 people have been tested, none of which has
turned out to be infected, one may conclude that Pr(# < 0.01|0,100, A, K) = 0.844, or a

probability of about 84% that the proportion of infected people is smaller than 1%. q

Measurement of a physical constant. A team of scientists, intending to establish the unknown
value of a physical constant y, obtain data D = {zy,...,z,} which are considered to be
measurements of . subject to error. The probabilities of interest are then typically of the form
Pria < p<b|zy,...,zn A, K), the probability that the unknown value of 1 (fixed in nature,
but unknown to the scientists) lieswithinaninterval (a, b) given theinformation provided by the
data D, the assumptions A made on the behaviour of the measurement mechanism, and whatever
knowledge K might be available on the value of the constant ;.. Again, those probabilities are
conditional measures of uncertainty which describe the (necessarily probabilistic) conclusions
of the scientists on the true value of p, given available information and accepted assumptions.
For example, after a classroom experiment to measure the gravitational field with a pendulum,
a student may report (in m/sec?) something like Pr(9.788 < g < 9.829|D, A, K) = 0.95,
meaning that, under accepted knowledge K and assumptions A, the observed data D indicate
that thetruevalueof g lieswithin9.788 and 9.829 with probability 0.95, aconditional uncertainty
measure on a [0,1] scale. This is naturally compatible with the fact that the value of the
gravitational field at the laboratory may well be known with high precision from available
literature or from precise previous experiments, but the student may have been instructed not to
usethat information as part of the accepted knowledge K. Under some conditions, itisalsotrue
that if the same procedure were actually used by many other students with similarly obtained
data sets, their reported intervalswould actually cover the true value of g in approximately 95%
of the cases, thus providing some form of calibration for the student’s probability statement

(see Section 5.2). 4
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Prediction. An experiment is made to count the number r of timesthat an event E takesplacein
each of n replications of awell defined situation; it is observed that £ does take place r; times
in replication 4, and it is desired to forecast the number of times r that £ will take place in a
future, similar situation. Thisis a prediction problem on the value of an observable (discrete)
quantity r, giventheinformation provided by data D, accepted assumptions A on the probability
mechanism which generates the r;’s, and any relevant available knowledge K. Hence, simply
the computation of the probabilities{Pr(r | ry,...,r,, A, K)},forr = 0,1, .. .,isrequired. For
example, the quality assurance engineer of afirm which produces automobile restraint systems
may report something like Pr(r = 0|r; = ... = rjp = 0,4, K) = 0.953, after observing
that the entire production of airbags in each of n = 10 consecutive months has yielded no
complaints from their clients. This should be regarded as a measure, on a [0, 1] scale, of the
conditional uncertainty, given observed data, accepted assumptions and contextual knowledge,
associated with the event that no airbag complaint will come from next month’s production and,
if conditions remain constant, thisis also an estimate of the proportion of months expected to
share this desirable property.

A similar problem may naturally be posed with continuous observables. For instance, after mea-
suring some continuous magnitude in each of n randomly chosen elements within a population,
it may be desired to forecast the proportion of itemsin the whole population whose magnitude
satisfies some precise specifications. As an example, after measuring the breaking strengths
{z1,...,z10} of 10 randomly chosen safety belt webbings to verify whether or not they satisfy
the requirement of remaining above 26 kN, the quality assurance engineer may report something
likePr(z > 26| x1,...,z10, A, K) = 0.9987. Thisshould beregarded asameasure, ona|o0, 1]
scale, of the conditional uncertainty (given observed data, accepted assumptions and contextual
knowledge) associated with the event that arandomly chosen safety belt webbing will support
no less than 26 kN. If production conditions remain constant, it will also be an estimate of the
proportion of safety belts which will conform to this particular specification.

Often, additional information of future observationsis provided by related covariates. For in-
stance, after observing the outputs{y;, . . ., y,,} which correspond to asequence {x, ..., x,}
of different production conditions, it may be desired to forecast the output y which would
correspond to a particular set = of production conditions. For instance, the viscosity of com-
mercial condensed milk may be required to be within specified values a and b; after measuring
the viscosities {y1, . .., y, } which correspond to samples of condensed milk produced under
different physical conditions {x1,...,x,}, production engineers will require probabilities of
the foom Pr(a < y < b|x, (y1,Z1),..., (Yn,®n), A, K). Thisis a conditional measure of
the uncertainty (always given observed data, accepted assumptions and contextual knowledge)
associated with the event that condensed milk produced under conditions x will actually satisfy

the required viscosity specifications. 4

2.2. Statistical Inference and Decision Theory

Decision theory not only provides a precise methodol ogy to deal with decision problems under
uncertainty, but its solid axiomatic basis also provides a powerful reinforcement to the logical
force of the Bayesian approach. We now summarize the basic argument.

A decision problem exists whenever there are two or more possible courses of action; let .A be
the class of possible actions. Moreover, for each a € A, let ©, be the set of relevant events
which may affect the result of choosing a, and let ¢(a, ) € C,, 8 € ©,, be the consequence of
having chosen action a when event 0 takesplace. Theclassof pairs{(0,,C,), a € A} describes
the structure of the decision problem. Without loss of generadlity, it may be assumed that the
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possible actions are mutually exclusive, for otherwise one would work with the appropriate
Cartesian product.

Different sets of principles have been proposed to capture a minimum collection of logical rules
that could sensibly berequired for “rational” decision-making. Theseall consist of axiomswith
a strong intuitive appeal; examples include the transitivity of preferences (if a; > ao given C,
and as > a3 given C, then a; > a3 given C'), and the sure-thing principle (if a; > ay given
C and E, and a; > as given C and E, then a; > ay given C). Notice that these rules are not
intended as a description of actual human decision-making, but as anormative set of principles
to be followed by someone who aspires to achieve coherent decision-making.

There are naturally different options for the set of acceptable principles, but all of them lead
basically to the same conclusions, namely:

(i) Preferences among consequences should be measured with a real-valued bounded utility
function u(c) = u(a, @) which specifies, on some numerical scale, their desirability.

(if) The uncertainty of relevant events should be measured with aset of probability distributions
{(p(@|C,a),0 € ©,),a € A} describing their plausibility given the conditions C' under which
the decision must be taken.

(iii) The desirability of the available actionsis measured by their corresponding expected utility
u(a|C) = / u(a,0)p(@|C,a)dl, ac A (3)
Oa

It is often convenient to work in terms of the non-negative loss function defined by
g(a, 0) = sup{u(a, 9)} o u(aa 0)7 (4)
acA

which directly measures, as a function of 6, the “penalty” for choosing a wrong action. The
relative undesirability of available actionsa € A isthen measured by their expected loss

(a|C) = / (a0, 0)p(0]C,a)dd, ac A. (5)

Notice that, ?ﬁ particular, the argument described above establishes the need to quantify the
uncertainty about all relevant unknown quantities (the actual values of the @’s), and specifies
that this quantification must have the mathematical structure of probability distributions. These
probabilities are conditional on the circumstances C' under which the decision is to be taken,
which typically, but not necessarily, include the results D of some relevant experimental or
observational data.

It hasbeen argued that the devel opment described above (whichisnot questioned when decisions
have to be made) does not apply to problems of statistical inference, where no specific decision
making is envisaged. However, there are two powerful counterarguments to this. Indeed, (i) a
problem of statistical inferenceistypically considered worth analysing becauseit may eventually
help make sensible decisions (as Ramsey (1926) put it, alump of arsenic is poisonous because
it may kill someone, not because it has actually killed someone), and (ii) it has been shown
(Bernardo, 1979a) that stetistical inference on 6 actualy has the mathematical structure of a
decision problem, where the class of aternativesis the functional space

A= {p01D) p01D)>0. [ p(o|D)a0~1} (©

of the conditional probability distributions of € given the data, and the utility function is a
measure of the amount of information about @ which the data may be expected to provide.
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2.3. Exchangeability and Representation Theorem

Available data often take the form of aset {x;,...,x,} of “homogeneous’ (possibly multi-
dimensional) observations, in the precise sense that only their values matter and not the order
in which they appear. Formally, this is captured by the notion of exchangeability. The set
of random vectors {x1,...,x,} is exchangeable if their joint distribution is invariant under
permutations. An infinite sequence {x;} of random vectors is exchangesble if al its finite
subsequences are exchangeable. Notice that, in particular, any random sample from any model
is exchangeable in this sense. The concept of exchangeability, introduced by de Finetti (1937),
iscentral to modern statistical thinking. Indeed, the general representation theoremimpliesthat
if aset of observationsisassumed to be asubset of an exchangeabl e sequence, then it constitutes
a random sample from some probability model {p(z |w),w € Q}, x € X, described in terms
of (labelled by) some parameter vector w; furthermore this parameter w is defined as the limit
(asn — oo) of some function of the observations. Available information about the value of w
in prevailing conditions C' is necessarily described by some probability distribution p(w | C).

For example, in the case of a sequence {z1, z2,...} of dichotomous exchangeable random
quantitiesz; € {0, 1}, deFinetti’s representation theorem—see Lindley and Phillips (1976) for
a simple modern proof—establishes that the joint distribution of (z1,...,z,) has an integral
representation of the form

n—oo N,

1 n
p(arl,...,a:nyC)z/ [T6(1—6)“ip@|C)do, 6= lim (7)
0 =1

wherer = ) z; isthenumber of positivetrials. Thisisnothing but thejoint distribution of aset
of (conditionally) independent Bernoulli trials with parameter ¢, over which some probability
distribution p(6 | C) is therefore proven to exist. More generally, for sequences of arbitrary
random quantities {x;, x2, . ..}, exchangeability leads to integral representations of the form

(x1,...,2,|C) = (i |w)p(w]|C) dw, (8)
p(a /Qi]:[lp p

where {p(x |w),w € Q} denotes some probability model, w is the limit asn — oo of some
function f (x4, ..., x,) of theobservations, and p(w | C') issome probability distribution over (2.
This formulation includes “nonparametric” (distribution free) modelling, where w may index,
for instance, all continuous probability distributions on X. Notice that p(w | C') does not
describe a possible variability of w (since w will typically be a fixed unknown vector), but a
description on the uncertainty associated with its actual value.

Under appropriate conditioning, exchangeability is a very genera assumption, a powerful ex-
tension of thetraditional concept of arandomsample. Indeed, many statistical analysesdirectly
assumedata (or subsets of the data) to be arandom sample of conditionally independent observa-
tionsfrom some probability model, sothat p(x1, . .., x, |w) = [ [/~ p(x; | w); butany random
sampleisexchangeable, since[[;"_; p(«; | w) isobviously invariant under permutations. Notice
that the observations in a random sample are only independent conditional on the parameter
value w; as nicely put by Lindley (1972), the mantra that the observations {x;,...,x,} ina
random sample are independent is ridiculous when they are used to infer x,, ;. Notice also
that, under exchangeability, the general representation theorem provides an existence theorem
for a probability distribution p(w | C') on the parameter space 2, and that this is an argument
which only depends on mathematical probability theory.

Another important consequence of exchangeability isthat it provides aformal definition of the
parameter w which labelsthe model asthelimit, asn — oo, of somefunction f(x1, ..., x,) of

8
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the observations; the function f obviously depends both on the assumed model and the chosen
parametrization. For instance, in the case of a sequence of Bernoulli trials, the parameter 6 is
defined as the limit, asn — oo, of the relative frequency r/n. It follows that, under exchange-
ability, the sentence “the true value of w” has a well-defined meaning, if only asymptotically
verifiable. Moreover, if two different models have parameters which are functionally related by
their definition, then the corresponding posterior distributions may be meaningfully compared,
for they refer to functionally related quantities. For instance, if afinite subset {x1, ..., x,} of
an exchangeable sequence of integer observations is assumed to be a random sample from a
Poisson distribution Po(x | A), so that E[x | A\] = A, then )\ is defined as lim,,_.»{Z, }, where
T, = )_; x;/n; similarly, if for some fixed non-zero integer r, the same data are assumed to be
arandom sample for anegative binomial Nb(x | r, 0), sothat E[x |0, 7] = (1 — 0) /0, thenf is
defined as lim,, .o {7/(Z, + r)}. It followsthat § = r/(\ + r) and, hence, § and r/(\ + r)
may be treated as the same (unknown) quantity whenever this might be needed as, for example,
when comparing the relative merits of these aternative probability models.

3. TheBayesian Paradigm

Thestatistical analysisof some observed data D typically beginswith someinformal descriptive
evaluation, which is used to suggest a tentative, formal probability model {p(D |w), w € Q}
assumed to represent, for some (unknown) value of w, the probabilistic mechanism which has
generated the observed data D. The arguments outlined in Section 2 establish the logical need
to assess a prior probability distribution p(w | K') over the parameter space 2, describing the
availableknowledge K about thevalueof w prior to thedatabeing observed. 1t thenfollowsfrom
standard probability theory that, if the probability model is correct, all available information
about the value of w after the data D have been observed is contained in the corresponding
posterior distribution whose probability density, p(w | D, A, K), isimmediately obtained from
Bayes theorem,
p(D|w)p(w | K)

P DAL = D ) ples | ) deo )
where A stands for the assumptions made on the probability model. It isthis systematic use of
Bayes' theorem to incorporate the information provided by the data that justifies the adjective
Bayesian by which the paradigm is usually known. It isobvious from Bayes' theorem that any
value of w with zero prior density will have zero posterior density. Thus, it istypically assumed
(by appropriate restriction, if necessary, of the parameter space (2) that prior distributions are
strictly positive; as Savage (1954) put it, keep the mind open, or at least gjar. To simplify the
presentation, the accepted assumptions A and the available knowledge K are often omitted from
the notation, but the fact that all statements about w given D are also conditional to A and K
should always be kept in mind.

Example 1. (Bayesian inference with a finite parameter space). Let p(D | 6),0 € {61,...,0},
be the probability mechanism which isassumed to have generated the observed data D, so that 6
may only take afinite number of values. Using the finite form of Bayes' theorem, and omitting
the prevailing conditions from the notation, the posterior probability of 0; after data D have
been observed is

p(D|0;) Pr(6;)

D) = S D6 ()

i=1,...,m. (10)
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For any prior distribution p(0) = {Pr(6,),...,Pr(6,,)} describing available knowledge about
the value of 6, Pr(6; | D) measures how likely should 6; be judged, given both the initial
knowledge described by the prior distribution, and the information provided by the data D.

An important, frequent application of thissimple techniqueis provided by probabilistic diagno-
sis. For example, consider the simple situation where a particul ar test designed to detect avirus
is known from laboratory research to give a positive result in 98% of infected peopleandin 1%
of non-infected. Then, the posterior probability that a person who tested positive isinfected is
givenby Pr(V | +) = (0.98p)/{0.98 p + 0.01 (1 — p)} asafunction of p = Pr(V), the prior
probability of a person being infected (the prevalence of the infection in the population under
study). Figure 1 shows Pr(V | +) asafunction of Pr(V).

