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PREFACE

The purpose of this monograph is to give an axiomatic
foundation for the theory of probability. The author set himself
the task of putting in their natural place, among the general
notions of modern mathematics, the basic concepts of probability
theory—concepts which until recently were considered to be quite
peculiar,

This task would have been a rather hopeless one before the
introduction of Lebesgue's theories of measure and integration.
However, after Lebesgue's publication of his investigations, the
analogies between measure of a set and probability of an event,
and between integral of a function and mathematical expectation
of a random variable, became apparent. These analogies allowed
of further extensions; thus, for example, various properties of
independent random variables were seen to be in complete analogy
with the corresponding properties of orthogonal functions. But
if probability theory was to be based on the above analogies, it
still was necessary to make the theories of measure and integra-
tion independent of the geometric elements which were in the
foreground with Lebesgue. This has been done by Fréchet.

While a conception of probability theory based on the above
general viewpoints has been current for some time among certain
mathematicians, there was lacking a complete exposition of the
whole system, free of extraneous complications. (Cf., however,
the book by Fréchet, [2] in the bibliography.)

I wish to call attention to those points of the present exposition
which are outside the above-mentioned range of ideas familiar to
the specialist. They are the following: Probability distributions
in infinite-dimensional spaces (Chapter 111, § 4) ; differentiation
and integration of mathematical expectations with respect to a
parameter (Chapter IV, § 5) ; and especially the theory of condi-
tional probabilities and conditional expectations (Chapter V).
It should be emphasized that these new problems arose, of neces-
sity, from some perfectly concrete physical problems.?

' Cf., e.g. the paper by M. Leontovich quoted in footnote 6 on p. 46; also the
joint paper by the author and M. Leontovich, Zur Statistik der kentinuier-
ichen S;atsms wund des eitlichen Verlaufes der physikalischen Verglnge.
Phys, Jour. of the USSR, Vol. 3, 1933, pp. 35-63.
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vi Preface

The sixth chapter contains a survey, without proofs, of some
results of A. Khinchine and the author of the limitations on the
applicability of the ordinary and of the strong law of large num-
bers. The bibliography contains some recent works which should
be of interest from the point of view of the foundations of the
subject.

I wish to express my warm thanks to Mr. Ehinchine, who
has read carefully the whole manuscript and proposed several
improvements.

Kljasma near Moscow, Easter 1983,

A. Kolmogorov
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Chapter I

ELEMENTARY THEORY OF PROBABILITY

We define as elementary theory of probability that part of
the theory in which we have to deal with probabilities of only a
finite number of events. The theorems which we derive here can
be applied also to the problems connected with an infinite number
of random events. However, when the latter are studied, essen-
tially new principles are used. Therefore the only axiom of the
mathematical theory of probability which deals particularly with
the case of an infinite number of random events is not introduced
until the beginning of Chapter I1 (Axiom VI).

The theory of probability, as a mathematical discipline, can
and should be developed from axioms in exactly the same way
as Geometry and Algebra. This means that after we have defined
the elements to be studied and their basic relations, and have
stated the axioms by which these relations are to be governed,
all further exposition must be based exclusively on these axioms,
independent of the usual conerete meaning of these elements and
their relations.

In accordance with the above, in § 1 the concept of a field of
probabilities is defined as a system of sets which satisfies certain
conditions. What the elements of this set represent is of no im-
portance in the purely mathematical development of the theory
of probability {(ecf. the introduction of basic geometric concepts
in the Foundations of Geometry by Hilbert, or the definitions of
groups, rings and fields in abstract algebra).

Every axiomatic (abstract) theory admits, as is well known,
of an unlimited number of concrete interpretations besides those
from which it was derived. Thus we find applications in fields of
science which have no relation to the concepts of random event
and of probability in the precise meaning of these words,

The postulational basis of the theory of probability can be
established by different methods in respect to the selection of
axioms as well as in the selection of basic concepts and relations.
However, if our aim is to a::hitive the utmost simplicity both in




2 I. Elementary Theory of Probability

the system of axioms and in the further development of the
theory, then the postulational concepts of a random event and
its probability seem the most suitable. There are other postula-
tional systems of the theory of probability, particularly those in
which the concept of probability is not treated as one of the basic
concepts, but is itself expressed by means of other concepts.’
However, in that case, the aim is different, namely, to tie up as
closely as possible the mathematical theory with the empirical
development of the theory of probability.