1
Pr(V|+)
0.8
0.6
0.4
0.2
0.2 0.4 06 08 i )

Figure 1. Posterior probability of infection Pr(V" | +) given a positive test, as a function of the prior probability
of infection Pr(V).

Asonewould expect, the posterior probability isonly zero if the prior probability iszero (so that
itisknown that the population isfree of infection) and itisonly oneif the prior probability isone
(sothat it isknown that the populationisuniversally infected). Noticethat if theinfectionisrare,
then the posterior probability of arandomly chosen person being infected will be relatively low
even if thetest ispositive. Indeed, for say Pr(V') = 0.002, onefindsPr(V | 4+) = 0.164, so that
inapopulation where only 0.2% of individualsareinfected, only 16.4% of thosetesting positive
within a random sample will actually prove to be infected: most positives would actually be

false positives. <

In this section, we describe in some detail the learning process described by Bayes' theorem,
discuss its implementation in the presence of nuisance parameters, show how it can be used to
forecast the value of future observations, and analyse its large sample behaviour.

3.1. TheLearning Process

Inthe Bayesian paradigm, the process of |earning from thedatais systematically implemented by
making use of Bayes' theorem to combine the available prior information with the information
provided by the data to produce the required posterior distribution. Computation of posterior
densitiesis often facilitated by noting that Bayes theorem may be simply expressed as

p(w|D) x p(D|w)p(w), (11)
(where o standsfor ‘ proportional to’ and where, for simplicity, the accepted assumptions A and
the available knowledge K have been omitted from the notation), since the missing proportion-

ality constant [ [, p(D | w) p(w) dw] ! may always be deduced from the fact that p(w | D), a
probability density, must integrateto one. Hence, to identify the form of aposterior distribution

10
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it suffices to identify a kernel of the corresponding probability density, that is a function k(w)
such that p(w | D) = ¢(D) k(w) for some ¢(D) which does not involve w. In the examples
which follow, this technique will often be used.

An improper prior function is defined as a positive function 7(w) such that [, 7(w) dw is
not finite. Equation (9), the formal expression of Bayes theorem, remains technically valid
if p(w) isreplaced by an improper prior function 7(w) provided the proportionality constant
exists, thusleading to awell defined proper posterior density 7w(w | D) o« p(D | w)7w(w). Itwill
later be established (Section 5) that Bayes' theorem also remains philosophically valid if p(w)
is replaced by an appropriately chosen reference “noninformative” (typically improper) prior
function 7(w).

Considered as a function of w, l[(w,D) = p(D|w) is often referred to as the likelihood
function. Thus, Bayes' theoremissimply expressed in words by the statement that the posterior
isproportional to the likelihood timesthe prior. It follows from equation (9) that, provided the
same prior p(w) is used, two different data sets D, and D», with possibly different probability
models pi (D | w) and pa( D2 |w) but yielding proportional likelihood functions, will produce
identical posterior distributionsfor w. Thisimmediate consequence of Bayestheorem has been
proposed as aprinciple on itsown, thelikelihood principle, and it is seen by many asan obvious
requirement for reasonable statistical inference. In particular, for any given prior p(w), the
posterior distribution does not depend on the set of possible data values, or the outcome space.
Notice, however, that the likelihood principle only applies to inferences about the parameter
vector w once the data have been obtained. Consideration of the outcome space is essential,
for instance, in model criticism, in the design of experiments, in the derivation of predictive
distributions, or (see Section 5) in the construction of objective Bayesian procedures.

Naturally, the terms prior and posterior are only relative to a particular set of data. As one
would expect from the coherence induced by probability theory, if data D = {x1,...,x,} are
sequentially presented, thefinal result will be the samewhether dataare globally or sequentially
processed. Indeed, p(w | x1, ..., xi+1) X p(@it1 |w) p(w |21, ..., x;), fori=1,...,n—1,
so that the “ posterior” at a given stage becomes the “prior” at the next.

In most situations, the posterior distribution is “sharper” than the prior so that, in most cases,
the density p(w |1, ..., x;+1) will be more concentrated around the true value of w than
p(w|xy,...,x;). However, thisis not always the case: occasionally, a “surprising” obser-
vation will increase, rather than decrease, the uncertainty about the value of w. For instance,
in probabilistic diagnosis, a sharp posterior probability distribution (over the possible causes
{wi,...,wy} of asyndrome) describing, a“clear” diagnosis of disease w; (that is, a posterior
with alarge probability for w;) would typically update to a less concentrated posterior proba-
bility distribution over {wy, ...,w;} if anew clinical analysisyielded datawhich were unlikely
under w;.

For a given probability model, one may find that some particular function of the datat =
t(D) is asufficient statistic in the sense that, given the model, ¢(D) contains al information
about w which isavailablein D. Formaly, t = ¢(D) is sufficient if (and only if) there exist
nonnegative functions f and g such that the likelihood function may be factorized in the form
p(D|w) = f(w,t)g(D). A sufficient statistic always exists, for t(D) = D is obviously
sufficient; however, a much simpler sufficient statistic, with a fixed dimensionality which is
independent of the sample size, often exists. In fact thisis known to be the case whenever the
probability model belongs to the generalized exponential family, which includes many of the
more frequently used probability models (see e.g., Bernardo and Smith, 1994, Ch 3, for details
and further references). Itiseasily established that if ¢ is sufficient, the posterior distribution of

11
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w only depends on the data D through ¢(D), and may be directly computed intermsof p(t | w),
so that, p(w | D) = p(w | t) o p(t|w) p(w).

Naturally, for fixed data and model assumptions, different priors lead to different posteriors.
Indeed, Bayes theorem may be described as a data-driven probability transformation machine
which maps prior distributions (describing prior knowledge) into posterior distributions (repre-
senting combined prior and data knowledge). It isimportant to analyse whether or not sensible
changes in the prior would induce noticeable changes in the posterior. Posterior distributions
based on reference” noninformative” priorsplay acentral rolein thissensitivity analysiscontext.
Investigation of the sensitivity of the posterior to changesin the prior isan important ingredient
of the comprehensive analysis of the sensitivity of the final resultsto all accepted assumptions
which any responsible statistical study should contain.

Example 2. (Inference on a binomial parameter). If the data D consist of n Bernoulli observa-
tions with parameter # which contain r positivetrias, then p(D |0, n) = 6"(1 — 0)"", so that
t(D) = {r,n} issufficient. Suppose that prior knowledge about ¢ is described by a Betadistri-
bution Be(d | o, 3), so that p(# | o, 3) o< 621 (1 — §)P~1. Using Bayes' theorem, the posterior
density of @ isp(0 |r,n,a, B) o 67 (1 — )" 011 — 0)0~ o grTo1(1 — g)" "+~ the
Betadistribution Be(0 | r + o, n — r + [3).

Suppose, for example, that in the light of precedent surveys, available information on the
proportion 6 of citizens who would vote for a particular political measure in a referendum is
described by a Beta distribution Be(6 | 50, 50), so that it is judged to be equally likely that the
referendum would be won or lost, and it is judged that the probability that either side wins less
than 60% of the voteis 0.95.

p(0|r,n,a, ) = Be(d]730,790)

30
25
20
15
10 p(0]a, B) = Be(6] 50, 50)

5

0.35 0.4 0.45 0.5 0.55 0.6 0.65

Figure 2. Prior and posterior densities of the proportion 6 of citizens that would vote in favour of a referendum.

A random survey of size 1500 isthen conducted, where only 720 citizens declareto bein favour
of the proposed measure. Using the results above, the corresponding posterior distribution
is then Be(0 | 770,830). These prior and posterior densities are plotted in Figure 2; it may
be appreciated that, as one would expect, the effect of the data is to drasticaly reduce the
initial uncertainty on the value of 8 and, hence, on the referendum outcome. More precisely,
Pr(6 < 0.5|720,1500, H, K') = 0.933 (shaded region in Figure 2) so that, after theinformation
from the survey has been included, the probability that the referendum will be lost should be
judged to be about 93%.

It may be shown (see Section 5) that absence of initial information about the value of 6 may be
appropriately decribed by the prior Be(6 | 1/2,1/2). The corresponding posterior distribution,
Be(f | 720.5,780.5), is very similar to the posterior Be(6 | 770, 830) which incorporates the
available prior information; for instance, the probability that the referendum would be lost is

12
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now Pr(6 < 0.5]720,1500, H) = 0.939, quite similar to the value obtained before. This
illustrates a general phenomenon: with enough data, the results are qualitatively independent

of the prior information. 4

The genera situation where the vector of interest is not the whole parameter vector w, but
some function @ = 0(w) of possibly lower dimension than w, will now be considered. Let D
be some observed data, let {p(D | w),w € Q} be aprobability model assumed to describe the
probability mechanism which hasgenerated D, let p(w) be aprobability distribution describing
any available information on the value of w, andlet & = 6(w) € © beafunction of the original
parameters over whose val ue inferences based on the data D arerequired. Any valid conclusion
on the value of the vector of interest @ will then be contained in its posterior probability
distributionp(@ | D) whichisconditional onthe observed data D and will naturally also depend,
although not explicitly shown in the notation, on the assumed model {p(D |w),w € 2}, and
on the available prior information encapsulated by p(w). The required posterior distribution
p(0 | D)isfound by standard useof probability calculus. Indeed, by Bayes theorem, p(w | D)
p(D | w) p(w). Moreover, let A = A(w) € A besome other function of the original parameters
such that ¢ = {6, A} is a one-to-one transformation of w, and let J(w) = (9 /0w) be the
corresponding Jacobian matrix. Naturally, the introduction of X is not necessary if 6(w) isa
one-to-one transformation of w. Using standard change-of-variabl e probability techniques, the
posterior density of v is
p(w|D)

p(¥|D) =p(6,A| D) = | | J(w)] ]w:w@b)

and the required posterior of @ isthe appropriate marginal density, obtained by integration over
the nuisance parameter A,

p(61D) = [ p(6.x|D)ax (13)

Notice that elimination of unwanted nuisance parameters, a simple integration within the
Bayesian paradigm is, however, a difficult (often polemic) problem for conventional statistics.

Sometimes, the range of possible values of w is effectively restricted by contextual considera-
tions. If w isknownto belongto 2. C €2, theprior distribution isonly positivein 2. and, using
Bayes theorem, it isimmediately found that the restricted posterior is

D
p(w\D,wEQC):M, w € Q, (14)

Jo, p(w|D)
and obvioudly vanishesif w ¢ .. Thus, toincorporate arestriction on the possiblevalues of the
parameters, it sufficesto renormalize the unrestricted posterior distributionto the set Q2. C 2 of
parameter values which satisfy the required condition. Incorporation of known constraints on
the parameter values, a simple renormalization within the Bayesian paradigm, is another very
difficult problem for conventional statistics.

(12)

Example 3. (Inference on normal parameters). Let D = {z,... x,} be a random sample
from anormal distribution N(z | i, o). The corresponding likelihood function is immediately
found to be proportional to o= exp[-n{s® + (F — u)?}/(20?)], with nz = >, x;, and
ns? = > .(x; — T)%. It may be shown (see Section 5) that absence of initial information on
the value of both ;. and o may formally be described by ajoint prior function which is uniform
in both 1 and log (o), that is, by the (improper) prior function p(u, o) = o~1. Using Bayes
theorem, the corresponding joint posterior is

p(p; 0| D) oc o~ "V exp[—n{s® + (T — p)*}/(20%)]. (15)
13
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Thus, using the Gammaintegral in terms of A = o~ to integrate out o,

p(| D) o / o exp | = Dl + (7 — )| do o< [P+ (@ - w TV (16)

0
which is recognized as a kernel of the Student density St(u |z, s/v/n — 1,n — 1). Similarly,
integrating out ,

o n ns?

p(o| D) x /_Oo o~ ") exp [— @[32 + (T — u)Q]] dp o< o " exp {—@] : (17)
Changing variables to the precision A = o2 resultsin p(A | D) oc A"=3)/2¢75°/2 akernel of
the Gammadensity Ga(\ | (n —1)/2,ns?/2). Intermsof the standard deviation o thisbecomes
p(o| D) =p(\| D)|0N/00| = 20 3Ga(c 2 | (n—1)/2,ns?/2), asquare-rootinverted gamma
density.
A frequent exampl e of thisscenariois provided by laboratory measurements made in conditions
where central limit conditions apply, so that (assuming no experimental bias) those measure-
ments may be treated as a random sample from a normal distribution centred at the quantity p
which is being measured, and with some (unknown) standard deviation o. Suppose, for ex-
ample, that in an elementary physics classroom experiment to measure the gravitational field g
with apendulum, astudent has obtained n = 20 measurements of g yielding (in m/sec?) amean
T = 9.8087, and astandard deviation s = 0.0428. Using no other information, the correspond-
ing posterior distribution is p(g| D) = St(g]9.8087,0.0098, 19) represented in Figure 3(a).
In particular, Pr(9.788 < ¢g < 9.829| D) = 0.95, so that, with the information provided by
this experiment, the gravitational field at the location of the laboratory may be expected to lie
between 9.788 and 9.829 with probability 0.95.

@ 40
p(p| T, s,m)
30
20

10

9.75 9.8 0.85 9.9 7
()

40 p(n|T,s,n,9 € G,)
30
20

10

977 9.75 0.8 9.85 9.9 Y

Figure 3. Posterior density p(g | m, s, n) of the value ¢ of the gravitational field, given n = 20 normal measure-
mentswith mean m = 9.8087 and standard deviation s = 0.0428, (&) with no additional information, and (b) with
g restricted to G, = {g; 9.7803 < g < 9.8322}. Shaded areas represent 95%-credible regions of g.

Formally, the posterior distribution of ¢ should berestricted to ¢ > 0; however, asimmediately
obvious from Figure 3a, this would not have any appreciable effect, due to the fact that the
likelihood function is actually concentrated on positive g values.

14
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Suppose now that the student is further instructed to incorporate into the analysis the fact that
the value of the gravitational field ¢ at the laboratory is known to lie between 9.7803 m/sec?
(average value at the Equator) and 9.8322 m/sec? (average value at the poles). The updated
posterior distribution will the be

St(g|m,s/v/n—1,n) ’
Jyec, St(g|m, s/v/n—1,n)

represented in Figure 3(b), where G. = {g; 9.7803 < ¢g < 9.8322}. One-dimensiona nu-
merical integration may be used to verify that Pr(g > 9.792| D,g € G.) = 0.95. Moreover,
if inferences about the standard deviation o of the measurement procedure are also requested,
the corresponding posterior distribution is found to be p(o | D) = 203Ga(c2|9.5,0.0183).
Thishasamean E[o | D] = 0.0458 and yields Pr(0.0334 < o < 0.0642 | D) = 0.95.

p(g | Dﬂg 6 GC) - g E G(j, (18)

N

3.2. Predictive Distributions

Let D = {xy,...,x,}, x; € X, beaset of exchangeable observations, and consider now a
situation where it is desired to predict the value of a future observation x € X generated by
the same random mechanism that has generated the data D. It follows from the foundations
arguments discussed in Section 2 that the solution to this prediction problem is simply encapsu-
lated by the predictive distribution p(x | D) describing the uncertainty on the value that « will
take, given the information provided by D and any other available knowledge. Suppose that
contextual information suggests the assumption that data D may be considered to be arandom
sample from a distribution in the family {p(z |w),w € Q}, and let p(w) be a prior distribu-
tion describing available information on the value of w. Since p(x |w, D) = p(x | w), it then
follows from standard probability theory that p(x | D) = [, p(x |w) p(w | D) dw, whichis an
average of the probability distributions of = conditional on the (unknown) value of w, weighted
with the posterior distribution of w given D.