1. Axioms®

Let 5 be a collection of elements ¢, . {, . . ., which we ghall eall
elementary events, and % a zet of subszets of E; the elements of
the set § will be called random events.

I. %5 a field® of sets.
1. & containg the set E.
III. To each set A in §§ is assigned a non-negative real number
P(A). This number P{A) iz called the probability of the event A,
IV. P{E)} equals 1.
V. If A and B hove no element in common, then

P(A+B)=P(A) +P(B)

A system of sets, §, together with a definite assignment of
numbers P(A), satisfying Axioms 1-V, is called a field of prob-
ability.

Our aystem of Axioms I-V is consistent. This is proved by the
following example, Let E consist of the single element ¢ and let i

consist of £ and the null set 0. P(E) is then set equal to 1 and
P(0) equals 0,

' For example, R. von Mises[1]and [2] and 5. Bernstein [1].

! The reader who wishea from the outset to give a concrete meaning to the
following axioms, is referred to § 2.
' Cf. Hausoorrr, Mengenlehre, 1927, p. T8, A system of sets is called a field
if the sum, product, and difference of two sets of the aystem also belong to the
same system. Every non-empty field containg the null set 0, Using HausdorfT's
notation, we designate the product of A and B by AF; the sum by A+ F in
the case where AB=10; ;:-.5 in the general ease {y A+ B; the difference of
A and B by A—B. The set E-A, which is the complement of 4, will be denoted

A. We shall assume that the reader is familiar with the fundamental rules
of operations of sets and their sums, products, and differences, All aubsets
of [ will be designated by Latin capitals,

§ 2. The Relation to Experimental Data 3

Our system of axioms is not, however, complete, for in various
problems in the theory of probability different fields of proba-
hility have to be examined.

The Construction of Fields of Probability. The simplest fields
of probability are constructed as follows. We take an arbitrary
finite set E= (£, &, ... &) and an arbitrary set {p,, pa. ... P2}
of non-negative numbers with the sum p, + p. + ...+ =1
& is taken as the set of all subsets in E, and we put

P{E. &, ..udy)=o, + o+ + Bige

In such cases, p,, psy . . . , 1 are called the probabilities of the
elementary events &, &, ..., & or simply elementary probabili-
ties. In this way are derived all possible finite fields of probability
in which #% consists of the set of all subsets of E. (The field of
probability is called finite if the set E is finite.) For further
examples see Chap. II, § 3.

§ 2. The Relation to Experimental Data®

We apply the theory of probability to the actual world of
experiments in the following manner:

1} There is assumed a complex of conditions, &, which allows
of any number of repetitions.

2) We study a definite set of events which could take place as
a result of the establishment of the conditions &. In individual
cases where the conditions are realized, the events cccur, gener-
ally, in different ways. Let E be the set of all possible variants
¢, 3 . . . of the outcome of the given events. Some of these vari-
ants might in general not occur. We include in set E all the vari-
ants which we regard a priori as possible,

3) If the variant of the events which has actually occurred

‘ The reader who is interested in the purely mathematical development of
the theory only, need not read this section, sinee the work following it is based
only upop the axioms in § 1 and makes no use of the present discussion. Here
we Timit purselves to a simple explanation of how the axiome of the theory of
prnbn'h‘ilitiy arose and disregard the dee? philosophical dissertations on the
concept o Fruhnl:ilit:.r in the experimental world. In establishing the premises
necessary for the applicability of the theory of probability to the world of
?ﬁml e;gné;. the author has used, in large measure, the work of R. v. Mises,

pp. &l-ci.

#
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4 L. Elementary Theory of Probability

upon realization of conditions & belongs to the set 4 (defined in
any way), then we say that the event 4 has taken place.

Example: Let the complex & of conditions be the tossing of a
coin two times. The set of events mentioned in Paragraph 2econ-
sists of the fact that at each toss either a head or tail may come up.
From this it follows that only four different variants {elementary
events) are possible, namely: HH, HT, TH, TT. If the “event A"
connotes the occurrence of a repetition, then it will consist of a
happening of either of the first or fourth of the four elementary

events. In this manner, every event may be regarded as a set of
elementary events,

4) Under certain conditions, which we shall not discuss here,
we may assume that to an event 4 which may or may not occur

under conditions @, is assigned a real number P{A) which has
the following characteristics :

(a) One can be practically certain that if the complex of con-
ditions & is repeated a large number of times, i, then if m be the

number of occurrences of event A, the ratio m/n will differ very
slightly from P(4).

(b) If P(A) is very small, one can be practically certain that

when conditions & are realized only once, the event A would not
oceur at all,

The Empirical Deduction of the Axioms. In general, one may
assume that the system § of the observed events A, B, C, ... to
which are assigned definite probabilities, form a field containing
as an element the set £ (Axioms I, 11, and the first part of
IT1, postulating the existence of probabilities), It is elear that
0=m/n=1 so that the second part of Axiom III is quite natural.
For the event E, m is always equal to n, se that it is natural to
postulate P(EF) =1 (Axiom 1V). If, finally, 4 and B are non-
intersecting { incompatible), then m = mty -+ m. where m, m,, m,
are respectively the number of experiments in which the events
A + B, A, and B occur. From this it follows that

i

.
n_n+n'

It therefore seems appropriate to postulate that P{4 +B) =
P(A) + P(B) (Axiom V).

£3. Notes on Terminology 5

Remark 1. If two separate statements are each practically
reliable, then we may say that simultaneously they are bﬂtl'!. r:]l:-
able, although the degree of reliability is somewhat lcfwered in the
process, If, however, the number of such statements is very large,
then from the practical reliability of each, one cannot deduce any-
thing about the simultaneous correctness of all of them. 'ijherefure
from the principle stated in (a) it doea‘ not follow tha.t ina VEI:ﬁ
large number of series of n tests each, in each the ratio m/n wi
differ only slightly from P(4).

Remark 2. To an impossible event (an empt:-:r get) curreﬂ-
sponds, in accordanece with our axioms, the probability P(0) =.Cr !
but the converse is not true: P(4) =0 dues‘ not imply the im-
possibility of 4. When P(4) = 0, from prinr.?lpie (b} all we can
assert is that when the conditions & are realized but once, even:

4 is practically impossible. It does not at all aaser_t. however, tha
in a sufficiently long series of tests the event A will not oceur. On
the other hand, one can deduce from the principle (a) lr:tsrely that
when P(A) = 0 and n is very large, the ratio m/n will be very
small (it might, for example, be equal to 1/n}.

§ 3. Notes on Terminology

We have defined the objects of our future atlud:.f, random
pvents, as sets, However, in the theory of probability many s.let.—
theoretic concepts are designated by other terms. We shall give
here a brief list of such concepts.

Theory of Sets Random Events
1. A and B do not intersect, 1. Events 4 and B are in-
ie, AB = 0. compatible.
2, AB.. . N =10, 2, Events 4, B, ..., N are
1 incompatible,

3. Event X is defined as the
simultaneous occurrence of
events 4, B, ..., N.

4. Event X is defined as the
gecurrence of ab least one of
the events 4, B, ..., N.

ff. &4, Formula (8).




6 I. Elementary Theory of Probability
Theory of Sets Random Events
_ 5. The complementary set 5. The opposite event A
A, consisting of the non-occur-
ence of event A,
6. 4 =0. 6. Event A is impossible.
7. A=E, 7. Event 4 must occur.

8. The system ¥ of the sets B. Experiment N consists of
Ay, As oo, A, forms a de- determining which of the
composition of the set E if events A,, 4,, ..., A, oceurs.
Ade+ A+ ...+ A.=E. We therefore call 4, 4,,...,

(This assumes that the A, the possible resultz of ex-
sets A, do not intersect,in periment 9.
pairs.)

9. Bisasubsetof 4: Bz A, 9. From the occurrence of

event B follows the inevitable
oecurrence of A.

§4. Immediate Corollaries of the Axioms; Conditional
Probabhilities ; Theorem of Bayes

From 4 + A = E and the Axioms IV and V it follows that

P(4) +P(Ad) =1 (1)
P(A) = 1—P(4) . ()

Since E = 0, then, in particular,
P(0)=10 . (3)

If A, B, ..., N are incompatible, then from Axiom V follows
the formula (the Addition Theorem)
PIA+B4... + Ny=P(d) + P{BY+...4+ P(NY. (4)
If P(A) =0, then the quotient
= Piam
P4 (B) B (5)

is defined to be the conditional probability of the event B under
the condition A.