If the assumptions on the probability model are correct, the posterior predictive distribution
p(x | D) will converge, as the sample size increases, to the distribution p(x | w) which has
generated the data. Indeed, the best technique to assess the quality of the inferences about w
encapsulatedin p(w | D) isto check against the observed datathe predictivedistribution p(x | D)
generated by p(w | D).

Example 4. (Prediction in a Poisson process). Let D = {ry,...,r,} bearandom sample from
a Poisson distribution Pn(r | \) with parameter )\, sothat p(D | \) o< Ate ™", wheret = 3" r;.
It may be shown (see Section 5) that absence of initial information on the value of A may be
formally described by the (improper) prior function p(\) = A~1/2_ Using Bayes' theorem, the
corresponding posterior is

p<)\ ’ D) x )\tef)\n )\71/2 x )\1571/267)\n7 (19>
the kernel of aGammadensity Ga(\ |, ¢+ 1/2,n), withmean (¢t + 1/2) /n. The corresponding
predictive distribution is the Poisson-Gamma mixture

n 21 T(r4+t+1/2)
(t41/2) r! (1 4 n)rtt+1/2
Suppose, for example, that in afirm producing automabile restraint systems, the entire produc-
tion in each of 10 consecutive months has yielded no complaint from their clients. With no
additional information on the average number A of complaints per month, the quality assurance

department of the firm may report that the probabilities that » complaints will be received in
the next month of production are given by equation (20), with¢ = 0 and n = 10. In particular,

p(r|D):/OOOPn(T|)\)Ga(M,t—|—%,n)d)\:F (20)
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p(r=0|D) =0.953, p(r = 1| D) = 0.043, and p(r = 2| D) = 0.003. Many other situa-
tions may be described with the same model. For instance, if meteorological conditionsremain
smilarinagivenarea, p(r = 0| D) = 0.953 would describe the chances of no flash flood next
year, given 10 years without flash floods in the area. 4
Example 5. (Prediction in a Normal process). Consider now prediction of a continuous vari-
able. Let D = {z1,...,z,} bearandom sample from a normal distribution N (x| 4, 0). As
mentioned in Example 3, absence of initial information on the values of both 1. and o isformally
described by the improper prior function p(i, o) = o1, and this leads to the joint posterior
density (15). The corresponding (posterior) predictive distribution is

1
p(x| D) = / / N(x|p,0)p(pu,o|D)dudo = St(x| T, s Ztl,n—l). (21)
If 11 isknown to be positive, the appropriate prior function will be the restricted function
_Jo b ifu>0
pp. ) {0 otherwise. (22)

However, theresultin equation (21) will still hold, provided thelikelihood function p(D | 4, o) is
concentrated on positive 1, values. Suppose, for example, that in the firm producing automobile
restraint systems, the observed breaking strengths of n = 10 randomly chosen safety belt
webbingshavemeanz = 28.011 kN and standard deviation s = 0.443 kN, and that the relevant
engineering specification requires breaking strengths to be larger than 26 kN. If data may truly
be assumed to be a random sample from a normal distribution, the likelihood function is only
appreciable for positive ;. values, and only the information provided by this small sampleisto
be used, then the quality engineer may claim that the probability that a safety belt randomly
chosen from the same batch as the sample tested would satisfy the required specification is
Pr(z > 26| D) = 0.9987. Besides, if production conditions remain constant, 99.87% of the

safety belt webbings may be expected to have acceptable breaking strengths. 4

3.3. Asymptotic Behaviour

The behaviour of posterior distributions when the sample size is large is now considered. This
isimportant for, at least, two different reasons: (i) asymptotic results provide useful first-order
approximations when actual samples are relatively large, and (ii) objective Bayesian methods
typically depend on the asymptotic properties of the assumed model. Let D = {x1,...,x,},
x € X, be arandom sample of size n from {p(z|w),w € Q}. It may be shown that, as
n — oo, the posterior distribution p(w | D) of adiscrete parameter w typically convergesto a
degenerate distribution which gives probability one to the true value of w, and that the posterior
distribution of a continuous parameter w typically converges to a normal distribution centred
at its maximum likelihood estimate w (MLE), with a variance matrix which decreases with n
asl/n.

Consider first the situation where Q@ = {w1, wo, ...} consists of a countable (possibly infinite)
set of values, such that the probability model which correspondsto thetrue parameter valuew; is
distinguishablefromthe othersin the sensethat theintrinsic discrepancy 6 {p(x | w;), p(x | w¢)}
of each of the p(x | w;) fromp(x | w;) isstrictly positive. Taking logarithmsin Bayes' theorem,
defining z; = log[p(x; | wi)/p(x; |w)], 7 =1,...,n, and using the strong law of large num-
bersonthen conditionally independent and identically distributed random quantitieszy, . . ., z,,
it may be shown that

nli_}n;()p(wﬁwl,...,a},,/) =1, lim p(w;|®1,...,2,) =0, i#t. (23)

n—oo
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Thus, under appropriate regularity conditions, the posterior probability of the true parameter
value converges to one as the sample size grows.

Consider now the situation where w is a k-dimensional continuous parameter. Expressing
Bayes' theorem as p(w |1, ..., ®,) o exp{log[p(w)] + >77_; log[p(z; |w)]}, expanding
>_jlog[p(z; | w)] about its maximum (the MLE ), and assuming regularity conditions (to
ensure that terms of order higher than quadratic may be ignored and that the sum of the terms
from the likelihood will dominate the term from the prior) it is found that the posterior density
of w isthe approximate k-variate normal

n

2 0} | w
pw @1, @) ~ N{@, S(D, @)}, s—l(D,w):<—Z‘91§Egé' ”). (24)

A simpler, but somewhat poorer, approximation may be obtained by using the strong law of
large numbers on the sums in (24) to establish that S~1(D, &) ~ n F(&), where F(w) is
Fisher’sinformation matrix, with general element

o) O loglp(e | )]

Fyw) = - [ plele) ZEE e (25)
o that

Pl @, m) = N | 0,07 F(@)), (20)

Thus, under appropriate regularity conditions, the posterior probability density of the parameter
vector w approaches, as the sample size grows, a multivariate normal density centred at the
MLE &, with avariance matrix which decreases with n asn ! .

Example 2. (Inference on a binomial parameter, continued). Let D = (x1,...,z,) con-
sist of n independent Bernoulli trials with parameter 6, so that p(D |0,n) = 6"(1 — )" ".
This likelihood function is maximized at # = r/n, and Fisher's information function is
F(0) = 671 — #)~!. Thus, using the results above, the posterior distribution of 6 will
be the approximate normal,

p(0|r,n) ~ N(©|6,5(0)/v/n), s(0)={0(1—06)} (27)
with mean § = r/n and variance §(1 — ) /n. Thiswill provide a reasonable approximation
to the exact posterior if (i) the prior p(0) isrelatively “flat” in the region where the likelihood
function matters, and (ii) both » and n are moderately large. If, say, n = 1500 and r = 720,
this leads to p(6 | D) ~ N(6]0.480,0.013), and to Pr(6 > 0.5| D) ~ 0.940, which may be
compared with theexact value Pr(¢ > 0.5| D) = 0.933 obtained from the posterior distribution
which corresponds to the prior Be(f | 50, 50). 4
It follows from the joint posterior asymptotic behaviour of w and from the properties of the
multivariate normal distribution that, if the parameter vector is decomposed into w = (6, \),
and Fisher’sinformation matrix is correspondingly partitioned, so that

rw = ron = (063 FUGY) e

and
_ -1 o 599 9,)\) Sg)\ 0,)\
sox=rlen= (8103 63 29
then the marginal posterior distribution of 8 will be
p(0|D) ~N{0|8, n"" Spy(8,\)}, (30)
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while the conditional posterior distribution of A given 6 will be
p(X]0,D) = N{X|X = F1(0,\)F(6,)) (8 —8), n ' F11(0,\)}. (31)

Notice that F;Al = S\, if (and only if) F isblock diagonal, i.e, if (and only if) & and \ are
asymptotically independent.

Example 3. (Inference on normal parameters, continued). Let D = (zy,...,x,) be aran-
dom sample from a normal distribution N(z | i, o). The corresponding likelihood function
p(D |, o) ismaximized at (f1,6) = (Z, s), and Fisher’s information matrix is diagonal, with
F,,, = o2, Hence, the posterior distribution of 1 is approximately N(u |z, s/v/n); this may
be compared with the exact result p(p. | D) = St(u |z, s/v/n — 1,n — 1) obtained previously

under the assumption of no prior knowledge. q

4. |Inference Summaries

From a Bayesian viewpoint, the final outcome of a problem of inference about any unknown
guantity is nothing but the corresponding posterior distribution. Thus, given some data D and
conditions C, all that can be said about any function w of the parameters which govern the
model is contained in the posterior distribution p(w | D, C), and all that can be said about
some function y of future observations from the same model is contained in its posterior
predictive distribution p(y | D, C'). As mentioned before, Bayesian inference may technically
be described as a decision problem where the space of available actions is the class of those
posterior probability distributions of the quantity of interest which are compatible with accepted
assumptions.

However, to make it easier for the user to assimilate the appropriate conclusions, it is often
convenient to summarize the information contained in the posterior distribution by (i) providing
values of the quantity of interest which, in the light of the data, are likely to be “close” to its
true value and by (ii) measuring the compatibility of the results with hypothetical values of the
quantity of interest which might have been suggested in the context of theinvestigation. In this
section, those Bayesian counterparts of traditional (point or region) estimation and hypothesis
testing problems are briefly considered.

4.1. Estimation

In one or two dimensions, a graph of the posterior probability density of the quantity of in-
terest (or the probability mass function in the discrete case) immediately conveys an intuitive,
“impressionist” summary of the main conclusions which may possibly be drawn on its value.
Indeed, thisisgreatly appreciated by users, and may be quoted as an important asset of Bayesian
methods. From a plot of its posterior density, the region where (given the data) a univariate
quantity of interest islikely tolieiseasily distinguished. For instance, all important conclusions
about the value of the gravitational field in Example 3 are qualitatively available from Figure 3.
However, this does not easily extend to more than two dimensions and, besides, quantitative
conclusions(inasimpler formthanthat provided by the mathematical expression of the posterior
distribution) are often required.

Point estimation. Let D be the available data, which are assumed to have been generated by a
probability model {p(D |w),w € Q}, andlet 8 = O(w) € O be the quantity of interest. A
point estimator of  is some function of the data @ = (D) which could be regarded as an
appropriate proxy for the actual, unknown value of 8. Formally, to choose a point estimate

for @ is a decision problem, where the action space is the class © of possible 8 values. From

18



J. M. Bernardo. Bayesian Satistics

a decision-theoretic perspective, to choose a point estimate 6 of some quantity @ is a decision
to act as though 6 were 6, not to assert something about the value of 6 (although desire to
assert something simple may well be the reason to obtain an estimate). As prescribed by the
foundations of decision theory (Section 2.2), to solve this decision problem it is necessary to
specify aloss function 6(0 6) measuring the consequences of acting as if the true value of the
quantity of interest were 8, when it is actually 6. The expected posterior lossif 6 were used is

(8| D] = /@ ((8,8)p(6| D) do, (32)

and the corresponding Bayes estimator 6" is that function of the data, 8* = 6*(D), which
minimizes this expectation.

Example 6. (Conventional Bayesestimators). For any given model and data, the Bayes estimator
obviously depends on the chosen lossfunction. Thelossfunction iscontext specific, and should
be chosen in terms of the anticipated uses of the estimate; however, a number of conventional
loss functions have been suggested for those situations where no particular uses are envisaged.
These loss functions produce estimates which may be regarded as ssmple descriptions of the
location of the posterior distribution. For example, if the loss function is quadratic, so that
0(0,0) = (6 — 0)'(6 — 0), then the Bayes estimator is the posterior mean 8% = E[0| D],
assuming that the mean exists. Similarly, if the loss function is a zero-one function, so that
0(0,60) = 0if 6 belongsto aball or radius e centred in @ and ¢(0,0) = 1 otherwise, then the
Bayesestimator 8" tendsto the posterior mode asthe ball radius e tendsto zero, assuming that a
unique mode exists. If 4 isunivariate and the loss function islinear, sothat £(6,6) = ¢;(0 — 0)
if > 0,and ¢(6,0) = c2(0 — ) otherwise, then the Bayes estimator is the posterior quantile
of order ca/(c1 + ¢2), sothat Pr[f < 6*] = c2/(c1 + ¢2). In particular, if ¢; = 2, the Bayes
estimator isthe posterior median. The results derived for linear loss functions clearly illustrate
the fact that any possible parameter value may turn out be the Bayes estimator: it all depends
on the loss function describing the consequences of the anticipated uses of the estimate.

Example 7. (Intrinsic estimation). Conventional loss functions are typically non-invariant under
reparametrization, so that the Bayes estimator ¢* of a one-to-one transformation ¢ = ¢(0)
of the original parameter 6 is not necessarily ¢(6*) (the univariate posterior median, which
isinvariant, is an interesting exception). Moreover, conventional loss functions focus on the
“distance” between the estimate 6 and the true value 6, rather then on the “distance” between
the probability modelsthey label. Intrinsic losses directly focus on how different the probability
model p(D | 6, \) is from its closest approximation within the family {p(D |0, \;), A\; € A},
and typically produce invariant solutions. An attractive example usesthe intrinsic discrepancy,
defined in Section 1. Thus, theintrinsicloss3{0, 8} sufferedif 0 isestimated by 6 isdefined as
the minimum | ogarithmic divergence between aprobability model labelled by 8 and aprobability
model labelled by 8. When there are no nuisance parameters, thisis given by

6{6,6} = min{k(0|6), k(06), (33)
where

B 1. P(E]6)
£0:10) = [ oe]0,) 1o 2 at (34)

andt = t(D) € T isany sufficient statistic (which may well be the whole data set D). The
definition is easily extended to problems with nuisance parameters; in this case,

5(0, (0.X)} = uin 6{(8, A1), (0. X)) (35)
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measures theintrinsic discrepancy fromp(t | 6, A) of itsclosest approximationwith @ = 6, and
the loss function now depends on the compl ete parameter vector (6, A). Although not explicitly
shown in the notation, theintrinsic discrepancy function typically depends on the samplesizen;
indeed, when the dataconsist of arandomsample D = {x, . .., «,,} from somemodel p(x | )
then the discrepancy associated with the full model is simply n times the discrepancy which
corresponds to a single observation. The intrinsic discrepancy is a symmetric, non-negative
loss function with adirect interpretation in information-theoreti c terms as the minimum amount
of information which is expected to be necessary to distinguish between the model p(D |0, \)
and its closest approximation within the class {p(D | 8, A;), \; € A}. Moreover, it isinvariant
under one-to-one reparametrization of the parameter of interest 8, and does not depend on the
choice of the nuisance parameter A. The (posterior) expected intrinsic discrepancy is

d(é\D):/A/e(S{é, (6,X)}p(6, | D) dOdA. (36)

Theintrinsic estimator 8* = 0*(D) isthe corresponding Bayes estimator, i.e., that minimizing

the posterior expected |oss:

6*(D) = arg min d(@|D). (37)
€

Since the intrinsic discrepancy is invariant under reparametrization, minimizing its posterior

expectation produces invariant estimators. 4

Example 2. (Inference on a binomial parameter, continued). In the estimation of a bino-
mial proportion 6, given data D = (n,r) and assuming no initial information—thus using
Be(6|1/2,1/2) astheprior function—theposteriorisp(6 | n,r) = Be(@ | r+1/2,n—r+1/2),
andthequadraticlossbased estimator (theposterior mean) of O isE[6 | n, r] = (r+1/2)/(n+1),
while the quadratic loss based estimator of, say, the log-odds ¢(0) = log[f/(1 — )], is
El¢|n,r] = (r+1/2) —¢(n —r + 1/2) (where () = dlog[['(x)]/dx is the digamma
function), which is not equal to ¢(E[6 | n,7]).

Figure4. Intrinsisc discrepancy {6, 6 | n} between binomial distributions, asa function of their parameters ¢,
and 6,. Represented for n = 1; alternative n values only change the vertical scale).

Theintrinsisc discrepancy between two binomial distributions Bi(r | n, 61) and Bi(r | n,02) is
5{01,02 | n} =n min{k(0;|02),k(02]61)}, (38)
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where k(6; | 0;) = 6;1og[8,/6:] + (1 — 6;)1og[(1 — 8;)/(1 — 6;)]. The function 6{61, 62| n}
(represented in Figure 4), is the loss to be suffered if § were estimated by 6. The intrinsic
estimator 6* = 9*(7" n) is obtained by minimizing the corresponding expected posterior loss

d(o \ n,r) fo (0,60 n) p(@|n,r)ds. The exact value of #* may be obtained by numerical
minimization, but a very good approximation is given by 6* =~ (r + 1/3)/(n + 2/3), not far
from the (invariant) posterior median. Since intrinsic estimation is an invariant procedure, the
intrinsic estimator of the log-odds is ssimply the log-odds of the intrinsic estimator of 6. As
one would expect, when r» and n — r are both large, all Bayes estimators of any well-behaved

function ¢(0) will cluster around ¢(E[6 | D)). g

Region (interval) estimation. To describe the inferential content of the posterior distribution of
thequantity of interest p(@ | D) itisoften convenient to quoteregions R C © of given probability
under p(0 | D). For example, theidentification of regionscontaining 50%, 90%, 95%, or 99% of
the probability under the posterior may be sufficient to convey the general quantitative messages
implicitin p(@| D); indeed, thisistheintuitive basis of graphical representations of univariate
distributions like those provided by boxplots. Any region R, such that

R, CO, /p(eyp)de:q, 0<q<1, (39)
Ryq

(so that, given data D, the true value of 8 belongs to R, with probability ¢), is said to be
a posterior g-credible region of 6. Notice that this provides immediately a direct intuitive
statement about the unknown quantity of interest @ in probability terms, in marked contrast to
the circumlocutory statements provided by frequentist confidenceintervals. A credibleregionis
invariant under reparametrization; thus, for any ¢-credibleregion R, of 8, ¢(R,) isag-credible
region of ¢ = ¢(0). Clearly, for any given ¢ there are generally infinitely many credible
regions.

Example 8. (Conventional credible regions). Sometimes, credible regions are selected to have
minimum size (length, area, volume), resulting in highest probability density (HPD) regions,
where all pointsin the region have larger probability density than all points outside. However,
HPD regions are not invariant under reparametrization: theimage ¢(R,) of an HPD ¢-credible
region R, will be a g-credible region for ¢, but will not generally be HPD; indeed, there is no
compelling reason to restrict attention to HPD credible regions. In one dimension, posterior
quantiles are often used to derive credible regions. Thus, if 6, = 6,(D) isthe 100¢% posterior
guantile of 6, then Ré = {0; 6 < 0,} isaone-sided, typicaly unique g-credible region, and it
isinvariant under reparametrization. Indeed, probability centred ¢-credible regions of the form
Ry =1{0;01_q)2 < 0 < 01,42} are easier to compute, and are often quoted in preference

to HPD regions. 4

Example 9. (Intrinsic credible regions). Conventional HPD regions are not invariant under
reparametrization and centred credible regions are not easily defined in many dimensions and,
even in one dimension, they are not attractive when the posterior distribution has not a unique,

interior mode. For any loss function f(é, 0) ag-creible lowest expected loss (LEL) region may
be defined as a g-credible 1, such that

VO, € R;, V0, ¢ R, ((6;|D) < ((8;|D), (40)

where((0 | D) = [g £(8,0) p(6| D) d@ isthe (posterior) expected lossfrom using 6 instead of
6. If thelossfunction used isinvariant under reparametrization, the corresponding LEL credible
region will also be invariant. If, in particular, the (invariant) intrinsic loss (33) is used, the LEL
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g-credibleregion obtained istheintrinsic credibleregion, aninvariant ¢-credible region, defined

for any dimensionality, which may be recommended for general use. 4

Example 2. (Inference on a binomial parameter, continued). With no intial information, the
posterior distribution of abinomial parameter 6 withdata D = (r,n) isBe( | r + %, n—r+ %),
and the expected posterior intrinsic loss from using 6 is
1
d(@|r,n) :/ 5(6,0|n)Be(@|r+ 3, n—r+3)do
0 ) (41)
~i42n (arcsin V8 — arcsin r/n) )

represented in the upper panel of FigureSfor r = 10 andn = 50. The corresponding g-crebible
region consists of the set of 6 points with posterior probability ¢ and minimum expected loss.

8
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Figure5. Expectedintrinsiclossd{f|r,n}, posterior distribution Be(d |+ 1/2,n —r+1/2) and 0.95-credible
region with » = 10, n = 50 and no additional prior information

In particular, the 0.95-credible region is found to be the set of 6 points with posterrior expected
loss smaller than 2.139, and Rj o, = {6; 0.067 < 6 < 0.380] (shaded region in the lower
panel of Figure 5); note that this is neither a HPD interval nor a centred interval. The point
with minimum expected loss is the intrinsic estimator, 6* = 0.2034. Since intrinsic estimation
is invariant under reparametrizations, the intrinsic estimator and 0.95-credible region of, say,
¢ = ¢(0) =log[0/(1 — 0)] aresimply ¢(6") = —1.365 and ¢([f o5) = [—2.144, —0.747]. _

The concept of a credible region for afunction @ = 6(w) of the parameter vector is trivially
extended to prediction problems. Thus, a posterior g-credible region for x € X' isasubset R,
of the outcome space X" with posterior predictive probability ¢, so that || Rq p(x| D) dx = q.
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4.2. Hypothesis Testing

The posterior distribution p(@ | D) of the quantity of interest & conveys immediate intuitive
information on those values of @ which, given the assumed model, may betakento be compatible
with the observed data D, namely, those with arelatively high probability density. Sometimes,
aredtriction @ € ©¢ C O of the possible values of the quantity of interest (where ®, may
possibly consistsof asinglevalue 6y) issuggested in the course of theinvestigation asdeserving
special consideration, either because restricting 6 to © would greatly smplify the model, or
because there are additional, context specific arguments suggesting that 8 € ©y. Intuitively, the
hypothesis Hy = {6 € ©} should bejudged to be compatible with the observed data D if there
areelementsin ©( with arelatively high posterior density. However, amore precise conclusion
isoften required and, once again, thisismade possi bl e by adopting adeci sion-oriented approach.
Formally, testing the hypothesis Hy = {0 € O} isadecision problem where the action space
has only two elements, namely to accept (ag) or to reject (a;) the proposed restriction. To solve
thisdecision problem, it isnecessary to specify an appropriatelossfunction, ¢(a;, ), measuring
the consequences of accepting or rgjecting H as afunction of the actual value 6 of the vector
of interest. Notice that this requires the statement of an alternative a; to accepting Hy; thisis
only to be expected, for an action is taken not because it is good, but because it is better than
anything else that has been imagined.

Given data D, the optimal action will be to regject Hy if (and only if) the expected posterior
loss of accepting, [, ¢(ao, @) p(0 | D) db, islarger than the expected posterior loss of rejecting,
Jot(a1,0)p(6|D)de, that is, if (and only if)

/ (a0, 0) — ((a1,0)] p(6| D) dO — / AU(O) p(0] D) d6 > 0. (42)
C) C)

Therefore, only theloss difference A¢(6) = ¢(ag, 0) — £(a1, 8), which measures the advantage
of rglecting H as a function of 6, has to be specified. Thus, as common sense dictates, the
hypothesis H, should be rejected whenever the expected advantage of rejecting Hy is positive.

A crucia element in the specification of the loss function is a description of what is actually
meant by rejecting Hy. By assumption ap meansto act asif Hy weretrue, i.e., asif 8 € Oy,
but there are at least two obvious options for the alternative action a;. This may either mean
(i) the negation of Hy, that isto act asif 8 ¢ ©g or, alternatively, it may rather mean (ii) to
reject the smplification implied by H( and to keep the unrestricted model, & € ©, whichistrue
by assumption. Both options have been analyzed in the literature, athough it may be argued
that the problems of scientific data analysis where hypothesis testing procedures are typically
used are better described by the second alternative. Indeed, an established model, identified by
Hy = {0 € 0y}, isoften embedded into amore general model, {6 € ©,0, C O}, constructed
to include possibly promising departuresfrom Hy, and it isrequired to verify whether presently
available data D are still compatible with @ € O, or whether the extensionto 6 € © isreally
required.

Example 10. (Conventional hypothesis testing). Let p(@ | D), 6 € O, be the posterior distribu-
tion of the quantity of interest, let ay be the decision to work under the restriction 8 € ©, and
let a; bethe decision to work under the complementary restriction @ ¢ ©(. Suppose, moreover,
that the loss structure has the simple, zero-one form given by {¢(ag, @) = 0,4(a1,0) = 1} if
0 € Oy and, smilarly, {{(ap,0) = 1,¢(a1,0) = 0} if & ¢ O, so that the advantage A¢(09)
of rejecting Hy is1if 8 ¢ ©g and it is —1 otherwise. With thisloss function it isimmediately
found that the optimal action isto reject H if (and only if) Pr(6 ¢ ©¢ | D) > Pr(6 € ©y | D).
Notice that this formulation requiresthat Pr(6 € ©¢) > 0, that is, that the hypothesis H, hasa
strictly positive prior probability. If @ is a continuous parameter and © has zero measure (for

23



J. M. Bernardo. Bayesian Satistics

instance if Hy consists of asingle point ), this requires the use of a non-regular “sharp” prior
concentrating a positive probability mass on 0. g
Example 11. (Intrinsic hypothesis testing). Again, let p(6 | D), 8 € O, be the posterior dis-
tribution of the quantity of interest, and let ag be the decision to work under the restriction
6 € Oy, but let a; now be the decision to keep the general, unrestricted model 6 € ©. In this
case, the advantage A¢(0) of rejecting Hy as a function of & may safely be assumed to have
the form A¢(8) = (0, 0) — d*, for some d* > 0, where (i) §(Oy, 8) is some measure of
the discrepancy between the assumed model p(D | @) and its closest approximation within the
class {p(D|80y), 6y € O}, such that §(©g,0) = 0 whenever 8 € Oy, and (ii) d* is a context
dependent utility constant which measures the (necessarily positive) advantage of being able to
work with the simpler model when it is true. Choices of both 6(0, 8) and d* which may be
appropriate for general use will now be described.

For reasons similar to those supporting its use in point estimation, an attractive choice for the
function 6(©y, 8) is an appropriate extension of the intrinsic discrepancy; when there are no
nuisance parameters, thisis given by

{Op,0} = inf min{k(0y|0), k(0 |6y), (43)
006@0

where k(0; | 6) isgiven by (34) and, as before, t = t(D) € T isany sufficient statistic. Once

again, if thedataD = {x, ..., x,} consist of arandom samplefrom p(x | 8), thentheintrinsic

discrepancy between p(D |6 € ©p) and p(D | 0) is simply n times the intrinsic discrepancy
between p(x | 6 € Op) and p(x | 8). Asmentioned in Section 1, if follows from the definition
of theintrinsic discrepancy that if p; (D | 8) and p2(D | A) describe two alternative distributions
for data D, one of which is assumed to betrue, their intrinsic discrepancy 6{p1, p»} isprecisely
the minimum expected log-likelihood ratio in favour of the true model.

Naturally, theloss function (0, 8) reducesto the intrinsic discrepancy (6, €) of Example 7
when O contains a single element 6. Besides, asin the case of estimation, the definition is
easily extended to problems with nuisance parameters, with

5{@07 (97 )‘)} = inf 5{(00’ >\0>7 (07 A)} (44)
0€Y%90, OGA
The hypothesis H, should be rejected if the posterior expected advantage of rejecting is
1(001D) = [ [ 5(0.(0.X)}p(0.X| D) d0A > o, (45)
AJO

for somed* > 0. Sinced{Oy, (8, A) isnon-negative, d(Oy, D) isalso non-negative. Moreover,
if @ = ¢(0) is a one-to-one transformation of O, then d(¢(©y), D) = d(©g| D), so that
the expected intrinsic loss of rgecting Hy is invariant under reparametrization. Notice that
the procedure may be used with standard, continuous regular priors even in sharp hypothesis
testing, when © isazero-measure set (aswould be the case if 0 is continuous and ©( contains
asingle point 6y).

It may be shown that, as the sample size increases, the expected value of d(©g, D) under
sampling tends to one when H)) is true, and tends to infinity otherwise; thus d(©g | D) may be
regarded as a continuous, positive measure of how inappropriate (in loss of information units)
it would be to simplify the model by accepting Hy. In traditional language, d(Oq | D) isatest
statistic for Hy and the hypothesis should be rejected if the value of d(©g | D) exceeds some
critical value d*. However, in sharp contrast to conventional hypothesis testing, this critical
value d* is found to be a context specific, positive utility constant 4*, which may precisely be
described as the number of information units which the decision maker is prepared to lose in
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order to be able to work with the simpler model H(, and does not depend on the sampling
properties of the probability model.

All measurements are based on a comparison with a standard; comparison with the “canonical”
problem of testing avalue . = 1 for themean of anormal distribution with known variance (see
below) providesdirect light of the scale on which d(©q | D) ismeasured. Indeed, inthissimple
problem, values of d(©g | D) of about 1 should be regarded as an indication of no evidence
against H, since the expected value of d(©g | D) under H is exactly equal to one; values of
d(©g | D) of about 2.5 and 5 should be respectively regarded as an indication of mild evidence
against H, and significant evidence against H), since these values correspond to the observed
sample mean T respectively lying 2 or 3 posterior standard deviations from the null value 1.