From (5) it follows immediately that

§4. Immediate Corollaries of the Axioms 7
P(AB)=P(A)Py(E). (6)
And by induction we obtain the general formula (the Multi-
plication Theorem)
Pl dy... Ay = PA) Pu (AD Pya, (As) - Payay . dao (Aad (T)
The following theorems follow easily:

PB)= 0, (8)
PLE)=1, (9
PJB':‘E): PJEB}'!_P.I {C} “ﬂ}

Comparing formulae {(8)— {10} with axioms 111—V, we find that

the system ¥ of sets together with the set function P,(B)} (pro-

vided A is a fixed set), form a field of probability and therefore,

all the above general theorems concerning P(B) hold true for the

conditional probability P,(B) (provided the event A is fixed).
" It is also easy to see that

PylAd)y=1. {11)
From (6) and the analogous formula
P {AB)= P(B)Pg{4d)

we obtain the important formula:
Py(d) — Pq_,g_%g'
which contains, in essence, the Theorem of Bayes.
THE THEOREM ON TOTAL PROBABILITY: Let 4, + 4. + ...+
A, = E (this assumes that the events A, 4., ..., 4, are mutually
exclusive) and let X be arbitraty. Then

P(X) = P(A}) Pa,(X) + P(A) P (X) + -+ + P(A) Py, (X).. (18)
Proof :

(12)

X=4X+AX+. ...+ AX;
using (4) we have
P(X)=P(A, X)+P(A: X)+...+ P(4, X)
and according to (6) we have at the same time
P(AX)=P(A,) P, (X).

THE THEOKEM OF BAYES: Let A, + 4,4+ ...+ 4, = E and

X be arbitrary, then G
. e ——— {Alj A
Prldd = o B X TPl P (X) § T PN Pa®) ((14)

F=4,2,%,..., M.




B I. Elementary Theory of Probahbility

A, Ag ..., Ay are often called “hypotheses” and formula
(14) is considered as the probability Py (4,) of the hypothesis
A, after the occurrence of event X. [P({A;) then denotes the
o priori probability of 4,]

Proof: From (12} we have

~ P{A) PatX)
Px{A.} = Tﬂ .
To obtain the formula (14) it only remains to substitute for the
probability P(X) its value derived from (13) by applying the
theorem on total probability.

g 5. Independence

The concept of mutual independence of two or more experi-
ments holds, in a certain sense, a central position in the theory of
probability. Indeed, as we have already seen, the theory of
probability can be regarded from the mathematieal point of view
as a special application of the general theory of additive set fune-
tions. One naturally asks, how did it happen that the theory of
probability developed into a large individual science possessing
its own methods?

In order to answer this question, we must point out the spe-
cialization undergone by general problems in the theory of addi-
tive set functions when they are proposed in the theory of
probability.

The fact that our additive set function P{A) iz non-negative
and satisfies the condition P(E) = 1, does not in itself cause new
difficalties. Random variables (see Chap. 11I) from a mathe-
matieal point of view represent merely functions measurable with
respect to P{A), while their mathematical expectations are
abatract Lebesgue integrals, (This analogy was explained fully
for the first time in the work of Fréchet®.) The mere introduction
of the above conecepts, therefore, would not be sufficient to pro-
duce a basis for the development of a large new theory.

Historically, the independence of experimentz and random
variables represents the very mathematical coneept that has given
the theory of probability its peculiar stamp. The classical work
or LaPlace, Poisson, Tehebychev, Markov, Liapounov, Mises, and

“ Ses Fréchet [1] and [2].

E6. Independenece 1]

Bernstein is actually dedicated to the fundamental investigation
of series of independent random variables, Though the latest
dissertations (Markov, Bernstein and others) frequently fail to
azsume complete independence, they nevertheless reveal the
necessity of introducing analogous, weaker, conditions, in order
to obtain sufficiently significant results (see in this chapter &6,
Markov chains).

We thus see,in the concept of independence, at least the germ
of the peculiar type of problem in probability theory. In this
book, however, we shall not stress that fact, for here we are
interested mainly in the logical foundation for the specialized
investigations of the theory of probability.

In consequence, one of the most important problems in the
philosophy of the natural sciences is—in addition to the well-
known one regarding the essence of the concept of probability
itself—to make precise the premises which would make it possible
to regard any given real events as independent. This gquestion,
however, is beyond the scope of this book.

Let us turn to the definition of independence. Given n experi-
ments 90, W2, L., Wi, that is, n decompositions
E=AP 4 A3 4 -+ 4 41 E=1,2,....m
of the basic set E. It is then possible to assign » = »,r,. . .7, proba-
bilities (in the general case)
?lil-h-..-:r. = P[.A:r“i:‘?' te "{I"?:]}z o

which are entirely arbitrary except for the single condition® that

D ST (1)

Fos Tria-or ¥n

DEFINITION 1. n experiments 90, g0, |
mutually independent, if for any q., qu, . .
equation holds true:

PlAGAR. . A7) =P P(AD) ... P(4l) . (@)

« oy A are called
.+ s the following

" One may construct a feld n:rfJJmhahility with arbitrary probabilities sub-
jeet only to the above-mentioned conditions, as follows: E is composed of
elements  Sugy ... ga. Lot the corresponding elementary probabilities be
Parts... 0w and Anally let A be the set of all £,q,...q. for which
H=q-
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Among the = equations in (2), there are only r-ry-rs—. . . -7a+
n -1 independent eguations®.
THEOREM 1. If n experiments 9™, 9=, ..., W are mutu-

ally independent, then any m of them (m < n), A%, W, . yhi=,
are also independent®.
In the case of independence we then have the equations:
PUAY ... 45) = PUE)P (D). P(A) @)
{all iz must be different.)

DEFINITION IL n events A,, 4., .. ., A, are mufually indepen-
dent, if the decompositions (trials)
E=A,+ A, (k=12...,n)

are independent.

Inthiscaser, =, = ... = v, = 2, r = 2r; therefore, of the 2-
equations in (2) only 2"-n-1 are independent. The necessary
and sufficient conditions for the independence of the events 4,, A,,
v. .y Ay are the following 2% - n— 1 equations':

P(Ai 4. .. Ai) = P{A) P(A). . P4, (4)
m=1,2,..., 1,

1=, iy o Dy S 0.

All of these equations are mutually independent.
In the case n = 2 we obtain from (4) only one condition (2°-2 -

* Actually, in the ease of independence, one may choose arbitrarily only
rntet ...+ 4, probabilities )" = P{4) 80 a8 to comply with the n

conditions

21

]
Therefore, in the general case, we have r—1 degreea of freedom, but in the
case of independence only »+rt ... % rg-n

*To prove this it iz sufficient to show that from the mutual independence
of n desompositions follows the mutual independence of the first n-1. Let us
asgume that the equations (2) hold. Then

PlANAR... AT = TP (A5l AL .. A7)
In

w PlAN P{AD) .. PlAR™) 2P (A = PLAS) PLAd) ... PLAT "),
= Q.E.D.

™ See S, N. Bernstein [1] PP 47-57. However, the reader can easily prove
this himself (using mathematical induction),

5. Independence 11

1 = 1) for the independence of two events A, and 4,:
P[A:.Az} = P[Ai}P(AE} {5]

The system of equations (2) reduces itself, in this case, to three
equations, besides (5) :

P(A,A;) = P(A)P(4D)

P(4.4,) = P(A)P(4,)

P(A,A,) = P(A)P(4)

which obviously follow from (5).%t
It need hardly be remarked that from the independence of
the events 4,, A, ..., A, in pairs, i.e. from the relations

Pldd;) = P(AIP(4y) )

it does not at all follow that when n>2 these events are inde-
pendent??, {For that we need the existence of all equations (4).)

In introducing the concept of independence,no use was made
of conditional probability. Our aim has been to explain as clearly
as possible,in a purely mathematical manner, the meaning of this
concept. Its applications, however, generally depend upon the
properties of certain conditional probabilities.

If we assume that all probabilities P{A4,'") are positive, then
from the equations (3) it follows'® that

Patiags .. atim-n (457) = P(AZT") (6)
From the fact that formulas (6) held, and from the Multiplica-

tion Theorem (Formula (7), § 4), follow the formulas (2). We
obtain, therefore,

THEOREM I1: A necessary and sufficient condifion for inde-
pendence of experiments W1, WD, ., A n the case of posi-

¥ Pl Ay = P4} — Pld;4y) = P(d,) — P(4)) P(4y) = P4y {8 — Pldy)}
= Pd) P{dy) . ete.