More generally, the interpretation of the intrinsic discrepancy in terms of expected likelihood
ratioinfavour of thetrue model providesadirect calibration of theintrinsic test statistic. Indeed,
d(©g | D) isthe (posterior) minimum expected log-likelihood ratio in favour of the true model.
Thus, values around log[10] ~ 2.3 should be regarded as mild evidence against Hy, while
values around log[100] =~ 4.6 suggest strong evidende agaisnt the null, and values larger than
log[1000] ~ 6.9 may beusedtosafely reject Hy, al in perfect agreement withwhat itissuggested
by the canonical normal example. Noticethat, in sharp contrast to frequentist hypothesistesting,
where it is hazily recommended to adjust the significance level for dimensionality and sample
size, theintrinsic statistic in measured on an absol ute scal e (in information units) which remains
valid for any sample size and any dimensionality. 4
Example 10. (Testing the value of a normal mean). Letthedata D = {z1,. .., z,} bearandom
sample from anormal distribution N(z | i1, o), where o is assumed to be known, and consider
the “canonical” problem of testing whether these data are, or are not, compatible with some
specific sharp hypothesis Hy = {u = o} on the value of the mean.

The conventional approach to this problem requiresanon-regular prior which places aprobabil-
ity mass, say pg, on thevalue 1 to betested, with theremaining 1 — py probability continuously
distributed over . If this prior is chosen to be p(u | v # po) = N(u | po, 00), Bayes theorem
may be used to obtain the corresponding posterior probability,

B Bo1(D, \) po

Pr[lu0|D7)\] - (1_p0)+p()B()1(D,>\) ! (46)
1/2 1

Boi (D, \) = <1 n %) exp {_in j_ N 22] , (47)

where z = (T — uo) /(o /+/n) measures, in standard deviations, the distance between 7 and 1
and A = o%/a2 isthe ratio of model to prior variance. The function By, (D, )\), a ratio of
(integrated) likelihood functions, is called the Bayesfactor in favour of H,. With aconventional
zero-onelossfunction, Hy should berejected if Pr[ug | D, \] < 1/2. Thechoicespy = 1/2 and
A = lor\ = 1/2, describing particular formsof sharp prior knowledge, have been suggestedin
the literature for routine use. The conventional approach to sharp hypothesis testing deals with
situations of concentrated prior probability; it assumes important prior knowledge about the
value of 1 and, hence, should not be used unless this is an appropriate assumption. Moreover,
the resulting posterior probability is extremely sensitive to the particular prior specification
chosen. In most applications, H isreally ahazily defined small region rather than apoint. For
moderate samplesizes, the posterior probability Pr. | D, A] isanapproximationtothe posterior
probability Priug — e < p < po — €| D, \] for some small interval around 1o which would
have been obtained from a regular, continuous prior heavily concentrated around 1.; however,
this approximation always breaks down for sufficiently large sample sizes. One consequence of
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this—which isimmediately apparent from the last two equations—is that for any fixed value of
the pertinent statistic | z| (which could be expected to measure the compatibility of the value 1
with the data), the posterior probability of the null, Pr[ug | D, A, tendsto oneasn — oo. Far
from being specific to this example, this unappealing behaviour of posterior probabilities based
on sharp, non-regular priors—generally known as Lindley's paradox, Lindley (1957), Bartlett
(1957)—is always present in the conventional Bayesian approach to sharp hypothesis testing.

Theintrinsic approach may be used without assuming any sharp prior knowledge. Theintrinsic
discrepancy is §(uo, 1) = n(p — po)?/(20?), a simple transformation of the standardized
distance between 1 and po. As later justified (Section 5), absence of initial information about
the value of ; may formally be described in this problem by the (improper) uniform prior
function p() = 1; Bayes theorem may then be used to obtain the corresponding (proper)
posterior distribution, p(x| D) = N(u | %, 0/+/n). The expected value of 6 (uo, i) with respect
to this posterior isd(ug | D) = (1 + 22)/2, where z = (Z — po)/(o/+/n) isthe standardized
distance between T and 19. Asforetold by the general theory, the expected value of d(u, | D)
under repeated samplingisoneif © = o, and increaseslinearly with n if © = . Moreover, in
this canonical example, to regject Hy whenever |z| > 2 or |z| > 3, that iswhenever i is2 or 3
posterior standard deviations away from Z, respectively corresponds to rejecting Hy whenever
d(uo | D) islarger than 2.5, or larger than 5.

If the scale parameter ¢ is aso unknown, the intrinsic discrepancy is found to be

a0, (1.0} = = tog [1+ (A 10)7). (13)

Moreover, as mentioned before, absence of initial information about both ; and o may be
described by the (improper) prior functionp(y, o) = o, Theintrinsic test statistic d(u, D) is
found asthe expected value of §{ 1, (1, o) } under the correspondingjoint posterior distribution;
this may be exactly expressed in terms of hypergeometric functions, and is approximated by

2

1 n t
d(uo | D) =~ §—i—§log <1+ﬁ)’ (49)

where ¢ is the traditional statistic t = v/n — 1(T — po)/s, ns* = Y ;(x; — T)*. For instance,
for samples sizes 5, 30 and 1000, and using the utility constant d* = log[100] ~ 4.6, the
hypothesis H, would be rejected whenever |¢| is respectively larger than 4.564, 3.073, and
2.871.

<

5. Reference Analysis

Under the Bayesian paradigm, the outcome of any inference problem (the posterior distribution
of the quantity of interest) combinestheinformation provided by the datawith relevant available
prior information. In many situations, however, either the available prior information on the
guantity of interest istoo vague to warrant the effort required to have it formalized in the form
of a probability distribution, or it is too subjective to be useful in scientific communication
or public decision making. It is therefore important to be able to identify the mathematical
form of a*“noninformative” prior, aprior that would have aminimal effect, relative to the data,
on the posterior inference. More formally, suppose that the probability mechanism which has
generated the available data D isassumed to be p(D | w), for somew € (2, and that the quantity
of interest is some real-valued function § = 6(w) of the model parameter w. Without loss
of generality, it may be assumed that the probability model is of the form p(D |0, A), 6 € O,
A € A, where X is some appropriately chosen nuisance parameter vector. As described in
Section 3, to obtain the required posterior distribution of the quantity of interest p(6 | D) it is
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necessary to specify ajoint prior p(6,A). It is now required to identify the form of that joint
prior my (6, X), the O-reference prior, which would have a minimal effect on the corresponding
posterior distribution of 4,

(0] D) /A p(D[6,X) m9(6, A) dA, (50)

aprior which, to use aconventional expression, “would |et the data speak for themselves’ about
the likely value of 6. Properly defined, reference posterior distributions have an important role
to play in scientific communication, for they provide the answer to a central question in the
sciences. conditional on the assumed model p(D |6, ), and on any further assumptions of
the value of 6 on which there might be universal agreement, the reference posterior = (6 | D)
should specify what could be said about 6 if the only available information about 6 were some
well-documented data D.

Much work has been doneto formulate “reference” priorswhich would make the idea described
above mathematically precise. This section concentrates on an approach that is based on in-
formation theory to derive reference distributions which may be argued to provide the most
advanced general procedure available. In the formulation described below, far from ignoring
prior knowledge, the reference posterior exploits certain well-defined features of a possible
prior, namely those describing a situation were relevant knowledge about the quantity of inter-
est (beyond that universally accepted) may be held to be negligible compared to theinformation
about that quantity which repeated experimentation (from a particular data generating mecha-
nism) might possibly provide. Reference analysis is appropriate in contexts where the set of
inferences which could be drawn in this possible situation is considered to be pertinent.

Any statistical analysis contains a fair number of subjective elements; these include (among
others) the data selected, the model assumptions, and the choice of the quantities of interest.
Reference analysis may be argued to provide an “objective’” Bayesian solution to statistical
inference problems in just the same sense that conventional statistical methods claim to be
“objective’: in that the solutions only depend on model assumptions and observed data. The
whole topic of objective Bayesian methods is, however, subject to polemic; interested readers
will find in Bernardo (1997) some pointers to the relevant literature.

5.1. Reference Distributions

Oneparameter. Consider the experiment which consists of the observation of data D, generated
by a random mechanism p(D | #) which only depends on a real-valued parameter 6 € O, and
lett = t(D) € T beany sufficient statistic (which may well be the complete data set D). In
Shannon’s general information theory, the amount of information 1{7", p(#)} which may be
expected to be provided by D, or (equivalently) by ¢(D), about the value of 6 is defined by

o _ og P(2:0) _ oo PUOIY)
L0} = [ [ pit.010g B anae g [ [ o0 10)102 20

the expected logarithmic divergence of the prior from the posterior. This is naturally a func-
tional of the prior p(#): the larger the prior information, the smaller the information which
the data may be expected to provide. The functional 1{7,p(6)} is concave, non-negative,
and invariant under one-to-one transformations of #. Consider now the amount of informa-
tion I9{7" p(#)} about  which may be expected from the experiment which consists of &
conditionally independent replications {t1, ..., t;} of the original experiment. Ask — oo,
such an experiment would provide any missing information about 6 which could possibly be
obtained within this framework; thus, ask — oo, thefunctional I°{7*, p()} will approach the
missing information about # associated with the prior p(6). Intuitively, a #-reference prior isa

d@] (51)
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prior w(6) = w(0| T, P) maximizes the missing information about 6 within the class P of prior
distributions compatible with available prior knowledge. Formally, if 7 (0) denotes the prior
density which maximizes I{T* p(#)} in the class P of strictly positive prior distributions
which are compatible with accepted assumptions on the value of  (which may well bethe class
of all strictly positive proper priors) then the 6-reference prior 7w(0) isthelimitask — oo (ina
sense to be made precise) of the sequence of priors {7 (0),k = 1,2,...}.

Noticethat thislimiting procedureisnot somekind of asymptotic approximation, but an essential
element of the definition of areference prior. In particular, this definition impliesthat reference
distributions only depend on the asymptotic behaviour of the assumed probability model, a
feature which greatly simplifies their actual derivation.

Example 11. (Maximum entropy). If # may only take a finite number of values, so that the
parameter spaceis© = {6y,...,0,} and p(0) = {p1,...,pm}, With p; = Pr(6 = 6;), then

the missing information associated to {p1, . .., p, } may be shown to be
Y (T8, p(0)} = H(py,....pm) = = Y pilog(pi), (52)

that is, the entropy of the prior distribution {p1, ..., pm}.

Thus, inthefinite case, the reference prior isthat with maximumentropy in the class P of priors
compatible with accepted assumptions. Consequently, the reference prior algorithm contains
“maximum entropy” priors as the particular case which obtains when the parameter space is
finite, the only case where the original concept of entropy (in statistical mechanics, asameasure
of uncertainty) is unambiguous and well-behaved. If, in particular, P contains all priors over
{6y, ...,0,}, thenthereference prior isthe uniform prior, 7(6) = {1/m,...,1/m}. 4
Formally, the reference prior function 7 (#) of aunivariate parameter 6 is defined to be the limit
of the sequence of the proper priors 7, () which maximize I{7", p()} in the precise sense
that, for any value of the sufficient statistic t = ¢(D), the reference posterior, theintrinsic limit
(0 | t) of the corresponding sequence of posteriors {m (6 | t)}, may be obtained from 7 (6) by
formal use of Bayes theorem, so that (6 | t) o« p(t|6) 7(6).

Reference prior functions are often simply called reference priors, even though they are usually
not probability distributions. They should not be considered as expressions of belief, but
technical devices to obtain (proper) posterior distributions which are a limiting form of the
posteriors which could have been obtained from possible prior beliefs which were relatively
uninformative with respect to the quantity of interest when compared with theinformation which
data could provide.

If (i) the sufficient statistic ¢ = (D) is a consistent estimator # of a continuous parameter 6,
and (ii) theclass P contains all strictly positive priors, then the reference prior may be shown to
have asimple form in terms of any asymptotic approximation to the posterior distribution of 6.
Notice that, by construction, an asymptotic approximation to the posterior does not depend on
the prior. Specifically, if the posterior density p(6 | D) has an asymptotic approximation of the
form p(# | 6), where 0 is a consistent estimator of ¢, the reference prior is simply

m(8) o p(6|6) (53)

0=0
One-parameter reference priors are shown to be invariant under reparametrization; thus, if
¥ = 1(0) is a piecewise one-to-one function of 0, then the «-reference prior is simply the
appropriate probability transformation of the 6-reference prior.
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Example12. (Jeffreys’ prior). If @ isunivariate and continuous, and the posterior distribution of 6
given{z; ..., x,} isasymptoticaly normal with standard deviation s(6)/+/n, then, using (49),
the reference prior function is w(6) oc s(#)~!. Under regularity conditions (often satisfied in
practice, see Section 3.3), the posterior distribution of # is asymptotically normal with variance
n~t F~1(6), where F(6) is Fisher's information function and 6 is the MLE of . Hence, the
reference prior function in these conditions is 7(6) o« F(#)'/2, which is known as Jeffreys
prior. It follows that the reference prior algorithm contains Jeffreys priors as the particular
case which obtains when the probability model only depends on a single continuous univariate
parameter, there are regularity conditions to guarantee asymptotic normality, and there is no
additional information, so that the class of possible priors P contains all strictly positive priors
over ©. These are precisely the conditions under which there is general agreement on the use
of Jeffreys prior as a“noninformative” prior. 4
Example 2. (Inference onabinomial parameter, continued). LetdataD = {1, ..., z,} consist
of asequence of n independent Bernoulli trials, sothat p(x | §) = 6%(1—0)17%, x € {0, 1}; this
is aregular, one-parameter continuous model, whose Fisher’s information function is F'(6) =
0—1(1 — #)~!. Thus, the reference prior 7(6) is proportional to #~1/2(1 — #)~'/2, so that the
reference prior isthe (proper) Betadistribution Be(6 | 1/2,1/2). Since the reference algorithm
isinvariant under one-to-one reparametrization, the reference prior of ¢(#) = (2/x) arcsin v/
ism(¢) =7(0)/|10¢/0/0] = 1,0 < ¢ <<. thus, thereference prior isuniformon thevariance-
stabilizing transformation ¢(#) = (2/7)arcsin v/#, a feature generally true under regularity
conditions. In terms of the original parameter 6, the corresponding reference posterior is
Be(@|r+1/2,n —r+1/2), wherer =} z; isthe number of positive trials,
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Figure6. Posterior distribution of the proportion of infected peoplein the population, given theresultsof n = 100
tests, none of which were positive.

Suppose, for example, that n = 100 randomly selected people have been tested for an infection
andthat all tested negative, sothat » = 0. Thereference posterior distribution of the proportion ¢
of peopleinfected isthen the Betadistribution Be(6 | 0.5, 100.5), represented in Figure 6. 1t may
well be known that the infection wasrare, leading to the assumption that < 6, for some upper
bound 6; the (restricted) reference prior would then be of the form 7(0) o< 0~1/2(1 — §)~1/2
if & < 6y, and zero otherwise. However, provided the likelihood is concentrated in the region
6 < 6y, the corresponding posterior would virtually be identical to Be(#|0.5,100.5). Thus,
just on the basis of the observed experimental results, one may claim that the proportion of
infected people is surely smaller than 5% (for the reference posterior probability of the event
6 > 0.05is0.001), that 6 issmaller than 0.01 with probability 0.844 (area of the shaded region
in Figure 6), that it is equally likely to be over or below 0.23% (for the median, represented
by avertical line, is 0.0023), and that the probability that a person randomly chosen from the
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population isinfected is 0.005 (the posterior mean, represented in the figure by a black circle),
since Pr(z = 1|r,n) = E[#|r,n] = 0.005. If aparticular point estimate of 6 is required
(say a number to be quoted in the summary headline) the intrinsic estimator suggests itself;
this is found to be * = 0.0032 (represented in the figure with a white circle). Notice that
the traditional solution to this problem, based on the asymptotic behaviour of the MLE, here

6 = r/n = 0 for any n, makes absolutely no sensein this scenario. p

One nuisance parameter. The extension of the reference prior agorithm to the case of two
parameters follows the usual mathematical procedure of reducing the problem to a sequential
application of the established procedure for the single parameter case. Thus, if the probability
model isp(t|0, ), 6 € ©, A € A and a §-reference prior 7y(6, \) is required, the reference
algorithm proceeds in two steps:

(i) Conditional on 6, p(t|0,\) only depends on the nuisance parameter A and, hence, the
one-parameter algorithm may be used to obtain the conditional reference prior (A | ).

(ii) If w(X| @) is proper, this may be used to integrate out the nuisance parameter thus ob-
taining the one-parameter integrated model p(t|6) = [, p(t |6, ) w(\|6) dX, to which the
one-parameter algorithm may be applied again to obtain 7 (9).

The 6-reference prior isthen my(0, A) = 7(A | 6) (), and the required reference posterior is
w(0]t) o< p(t]|0)m(0).

If the conditional reference prior is not proper, then the procedure is performed within an
increasing sequence {A; }2°, of subsets converging to A over which (A | ) isintegrable. This
makes it possible to obtain a corresponding sequence of #-reference posteriors {m; (6 |t)}°;
for the quantity of interest 8, and the required reference posterior is the corresponding intrinsic
limit w(6 |t) = lim;_o m;(0|t). A O-reference prior is then defined as a positive function
(6, \) which may be formally used in Bayes theorem as a prior to obtain the reference
posterior, i.e,, suchthat, forany t € 7, (0 | t) o< [, p(t]6, ) mp(6, A) dA\. Theapproximating
sequences should be consistently chosen within agiven model. Thus, given aprobability model
{p(x|w),w € Q} anappropriate approximating sequence {2; } should be chosen for thewhole
parameter space ). Thus, if the analysisis done in terms of, say, ¥» = {¢1, 12} € ¥(Q), the
approximating sequence should be chosen such that ¥; = (€;). A natura approximating
sequence in location-scale problemsis {y, log o} € [, )%

The #-reference prior does not depend on the choice of the nuisance parameter \; thus, for
any ¢» = (6, \) such that (6, ) is a one-to-one function of (6, \), the #-reference prior in
terms of (0,) issimply my(6,1) = (0, X)/|0(0,1)/0(0, \)|, the appropriate probability
transformation of the 9-reference prior in terms of (6, A). Notice, however, that the reference
prior may depend on the parameter of interest; thus, the -reference prior may differ from
the ¢-reference prior unless either ¢ is a piecewise one-to-one transformation of 6, or ¢ is
asymptotically independent of 4. Thisisan expected consequence of thefact that the conditions
under which the missing information about 6 is maximized are not generally the same as the
conditions which maximize the missing information about some function ¢ = ¢(0, \).

The non-existence of a unique “noninformative prior” which would be appropriate for any
inference problem within a given model was established by Dawid, Stone and Zidek (1970),
who showed that this is incompatible with consistent marginalization. Indeed, if given the
model p(D |, \), the reference posterior of the quantity of interest 6, 7(6 | D) = = (0 | t), only
depends on the data through a statistic t whose sampling distribution, p(t | 6, ) = p(t|8), only
depends on #, onewould expect the reference posterior to be of theform (6 | t) o 7(0) p(t | )
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for some prior 7(#). However, examples were found where this cannot be the case if a unique
joint “noninformative” prior were to be used for all possible quantities of interest.

Example 13. (Regular two dimensional continuous reference prior functions). If the joint pos-
terior distribution of (0, \) isasymptotically normal, then the 6-reference prior may be derived
in terms of the corresponding Fisher’sinformation matrix, F'(6, \). Indeed, if

_( Foo(0,7)  Fpr(0, A _ g1
F(0,)) = ( e g Ag) . and S(6,0) = F (0, ), (54)
then the 6-reference prior ismy (0, A) = w(A | 0) w(0), where
7(M0) < F{L2(6,)), A€ A. (55)

If 7(A|0) isproper,
7(6) o< exp { /A 7(A]6) log[S,,/2(6,\)] dA}, 6 € ©. (56)

If w(X]6) isnot proper, integrations are performed on an approximating sequence {A;}9°, to
obtain asequence {m;(\ | 0) m;(6) }5°,, (Wherem;(\ | 6) isthe proper renormalization of (A | 6)
to A;) and the f-reference prior 7y(0, \) isdefined asits appropriate limit. Moreover, if (i) both
FXZ(Q, A) and 59_91/2(9, M) factorize, so that

S’ 2 (0,0) o< fo0) go(N), P20, 1) o £a(6) ga(), (57)
and (ii) the parameters 6 and )\ are variation independent, so that A does not depend on 6, then
the 6-reference prior issimply 7y(0, A) = f5(0) gA()), even if the conditional reference prior

T(A|0) = m(A) x gx(A) (which will not depend on 6) is actually improper. 4

Example 3. (Inference on normal parameters, continued). The information matrix which cor-
responds to anorma model N(z | i, o) is

Fluo)= (7" o2 )e St =Fua = (7 0); (58)
hence Fgéz(ma) = V207! = f,(u) go(0), with g,(0) = o~ !, andthus (o |p) = o~ L.
Similarly, S;ﬁ/Q(M,o) =o' = f,(u) gu(o), with f,(u) = 1, and thus (1) = 1. Therefore,
the p-reference prior is (1, 0) = w(o | u) w(p) = o1, as aready anticipated. Moreover,
as one would expect from the fact that F'(u1, o) is diagonal and also anticipated, it is similarly
found that the o-reference prior is 7, (i, o) = o, the same as m, (1, o).

Suppose, however, that the quantity of interest is not the mean . or the standard deviation o,
but the standardized mean ¢ = /0. Fisher’sinformation matrix in terms of the parameters ¢
and o isF(¢,0) = J' F(u,0)J,where J = (0(u,0)/0(4, c)) isthe Jacobian of the inverse
transformation; thisyields

-1 1412 1
F(p,0) = <¢01_1 0_2¢(5‘2’+ ¢2)), S(¢,0) = < j%;)f %2;;“)_ (59)

Thus, S;;/Q(qb, o) o (1+1¢?)~1/2 and FLL2 (¢, 0) o 071 (2 + ¢?)/2. Hence, using again the
results in Example 13, 74(4,0) = (1 + 1¢?)~1/20~1. Inthe original parametrization, thisis
m(p,0) = (1 + %(,u/U)Q)*l/ZU*Q, which is very different from 7, (u, o) = 7, (p, 0) = o1
The corresponding reference posterior of ¢ ism(¢ | z1, ..., z,) o (1+316%) /2 p(t | ¢) where
t = (3 a;)/(32%)"?, aone-dimensional (marginally sufficient) statistic whose sampling
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distribution, p(t| u, o) = p(t| ), only depends on ¢. Thus, the reference prior algorithm is
seen to be consistent under marginalization. <
Many parameters. The reference agorithm is easily generalized to an arbitrary number of
parameters. If the model isp(t| w1, ...,wn), ajoint reference prior

7O | Oty ..., 01) X ... x w(02]6) x 7(61) (60)

may sequentially be obtained for each ordered parametrization {6; (w), . . . , 0, (w)} Of interest,
and these are invariant under reparametrization of any of the §;(w)’s. The choice of the ordered
parametrization {61, ...,0,,} precisely describes the particular prior required, namely that
which sequentially maximizes the missing information about each of the 6;’s, conditional on
{01,...,9i_1},f0ri =m,m-—1,...,1.

Example 14. (Sein’'s paradox). Let D be a random sample from a m-variate normal distri-
bution with mean p = {p1, ..., 1y} and unitary variance matrix. The reference prior which
correspondsto any permutation of the ;' sisuniform, and this prior leads indeed to appropriate
reference posterior distributions for any of the y;’s, namely w(u; | D) = N(u; | @i, 1/v/n).
Suppose, however, that the quantity of interestisd = >_. 12, the distance of p tothe origin. As
showed by Stein (1950), the posterior distribution of 6 based on that uniform prior (or in any
“flat” proper approximation) has very undesirable properties; thisis due to the fact that a uni-
form (or nearly uniform) prior, athough * noninformative” with respect to each of theindividual
1i's, 1s actually highly informative on the sum of their squares, introducing a severe positive
bias (Stein’s paradox). However, the reference prior which corresponds to a parametrization of
the form {6, \1, ..., A,—1} produces, for any choice of the nuisance parameters \; = \;(u),
the reference posterior 7(6 | D) = w(0 | t) o< 671/2x%(nt | m, nd), wheret = 3. 77, and this
posterior is shown to have the appropriate consistency properties. 4
Far from being specific to Stein’s exampl e, the inappropriate behaviour in problems with many
parameters of specific margina posterior distributions derived from multivariate “flat” priors
(proper or improper) is indeed very frequent. Hence, sloppy, uncontrolled use of “flat” priors
(rather than using the relevant reference priors), is strongly discouraged.

Limited information . Although often used in contextswhere no universally agreed prior knowl-
edge about the quantity of interest is available, the reference algorithm may be used to specify
aprior which incorporates any acceptable prior knowledge; it suffices to maximize the missing
information within the class P of priors which is compatible with such accepted knowledge.
Indeed, by progressive incorporation of further restrictionsinto P, the reference prior algorithm
becomes a method of (prior) probability assessment. As described below, the problem has a
fairly ssmple analytical solution when those restrictionstake the form of known expected values.
The incorporation of other type of restrictions usually involves numerical computations.

Example 15. (Univariate restricted reference priors). If the probability mechanism which is
assumed to have generated the avail able data only depends on aunivariate continuous parameter
0 € © C R, and the class P of acceptable priorsisaclass of proper priors which satisfies some
expected value restrictions, so that

P ={plo); p) >0, /@p(@) do =1, /@gi(Q)p(H) a0 =B, i=1,...m} (61)

then the (restricted) reference prior is

n(0]P) o 7(0) exp | Y igi(0)] (62)
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where 7(60) is the unrestricted reference prior and the ~;'s are constants (the corresponding
Lagrange multipliers), to be determined by the restrictions which define P. Suppose, for
instance, that dataare considered to be arandom sample from alocation model centred at ¢, and
that it is further assumed that E[f] = 110 and that Var[f] = o7. The unrestricted reference prior
for any regular location problem may be shown to be uniform. Thus, the restricted reference
prior must be of theform 7(6 | P) oc exp{y10 + 72(6 — p0)*}, with [ 8 7(6| P) df = 19 and
Jo(0—po)?7(0|P)do = of. Hence, w(6| P) isanormal distribution with the specified mean

and variance. q

5.2. Frequentist Properties

Bayesian methods provide a direct solution to the problems typically posed in statistical infer-
ence; indeed, posterior distributions precisely state what can be said about unknown quantities
of interest given available data and prior knowledge. In particular, unrestricted reference poste-
rior distributions state what could be said if no prior knowledge about the quantities of interest
were available.

A frequentist analysis of the behaviour of Bayesian procedures under repeated sampling may,
however, beilluminating, for thisprovides someinteresting connections between frequentist and
Bayesian inference. It isfound that the frequentist properties of Bayesian reference procedures
aretypically excellent, and may be used to provide aform of calibration for reference posterior
probabilities.

Point Estimation. It isgenerally accepted that, asthe samplesizeincreases, a“good” estimator 6
of @ ought to get the correct value of @ eventually, that is to be consistent. Under appropriate
regularity conditions, any Bayes estimator ¢ of any function ¢(6) converges in probability
to ¢(0), so that sequences of Bayes estimators are typically consistent. Indeed, it is known that
if there isaconsistent sequence of estimators, then Bayes estimators are consistent. The rate of
convergence is often best for reference Bayes estimators.

It isalso generally accepted that a“good” estimator should be admissible, that is, not dominated
by any other estimator in the sense that its expected loss under sampling (conditional to @)
cannot be larger for al @ values than that corresponding to another estimator. Any proper
Bayes estimator is admissible; moreover, (Wald, 1950), a procedure must be Bayesian (proper
or improper) to be admissible. Most published admissibility results refer to quadratic loss
functions, but they often extend to more general lossfunctions. Reference Bayes estimators are
typically admissible with respect to intrinsic loss functions.

Notice, however, that many other apparently intuitive frequentist ideas on estimation have been
proved to be potentially misleading. For example, given asequence of n Bernoulli observations
with parameter ¢ resulting in r positive trials, the best unbiased estimate of 62 isfound to be
r(r —1)/{n(n — 1)}, which yields #> = 0 when r = 1; but to estimate the probability of
two positive trials as zero, when one positive trial has been observed, is not at all sensible. In
marked contrast, any Bayes reference estimator provides a reasonable answer. For example,
the intrinsic estimator of 6 is simply (6*)?, where #* isthe intrinsic estimator of § described
in Section 4.1. In particular, if » = 1 and n = 2 the intrinsic estimator of #? is (as one would
naturally expect) (0*)? = 1/4.

Interval Estimation. As the sample size increases, the frequentist coverage probability of a
posterior ¢-credibleregion typically convergesto ¢ so that, for large samples, Bayesian credible
intervalsmay (under regularity conditions) beinterpreted as approximate frequentist confidence
regions. under repeated sampling, aBayesian g-credibleregion of 8 based on alarge samplewill
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cover the true value of € approximately 100¢% of times. Detailed results are readily available
for univariate problems. For instance, consider the probability model {p(D |w),w € Q}, let
0 = 6(w) beany univariate quantity of interest, andlet ¢t = ¢(D) € T beany sufficient statistic.
If §,(t) denotesthe 100¢% quantile of the posterior distribution of # which correspondsto some
unspecified prior, so that

Prio < 6,1t = [ p(olt)ds =g (63)
9<0q(t)

then the coverage probability of the g-credible interval {6;6 < 6,(t)},

Prio,(t) = 6w = [ pt]w)at, (64)
0q(t)=0

issuchthat Pr[,(t) > 0 | w] = Prj@ < 6,(t) |t]+O(n~'/?). Thisasymptotic approximationis
true for all (sufficiently regular) positive priors. However, the approximation is better, actually
O(n~1), for a particular class of priors known as (first-order) probability matching priors.
Reference priors are typically found to be probability matching priors, so that they provide this
improved asymptotic agreement. As a matter of fact, the agreement (in regular problems) is
typically quite good even for relatively small samples.