" This can ba shown by the following simple example (3. N. Bernatein}) :
Let aet £ be eomposged of four elements &, .E..%,. £; the mrresdpanding elemen-
tary probabilities p., ps, P, v are each assumed to be %4 an

A= {Ep'egl'- B o= {'Ej- Eu}- C= {'Ep El} '
It is engy to compute that
PLA) =P{B) =P(C) =%,
P{AB)=P(BC) =P(AC) =% = (%)%
PUABC) =% + (%)%
L Tu{me: it, one must keep in mind the definition of conditional proba-

bilit ormula (5), § 4) and substitute for the ;rmhlbilitie! of products the
products of probabilities according to formula (3).

fl
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tive probabilities P(AY) is that the conditional probability of
the results AW of experiments N under the hypothesiz that
geveral other tests W 9% Wt hgne had definite resulfs
Aﬁ-tdfﬂ,.{iﬁ",.,.,.{"iﬂ is equal to the absolute probability
P{A,9).

On the basis of formulas (4) we can prove in an analogous
manner the following theorem:

THEOREM III. If all probabilities P(A,) are pogitive, then a
necessary and sufficient condition for mutue!l independence of

the events A,, A, ..., A, iz the satizfaction of the equations
Pﬂgl Ay e Ai!{AI} = F{Ai} (T}
for any pairwise different 4, 45, . . ., Ty &

In the case n = 2 the conditions (7) reduce to two equations:
P (ds) = Pldy),
Pd: {Al} s P["{I} .
It is easy to see that the first equation in (8) alone is a necessary

and sufficient condition for the independence of 4, and 4, pro-
vided P{4,) > 0.

§ 6. Conditional Probabilities as Random Variables,
Markov Chains

Let 9 be a decomposition of the fundamental set £:
E=A,4+A,+...+4,

and z a real function of the elementary event ¢ which for every
set A, Is equal to a corresponding constant a,. x is then called a
random variable, and the sum

E(z) =.§mm1

is called the mathematical erpectation of the variable x. The
theory of random variables will be developed in Chaps. 111 and IV.
We shall not limit ourselves there merely to these random vari-
ables which can assume only a finite number of different values.
A random variable which for every set 4, assumes the value
Pag(B), we shall call the conditional probability of the event B
after the given experiment W and shall designate it by Py(B). Two
experiments ! and N** are independent if, and only if,

&6, Conditional Probabilitice as Random Variables, Markov Chains 13

Pum(42) = P(4®)

Given any decompositions (experiments) 0, A= i) we
we shall represent by

g=1,2,..., .

gpeogpeE |, gim
the decomposition of set & into the products

AGVAD LA

Experiments %™, %=, ., % are mutually independent when
and only when

Pu:;. [ AL (] BT {A,!:‘IJ i P {A,I' ¥

k and g being arbitrary™.
DEFINITION : The sequence qee, Wy, L, W=, forms
a Markov chain if for arbitrary « and g

Fum“lﬂ e, WA I:A I;r} o P-m- -1 {Ag"j.

Thus, Markov chains form a natural generalization of se-
guences of mutually independent experiments. If we set

Pangn (1, ) = Py (A7) m<n ,

then the basic formula of the theory of Markov chains will assume
the form:

Pouga B, 1) = E.‘l"“ﬁh{'ﬁr”’]‘ Pomanim. ), k<m<n, (1)

If we denote the matrix !|ﬁ“,_(m.n:|]| by pim, n), (1)} can be
written as®:
plen) = plkm)p(mmn) k< m < n. (2}

¥ The necegsity of these eonditions follows from Theorem L1, § 5; that they
are also sufficient follows immediately from the Multiplication Theorem
(Formula {7) of §4).

* For further development of the theory of Markov chains, see R, v, Mises
El] § 16, and B. HosTINEKY, Méthodes générulos du caleul des probabilités,
UMém, Sci. Math” V. 52, Paris 1931,




Chapter II

INFINITE PROBABILITY FIELDS
§ 1. Axiom of Continuity
We denote by D Ay, as is customary, the product of the sets

Ap, (whether finite or infinite in number) and their sum by &4,,.
Only in the case of disjoint sets 4., is the form ‘:Z‘.»!_ used in“stemi
of 1?':‘:.4,.. Consegquently,

CAn=A,+ 4, + -,

Sha= A4 A+ oo,

DAy = A, 4, ---.