Example 16. (Product of normal means). Consider the case where independent random sam-
ples {x1,...,x,} and {y1,...,yn} have respectively been taken from the normal densities
N(z|wi,1) and N(y|we, 1), and suppose that the quantity of interest is the product of their
means, ¢ = wiws (for instance, one may be interested in inferences about the area ¢ of a
rectangular piece of land, given measurements {x;} and {y;} of its sides). Notice that this
isasimplified version of a problem that it is often encountered in the sciences, where one is
interested in the product of several magnitudes, all of which have been measured with error.
Using the procedure described in Example 13, with the natural approximating sequenceinduced
by (w1, ws) € [—i,1]?, the ¢-reference prior isfound to be

Ty (Wi, w2) o (nw? + mw%)_l/Q, (65)

very different from the uniform prior 7, (w1, w2) = Ty (w1, w2) = 1 which should be used
to make objective inferences about either wy or wy. The prior my(wi,w2) May be shown to
provide approximate agreement between Bayesian credible regions and frequentist confidence
intervals for ¢; indeed, this prior (with m = n) was originally suggested by Stein (1985) to
obtain such approximate agreement. The same example was later used by Efron to stress the
fact that, even within afixed probability model {p(D |w),w € 2}, the prior required to make
objective inferences about some function of the parameters ¢ = ¢(w) must generally depend
on the function ¢. g
The numerical agreement between reference Bayesian credible regions and frequentist confi-
dence intervals is actually perfect in special circumstances. Indeed, as Lindley (1958) pointed
out, thisisthe case in those problems of inference which may be transformed to location-scale
problems.

Example 3. (Inference on normal parameters, continued). Let D = {z1,... x,} be arandom
sample from a normal distribution N (z |, o). As mentioned before, the reference posterior
of the quantity of interest x is the Student distribution Sty |z, s/v/n —1,n — 1). Thus,
normalizing u, the posterior distribution of ¢(x) = +n — 1(Z — p)/s, as a function of
given D, isthe standard Student St(¢ | 0, 1,7 — 1) with n — 1 degrees of freedom. On the other
hand, this function ¢ is recognized to be precisely the conventional ¢ statistic, whose sampling
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distribution iswell known to also be standard Student with n — 1 degrees of freedom. It follows
that, for all sample sizes, posterior reference credible intervals for p given the data will be
numerically identical to frequentist confidenceintervals based on the sampling distribution of ¢.

A similar result is obtained in inferences about the variance. Thus, the reference posterior
distribution of A = ¢~ is the Gamma distribution Ga(\ | (n — 1)/2,ns?/2) and, hence, the
posterior distribution of » = ns?/0?, as a function of o2 given D, is a (central) x? with
n — 1 degrees of freedom. But the function r is recognized to be a conventional statistic for
this problem, whose sampling distribution is well known to also be y? with n — 1 degrees of
freedom. It followsthat, for all samplesizes, posterior reference credibleintervalsfor o2 (or any
one-to-one function of o) given the datawill be numerically identical to frequentist confidence

intervals based on the sampling distribution of r. g

6. A Simplified Case Study

To further illustrate the main aspects of Bayesian methods, and to provide a detailed, worked
out example, asimplified version of a problem in engineering is analyzed below.

To study the reliability of alarge production batch, n randomly selected items were put to an
expensive, destructive test, yielding D = {1, ..., z,} astheir observed lifetimes in hours of
continuous use. Context considerations suggested that the lifetime x; of each item could be
assumed to be exponential with hazard rate 0, so that p(z; | 0) = Ex[z; | 8] = 0e=%%i, 0 > 0,
and that, given 6, thelifetimes of then itemsareindependent. Quality engineerswereinterested
in information on the actual value of the hazard rate #, and on prediction of the lifetime x of
similar items. In particular, they were interested in the compatibility of the observed data with
advertised values of the hazard rate, and on the proportion of items whose lifetime could be
expected to be longer than some required industrial specification.

The statistical analysis of exponential data makes use of the exponential-gamma distribution
Eg(z | «, (3), obtained as a continuous mixture of exponentials with a gamma density,
> —0x aﬁa

This is a monotonically decreasing density with mode at zero; if « > 1, it has a mean
E[z|a, 8] = B/(a — 1). Moreover, tail probabilities have a simple expression; indeed,

_[ B
Pr[x>t|0475]—{m} : (67)
Likelihood function. Under the accepted assumptions on the mechanism which generated the
data, p(D |0) = []; e 9% = gne~%, which only dependson s = >_jzj, the sum of the
observations. Thus, t = (s,n) is asufficient statistic for this model. The corresponding MLE
estimator isf = n/s and Fisher’sinformation functionis F'(§) = 6~2. Moreover, the sampling
distribution of s isthe Gammadistribution p(s | 0) = Ga(s | n, §).
Theactua dataconsisted of n = 25 uncensored observed lifetimeswhich, inthousands of hours,
yielded asum s = 41.574, henceamean T = 1.663, and aMLE 6 = 0.601. The standard
deviation of the observed lifetimes was 1.286 and their range was [0.136, 5.591], showing the
large variation (from afew hundred to afew thousand hours) typically observed in exponential
data.
Using the results of Section 3.3, and the form of Fisher's iAanormation function given above, the
asymptotic posterior distribution of # isp(6| D) ~ N(6|6,6/+/n) = N(6]0.601,0.120). This
provided afirst, quick approximation to the possible values of # which, for instance, could be
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expected to belong to theinterval 0.601 4 1.96 x 0.120, or (0.366, 0.837), with probability close
t0 0.95.

6.1. Objective Bayesian Analysis

The firm was to be audited on behalf of a major client. A report had to be prepared about the
available information on the value of the hazard rate 6, exclusively based on the documented
data D, as if this were the only information available. Within a Bayesian framework, this
“objective” analysis(objectiveinthe sense of not using any information beyond that provided by
the data under the assumed model) may be achieved by computing the corresponding reference
posterior distribution.

Reference prior and reference posteriors. The exponential model meets all necessary regularity
conditions. Thus, using the resultsin Example 12 and the form of Fisher’sinformation function
mentioned above, the reference prior function (which in this case is aso Jeffreys prior) is
simply 7(0) « F(0)'/2 = #~'. Hence, using Bayes theorem, the reference posterior is
7(0| D) < p(DO) 6! o 6"~ =%, the kernel of agamma density, so that

70| D) =Gaf|n,s), 6>0, (68)

whichhasmean E[§ | D] = n/s (whichisalsothe MLE §), mode (n — 1) /s, and standard devia-
tion/n/s = 0/,/n. Thus, thereference posterior of the hazard ratewasfoundtobe (¢ | D) =
Ga(f | 25,41.57) (represented in Figure 5) with mean 0.601, mode 0.577, and standard devi-
ation 0.120. One-dimensiona numerical integration further yields Pr[0 < 0.593 | D] = 0.5,
Pr[f < 0.389 | D] = 0.025 and Pr[f < 0.859| D] = 0.975; thus, the median is 0.593, and the
interval (0.389,0.859) isa95% reference posterior credible region (shaded areain Figure 7).
Theintrinsic estimator (see below) was found to be 0.590 (dashed linein Figure 7).

(0] D)

g = 0 N O W O

0.2 0.4 0.6 0.8 1 1.2 1.4 o

Figure 7. Reference posterior density of the hazard rate . The shaded region is a 95% credible interval. The
dashed line indicates the position of the intrinsic estimator.

Under the accepted assumptions for the probability mechanism which has generated the data,
the reference posterior distribution (6 | D) = Ga(é | 25, 41.57) contained all that could be said
about the value of the hazard rate 6 on the exclusive basis of the observed data D. Figure 7 and
the numbers quoted above respectively provided useful graphical and numerical summaries,
but the fact that 7(6 | D) is the complete answer (necessary for further work on prediction or
decision making) was explained to the engineers by their consultant statistician.
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Reference posterior predictivedistribution. Thereference predictive posterior density of afuture
lifetimez is

m(z| D) = /0 " et Ga(f |n,s)dd = Eg(d|n, s) (69)

with mean s/(n — 1). Thus, the posterior predictive density of the lifetime of a random item
produced in similar conditions was found to be (x| D) = Eg(x|25,41.57), represented
in Figure 6 against the background of a histogram of the observed data. The mean of this
distributionis 1.732; hence, given data D, the expected lifetime of future similar itemsis 1.732
thousands of hours. The contract with their client specified a compensation for any item whose
lifetime was smaller than 250 hours. Since

Pr[:c<b]D]:/ObEg(x\n,s)zl—{Sib}n, (70)

the expected proportion of items with lifetime smaller than 250 hoursis Prjxz < 0.250 | D] =
0.139, the shaded area in Figure 8; thus, conditional on accepted assumptions, the engineers
were advised to expect 14% of items to be nonconforming.

m(z| D)

© © o o o o
N W~ 01O

2 4 6 8 10 12 *

Figure8. Referencepredictive posterior density of lifetimes (in thousands of hours). The shaded region represents
the probability of producing nonconforming items, with lifetime smaller than 250 hours. The background is a
histogram of the observed data.

Calibration. Consider ¢t = t(f) = (s/n)# as afunction of 6, and its inverse transformation
0 =0(t) = (n/s)t. Sincet = t(0) is aone-to-one transformation of 0, if R; is a g-posterior
credibleregionfor ¢, then Ry = 0( R;) isag-posterior credibleregionfor §. Moreover, changing
variables, the reference posterior distribution of ¢ = (), as a function of 6 conditional
ons, isw(t(0)|n,s) = w(0|n,s)/|0t(0)/00] = Ga(t|n,n), a gamma density which does
not depend on s. On the other hand, the sampling distribution of the sufficient statistic s is
p(s|n,0) = Ga(f|n,0); therefore, the sampling distribution of ¢t = t(s) = (8/n)s, asa
function of s conditional to 6, is p(t(s) | n,0) = p(s|n,8)/|0t(s)/0s| = Ga(t|n,n), which
does not contain # and is precisely the same gamma density obtained before. It follows that,
for any sample size n, all ¢-credible reference posterior regions of the hazard rate 6 will also
be frequentist confidence regions of level ¢q. Any ¢-credible reference posterior region has,
given the data, a (rational) degree of belief ¢ of containing the true value of 6; the result just
obtained may be used to provide an exact calibration for this degree of belief. Indeed, for any
6 > 0andany ¢ € (0,1), the limiting proportion of g-credible reference posterior regions
which would cover the true value of ¢ under repeated sampling is precisely equal to g. It was
therefore possible to explain to the engineers that, when reporting that the hazard rate 6 of
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their production was expected to be within (0.389, 0.859) with probability (rational degree of
belief) 0.95, they could claim this to be a calibrated statement in the sense that hypothetical
replications of the same procedure under controlled conditions, with samples ssimulated from
any exponential distribution, would yield 95% of regions containing the value from which the
sample was simulated.

Estimation. The commercial department could use any location measure of the reference pos-
terior distribution of § as an intuitive estimator # of the hazard rate ¢, but if a particular value
has to be chosen with, say, some legal relevance, this would pose a decision problem for which
an appropriate loss function L (6, §) would have to be specified. Since no particular decision
was envisaged, but the auditing firm nevertheless required that a particular estimator had to be
quoted in the report, the attractive properties of the intrinsic estimator were invoked to justify
its choice. Theintrinsic discrepancy d(6;, ;) between the models Ex(z | 6;) and Ex(x | 0;) is

6(0i,0;) = min{k(6; [ 0;), k(0;]0:)},  K(0i]6;) = (0;/0;) — 1 —log(6;/6:). (71)

Asexpected, 6(0;, 0;) isasymmetric, non-negative concave function, which attainsits minimum
value zero if, and only if, §; = 6;. Theintrinsic estimator of the hazard rate is that 6*(n, s)
which minimizes the expected reference posterior |0ss,

d(@|n,s) =n /OOO 5(0,0) Ga(f | n, s) db. (72)

To avery good approximation (n > 1), thisisgiven by 6*(n, s) = (2n — 1)/2s, the arithmetic
average of the reference posterior mean and the reference posterior mode, quite close to the
reference posterior median. With the available data, this approximation yielded 6* ~ 0.5893,
while the exact value, found by numerical minimization was 6* = 0.5899. It was noticed that,
since intrinsic estimation is an invariant procedure, the intrinsic estimate of any function ¢(0)
of the hazard rate would simply be ¢(6*).

Hypothesis Testing. A criterion of excellence in this industrial sector described first-rate pro-
duction as one with a hazard rate smaller than 0.4, yielding an expected lifetime larger than
2500 hours. The commercia department was interested in whether or not the data obtained
were compatible with the hypothesis that the actual hazard rate of the firm’s production was
that small. A direct answer was provided by the corresponding reference posterior probabil-
ity Prjf < 0.4| D] = 00'4 Ga(f |n,s)dd = 0.033, suggesting that the hazard rate of present
production might possibly be around 0.4, but it is actually unlikely to be that low.

d(6o | D)
7,
5 1
- |
1 : 5
0.25 0.5 0.75 1 1.25 1.5 1.75

Figure 9. Expected reference posterior intrinsic loss for accepting 6, as a proxy for the true value of . The
minimum is reached at the intrinsic estimator §* = 0.590. Values of ¢ outside the interval (0.297,1.171) would
be conventionally rejected.
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Under pressureto provide aquantitative measure of the compatibility of the datawith the precise
valued = 6y = 0.4, the statistician produced the expected intrinsic discrepancy d(6 | n, s) from
accepting 6, as a proxy for the true value of ¢ on the basis of data (n, s) by evaluating (68)
a6 = 6. Itwasrecalled that the expected value of d(0y | D) under repeated sampling isexactly
equal to one when 6 = 6, and that alarge value of d(6y | D) indicates strong evidence against
6. Moreover, using afrequent language in engineering, the statistician explained that values of
d(0y | D) = d* indicate, for d* = 2.5, 5.0 or 8.5, alevel of evidence against § = 6, comparable
to the evidence against azero mean that would be provided by anormal observation x whichwas,
respectively, 2, 3 or 4 standard deviationsfrom zero. Asindicated in Figure 9, valuesof 6 larger
than 1.171 or smaller than 0.297 would be conventionally rejected by a“3 o” normal criterion.
Besides, the interval [0.297, 1.171] is 0.9989-intrinsic credible region, since all points within
theinterval have samller expected loss than all points outside the interval, and

1.171
/ Ga(fd | n,s)dd = 0.9989 (73)
0.297

Theactual valuefor 6y wasfoundtobed(0.4 | D) = 2.01 (equivalentto 1.73 o under normality).
Thus, although there was some evidence suggesting that 6 is likely to be larger than 0.4, the
precise value # = 0.4 could not be definitely rejected on the exclusive basis of the information
provided by the data D.