In all future investigations, we shall assume that besides Axioms
I-V, atill another holds true:

VI. For a decreasing sequence of events

A od;jo- 04,0 - (1)
of %, for which
DAy =0 , (2)
the following equation holds:
' lim P(A,) = 0. #—>oo (3)

In the future we shall designate by probability field only a
field of probability as outlined in the first chapter, which also
satisfles Axiom V1. The fields of probability as defined in the first
chapter without Axiom VI might be called generalized fields of
probability.

If the system §§ of sets is finite, Axiom VI follows from Axioms
I-V. For actually, in that case there exist only a finite number
of different sets in the sequence (1). Let 4, be the smallest
among them, then all sets- A ., coincide with A, and we obtain then

14

§1. Axiom of Continuity 15
Ay = "ll"tp:*?"in_—" 0,
mP(d,) = P{0) = 0.

All examples of finite fields of probability, in the first chapter,
satiafy, therefore, Axiom VI The system of Axioms I- VI then
proves to be consistent and incomplete,

For infinite fields, on the other hand, the Axiom of Continuity,
VI, proved to be independent of Axioms I - V. Since the new axiom
is essential for infinite fields of probability only, it is almost im-
possible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I1-V in §2 of the first chapter.
For, in describing any observable random process we can obtain
only finite fields of probability. Infinite fields of probability occur
only as idealized models of real random processes. We limit our-
selves, arbitrarily, to only those models which satisfy Axiom VI.
This limitation has been found expedient in researches of the
most diverse sort.

(GENERALIZED ApmTioN THEOREM : If A, As ..., Ay .. and
A belong to &, then from
Aw=3 A, (4)
]
follows the equation
Pld) = ZP(4,). (5)
n
Proaf: Let R,=3 A, .
mn
Then, obviously EP{E..} =10,
and, therefore, according to Axiom VI
lim P(R,) =0 n—+oo . (6)

On the other hand, by the addition theorem
P{A) = P(A4,) + P(d:) + ...+ P{4,) + P(R,) . (T)
From (6) and (7) we immediately obtain (5).

We have shown, then, that the probability P(4) iz a com-
pletely additive set function on §. Conversely, Axioms V and VI
hold true for every completely additive set function defined on
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14 II. Infinite Probability Fields

any field %.* We can, therefore, define the concept of a field of
probability in the following way: Let E be an arbitrary set, f a
field of subszets of K, containing K, and P(4) a non-negative com-
plately additive set function defined on §; the fleld % together
with the set function P(A) forms a field of probability.

A CovERING THEOREM: If A, A, A., ..., 4, ... belong to &
ad
Aec %A, o (8)
then
Pid) = FP(d.. {9
Proof : i

A= AB(4) = AA, + Aldy — 4, 4) + A4y — A dy — A A+ e,
P(d) = P(AA) + P{d(dy — A, 4))} + - S P(A) + Pdg) + -+~

§ 2. Borel Fields of Probability

The field % is called a Borel field, if all countable sumsX 4,
of the sets A, from § belong to . Borel fields are also called com-
pletely additive syvstems of sets. From the formula

\%A.‘=.‘ll+fr{,—.‘!,z],] + (A — Ay dy — A3 44) + -+ (1)
we can deduce that a Borel field contains also all the sums ;u" A,

composed of a countable number of sets 4, belonging to it. From
the formula

DAy =E —~ &4, (2)

the same can be said for the product of sets,

A field of probability is a Berel field of probability if the
corresponding field § is a Borel fleld. Only in the case of Borel
fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability. We
shall now prove that we may limit ourselves to the investigation
of Borel fields of probability. This will follow from the so-called
extension theorem, to which we shall now turn,

Given a field of probability (3%, P). As is known', there exists
a smallest Borel field BF containing #%. And we have the

* Bea, for example, 0. NIKODYM, Sur une généralisation des intdgrales de
M. J. Radon, Fund. Math. v. 15, 1930, p. 136,

' HausporvF, Mengenlehre, 1927, p. 86.

£ 2. Borel Fields of Probability i

EXTENSION THEOREM ; It is always possible to extend o non-
negative completely additive sef function P{A), defined in ¥,
to all sets of Bf without losing either of its properties (non-
negativeness and complete additivity) ond this can be done in
only one way.