6.2. Sensitivity Analysis

Although consciousthat thisinformation could not be used in the report prepared for theclient’s
auditors, the firm’s management was interested in taping their engineers' inside knowledge to
gather further information on the actual lifetime of their products. Thiswas done by exploring
the consequences on the analysis of (i) introducing that information about the process which
their engineers considered “beyond reasonable doubt” and (ii) introducing an “informed best
guess’ based ontheir experiencewith the product. Theresults, analyzed bel ow and encapsul ated
in Figure 8, provide an analysis of the sensitivity of the fina inferences on ¢ to changesin the
prior information.

Limited prior information. When questioned by their consultant statistician, the production
engineers claimed to know from past experience that the average lifetime E[z| should be about
2250 hours, and that this average could not possibly be larger than 5000 or smaller than 650.
Since E[x | 0] = 6!, those statements may directly be put in terms of conditions on the prior
distribution of 6; indeed, working in thousands of hours, they imply E[f] = (2.25)"! =
0.444, and that § € ©, = (0.20,1.54). To describe mathematically this knowledge K7, the
statistician used the corresponding restricted reference prior, that is the prior which maximizes
the missing information about @ (i.e., what it is unknown about its value) within the class of
priors which satisfy those conditions. The reference prior restrictedto § € ©, and E[f] = 1 is
the solution of () o 6~ e~*’, subject to the restrictions§ € ©. and [, O 7(0 | K1) df = p.
With the available data, this was numerically found to be (8| K1) o 6~ 1e=2089 ¢ c @,.
Bayes' theorem wasthen used to obtain the corresponding posterior distribution (0 | D, K1)
p(D]0)7(0] K1) o §*1e=13699 9 c ©,., agammadensity Ga(f | 25,43.69) renormalized to
0 € ©., which is represented by a thin line in Figure 8. Comparison with the unrestricted
reference posterior, described by a solid line, suggests that, compared with the information
provided by the data, the additional knowledge K isrelatively unimportant.
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Figure 8. Probability densities of the hazard rate 6. Subjective prior (dotted line), subjective posterior (dashed
line), partially informative reference posterior (thin line) and conventional reference posterior (solid line).

Detailed prior information. When further questioned by their consultant statistician, the pro-
duction engineers guessed that the average lifetime is “surely” not larger than 3000 hours;
when requested to be more precise they identified “surely” with a 0.95 subjective degree of
belief. Working in thousands of hours, this implies that Pr[¢ > 37!] = 0.95. Together with
their earlier claim on the expected lifetime, implying E[0] = 0.444, this was sufficient to
completely specify a (subjective) prior distribution p(6 | K2). To obtain a tractable form for
such a prior, the statistician used a ssmple numerical routine to fit a restricted gamma distri-
bution to those two statements, and found thisto be p(0 | K3) « Ga(f | «, 3), with o = 38.3
and 8 = 86.3. Moreover, the statistician derived the corresponding prior predictive distribu-
tion p(x | K2) = Eg(z | o, ) and found that the elicited prior p(6) would imply, for instance,
that Priz > 1| K>] = 0.64, Prilz > 3| K] = 0.27, and Prjz > 10| K»] = 0.01, so that
the implied proportion of items with a lifetime over 1, 3, and 10 thousands of hours were,
respectively, 64%, 27%, and 1%. The engineers declared that those numbers agreed with
their experience and, hence, the statistician proceeded to accept p(f) = Ga(é | 38.3,86.3),
represented with a dotted line in Figure 8, as a reasonable description of their prior beliefs.
Using Bayes theorem, the posterior density which corresponds to a Ga(f | a, 3) prior is
p(0| D) = p(8|n,s) o 87 059100  gotn=1=(3+5)0 the kernel of a gamma den-
sity, so that

p(@|D)=Gall|a+n,B+s), 6>0. (74)

Thus, the posterior distribution, combining the engineers’ prior knowledge K5 and data D was
found to be p(6 | D, K2) = Ga(f | 63.3,127.8), represented with a dashed linein Figure 8. It
is easily appreciated from Figure 8 that the 25 observations contained in the data analyzed do
not represent a dramatic increase in information over that initially claimed by the production
engineers, although the posterior distribution isindeed more concentrated than the prior, and it
is displaced towards the values of ¢ suggested by the data. The firm’s management would not
be able to use this combined information in their auditing but, if they trusted their production
engineers, they were advised to use p(6 | D, K») to further understand their production process,
or to design policies intended to improve its performance.

7. Discussion and Further |ssues

Inwriting abroad articleit isalways hard to decide what to leave out. Thisarticlefocused onthe
basic concepts of the Bayesian paradigm; methodological topics which have unwillingly been
omitted include design of experiments, sample surveys, linear models and sequential methods.
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The interested reader is referred to the bibliography for further information. Thisfinal section
briefly reviews the main arguments for the Bayesian approach, and includes pointersto further
issues which have not been discussed in more detail due to space limitations.

7.1. Coherence

By using probability distributions to characterize all uncertaintiesin the problem, the Bayesian
paradigm reduces statistical inference to applied probability, thereby ensuring the coherence of
the proposed solutions. Thereisno needtoinvestigate, onacaseby case basis, whether or not the
solution to a particular problem is logically correct: a Bayesian result is only a mathematical
consequence of explicitly stated assumptions and hence, unless a logical mistake has been
committed in its derivation, it cannot be formally wrong. In marked contrast, conventional
statistical methods are plagued with counterexamples. These include, among many others,
negative estimators of positive quantities, g-confidence regions (¢ < 1) which consist of the
whole parameter space, empty sets of “appropriate” solutions, and incompatible answers from
alternative methodol ogies simultaneously supported by the theory.

The Bayesian approach does require, however, the specification of a(prior) probability distribu-
tion over the parameter space. The sentence*aprior distribution doesnot exist for this problem”
is often stated to justify the use of non-Bayesian methods. However, the general representation
theorem proves the existence of such adistribution whenever the observations are assumed to be
exchangeable (and, if they are assumed to be arandom samplethen, afortiori, they are assumed
to be exchangeable). To ignore this fact, and to proceed as if a prior distribution did not exist,
just because it is not easy to specify, is mathematically untenable.

7.2. Objectivity

It is generally accepted that any statistical analysis is subjective, in the sense that it is always
conditional on accepted assumptions (on the structure of the data, on the probability model, and
on the outcome space) and those assumptions, although possibly well founded, are definitely
subjective choices. It is, therefore, mandatory to make all assumptions very explicit.

Users of conventional statistical methods rarely dispute the mathematical foundations of the
Bayesian approach, but claim to be able to produce “objective” answers in contrast to the
possibly subjective elements involved in the choice of the prior distribution.

Bayesian methods do indeed require the choice of aprior distribution, and critics of the Bayesian
approach systematically point out that in many important situations, including scientific report-
ing and public decision making, the results must exclusively depend on documented datawhich
might be subject toindependent scrutiny. Thisisof coursetrue, but those criticschoosetoignore
the fact that this particular case is covered within the Bayesian approach by the use of reference
prior distributions which (i) are mathematically derived from the accepted probability model
(and, hence, they are “objective” insofar as the choice of that model might be objective) and,
(i) by construction, they produce posterior probability distributions which, given the accepted
probability model, only contain the information about their values which datamay provide and,
optionally, any further contextual information over which there might be universal agreement.

Anissuerelated to objectivity isthat of the operational meaning of reference posterior probabili-
ties; itisfound that theanalysisof their behaviour under repeated sampling providesasuggestive
form of calibration. Indeed, Prj@ € R| D] = [, (0| D) d@, the reference posterior probabil-
ity that @ € R, is both a measure of the conditional uncertainty (given the assumed model and
the observed data D) about the event that the unknown value of 8 belongsto R C O, and the
limiting proportion of the regions which would cover 8 under repeated sampling conditional

41



J. M. Bernardo. Bayesian Satistics

on data “sufficiently similar” to D. Under broad conditions (to guarantee regular asymptotic
behaviour), al large data sets from the same model are “sufficiently similar” among them-
selvesin this sense and hence, given those conditions, reference posterior credible regions are
approximate unconditional frequentist confidence regions.

The conditions for this approximate unconditional equivalence to hold exclude, however, im-
portant special cases, like those involving “extreme” or “relevant” observations. In very special
situations, when probability models may be transformed to location-scale models, there is an
exact unconditional equivalence; in those cases reference posterior credible intervals are, for
any sample size, exact unconditional frequentist confidence intervals.

7.3. Applicability

In sharp contrast to most conventional statistical methods, which may only beexactly appliedtoa
handful of relatively simple stylized situations, Bayesian methods are (in theory) totally general.
Indeed, for agiven probability model and prior distribution over its parameters, the derivation of
posterior distributionsisawell-defined mathematical exercise. In particular, Bayesian methods
do not require any particular regularity conditions on the probability model, do not depend on
the existence of sufficient statistics of finite dimension, do not rely on asymptotic relations, and
do not require the derivation of any sampling distribution, nor (a fortiori) the existence of a
“pivotal” statistic whose sampling distribution is independent of the parameters.

However, when used in complex models with many parameters, Bayesian methods often re-
guire the computation of multidimensional definite integrals and, for a long time in the past,
this requirement effectively placed practical limits on the complexity of the problems which
could be handled. Thishasdramatically changed in recent yearswith the general availability of
large computing power, and the parallel development of simulation-based numerical integration
strategies like importance sampling or Markov chain Monte Carlo (MCMC). These methods
provide a structure within which many complex models may be analyzed using generic soft-
ware. MCMC isnumerical integration using Markov chains. Monte Carlo integration proceeds
by drawing samples from the required distributions, and computing sample averages to ap-
proximate expectations. MCMC methods draw the required samples by running appropriately
defined Markov chains for along time; specific methods to construct those chains include the
Gibbs sampler and the Metropolis algorithm, originated in the 1950’sin the literature of statis-
tical physics. The development of of improved algorithms and appropriate diagnostic tools to
establish their convergence, remains a very active research area.

Actual scientific research often requires the use of models that are far too complex for conven-
tional statistical methods. This article concludes with a glimpse at some of them.

Hierarchical structures. Consider a situation where a possibly variable number n; of observa-
tions, {x;;,j = 1,...,n;}, 4 = 1,...,m, are made on each of m internally homogeneous
subsets of some population. For instance, afirm might have chosen m production lines for in-
spection, and n; items might have been randomly sel ected among those made by production line
i, so that ;; isthe result of the measurements made on item j of production line:. Asanother
example, animals of some species are captured to study their metabolism, and a blood sample
taken before releasing them again; the procedure is repeated in the same habitat for some time,
so that some of the animals are recaptured several times, and «;; is the result of the analysis of
the j-th blood sample taken from animal 7. It those situations, it is often appropriate to assume
that the n; observations on subpopulation i are exchangeable, so that they may be treated as a
random sample from some model p(x | 8;) indexed by a parameter 6; which depends on the
subpopulation observed, and that the parameters which label the subpopulations may also be
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assumed to be exchangeable, so that {6, ..., 6,,} may be treated as a random sample from
some distribution p(0 |w). Thus, the complete hierarchical model which is assumed to have
generated the observed data D = {x11, ..., Tmpn,, } isOf theform

PR [ﬁmwm 100 [TTp(6: )] [T] a0, (75)
j=1 i=1 i=1

Hence, under the Bayesian paradigm, afamily of conventional probability models, say p(x | 0),
6 € ©, and an appropriate “structural” prior p(0 |w), may be naturally combined to produce a
versatile, complex model {p(D |w),w € 2} whose analysisis often well beyond the scope of
conventional statistics. The Bayesian solution only requiresthe specification aprior distribution
p(w), theuse Bayes' theorem to obtain the corresponding posterior p(w | D) « p(D |w) p(w),
and the performance of the appropriate probability transformationsto derive the posterior distri-
butions of the quantities of interest (which may well be functions of w, functions of the 8;’s, or
functions of future observations). Asin any other Bayesian analysis, the prior distribution p(w)
has to describe avail able knowledge about w; if noneis available, or if an objective anaysisis
required, an appropriate reference prior function 7 (w) may be used.

Contextual information. In many problems of statistical inference, objective and universally
agreed contextual information is available on the parameter values. Thisinformation is usually
very difficult to handle within the framework of conventional statistics, but it is easily incor-
porated into a Bayesian analysis by simply restricting the prior distribution to the class {P}
of priors which are compatible with such information. As an example, consider the frequent
problem in archaeol ogy of trying to establish the occupation period [«, 3] of asite by some past
culture on the basis of the radiocarbon dating of organic samples taken from the excavation.
Radiocarbon dating is not precise, so that each dating x; is typically taken to be a normal ob-
servation from adistribution N (x| (6;), 0;), where 6; is the actual, unknown calendar date of
the sample, 1.(#) isaninternationally agreed calibration curve, and o; isaknown standard error
quoted by the laboratory. The actual calendar dates {61, ..., 6,,} of the samples are typically
assumed to be uniformly distributed within the occupation period [« 3]; however, stratigraphic
evidence indicates some partial orderings for, if sample ¢ was found on top of sample j in
undisturbed layers, then 6; > 6;. Thus, if C denotes the class of values of {61, ..., 6,,} which
satisfy those known restrictions, datamay be assumed to have been generated by the hierarchical
model

p(:vl,...,:vm|a,,6’):/[HN(:UHM(HZ'),U?) (B—a) ™ dby ... doy,. (76)
¢ izt

Often, contextual information further indicates an absolute lower bound oy and an abso-
lute upper bound 3, for the period investigated, so that oy < a < § < [p. If no fur-
ther documented information is available, the corresponding restricted reference prior for
the quantities of interest, {a, 3} should be used; this is found to be (o, 3) x (8 — a)~!
whenever oy < a < 8 < [y and zero otherwise. The corresponding reference posterior
m(a,B|x1, ..., xm) x p(z1,...,2;m |, B) T(e, f) summarizes all available information on
the occupation period.
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Covariateinformation. Over thelast 30 years, both linear and non-linear regression modelshave
been analyzed from aBayesian point of view at increasing level sof sophistication. Thesestudies
range from the elementary objective Bayesian analysis of simple linear regression structures
(which parallel their frequentist counterparts) to the sophisticated analysisof timeseriesinvolved
in dynamic forecasting which often make use of complex hierarchical structures. The field is
far too large to be reviewed in this article, but the bibliography contains some relevant pointers.

Model Criticism. It has been stressed that any statistical analysisis conditional on the accepted
assumptions of the probability model which is presumed to have generated the data. Recent
years have shown ahuge effort into the devel opment of Bayesian proceduresfor model criticism
and model choice. Most of these are sophisticated elaborations of the procedures described in
Section 4.2 under the heading of hypothesis testing. Again, this is too large a topic to be
reviewed here, but some key references are included in the bibliography.
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