The extended field BF forms with the extended set fune-
tion P(4) a field of probability (B, P). This field of probability
(B%, P) we shall call the Borel extension of the field (%, P)

The proof of thiz theorem, which belongs to the theory of
additive set functions and which sometimes appears in other
forms, can be given as follows:

Lot A be any subset of E; we shall denote by P*{4) the lower
limit of the sums

P4
for all coverings
Ac %A,

of the set 4 by a finite or countable number of sets A, of . It is
easy to prove that P*(4) is then an outer measure in the
Carathéodory sense®. In accordance with the Covering Theorem
(81), P*(A) coincides with P(4) for all sets of #. It can be fur-
ther shown that all sets of § are measurable in the Carathéodory
sense. Since all measurable sets form a Borel field, all sets of BR
are consequently measurable. The set function P*(A) is, there-
fore, completely additive on B%, and on B we may set

F{A) = P*{A).

We have thus shown the existence of the extension. The unigue-
ness of this extension follows immediately from the minimal
property of the field Bi.

Remark: Even if the sets (events) A of % can be interpreted
as actual and (perhaps only approximately) observable events,
it does not, of course, follow from this that the sets of the extended
field B reasonably admit of such an interpretation.

Thus there is the possibility that while a field of probability
(% P) may be regarded as the image (idealized, however) of

* CamaTHEODORY, Vorlesungen iiber reelle Funktiomen, pp237-208, (New
York, Chelses Publishing Company).
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actual random events, the extended field of probability (B, P)
will still remain merely a mathematical structure.

Thus sets of B are generally merely ideal events to which
nothing corresponds in the outside world. However, if reasoning
which utilizes the probabilities of such ideal events leads us to a
determination of the probability of an actual event of %, then,
from an empirical point of view also, this determination will
automatically fail to be contradictory.

§ 3. Examples of Infinite Fields of Probability

I In §1 of the first chapter, we have constructed various
finite probability fields,

Let now E = {§,, &, ..., &. ...} be a countable set, and let §
coincide with the aggregate of the subsets of E.

All possible probability fields with such an aggregate § are
obtained in the following manner:

We take a sequence of non-negative numbers p,, such that

ot e t...=1
and for each set 4 put
P(A) = 3'f..
L]

where the summation X’ extends to all the indices n for which
¢» belongs to A. These fields of probability are obviously Borel
fields.

II. In this example, we shall assume that E represents the
real number axis, At first, let % be formed of all possible finite
sums of half-open intervals [a; b) = {e & & < b} (taking into
consideration not only the proper intervals, with finite ¢ and b,
but also the improper intervals [~ oo; a), [a; + o) and [—oe;
+ o0} ). % is then a field. By means of the extension theorem, how-
ever, each field of probability on % can be extended to a similar
field on BF. The system of sets BJ is, therefore, in our case
nothing but the system of all Borel point sets on a line. Let us
turn now to the following case,

ITII. Again suppose E to be the real number axis, while i is
composed of all Borel point sets of this line. In order to construct
a field of probability with the given field §, it is sufficient to
define an arbitrary non-negative completely additive set-function

§ 3. Examples of Infinite Fields of Probebility 19

P(4) on & which satisfies the condition P(E) = 1. As is well
known? such a function is uniquely determined by its values

Pl-oo; 2} = F(x) {1)

for the special intervals [- o; =) . The function F{z) is called the
distribution funetion of £ Further on (Chap. III, § 2) we shall
shown that F(x) i non-deereasing, continuous on the left, and
has the following limiting values:
lim Flz) = F{—oc) =0, lim F(x) = F(400) = 1, (2}
o —e o

Conversely, if a given function F({x) satisfies these conditions,
then it always determines a non-negative completely additive set-
function P{A) for which P(E) = 1#

IV. Let us now consider the basic set £ as an n-dimensional
Euclidian space R», i.e., the set of all ordered n-tuples ¢ = { x,, .,

.+ Za} of real numbers, Let § consist, in this case, of all Borel
point-gets® of the space R» On the basis of reasoning analogous
to that used in Example II, we need not investigate narrower sys-
tems of sets, for example the systems of n-dimensional intervals,

The role of probability function P(A4) will be played here,
as always, by any non-negative and completely additive set-
function defined on % and satisfying the condition P(E) = 1. Such
a set-function is determined uniquely if we assign its values

P{Lu:.u,...u.] - F{‘Ij-arv"" di} {3}

for the special sets 1,,, ..., where L, , represents the
aggregate of all £ for which ;< o, (i=1,2,..., n).

For our funetion F (a,, a,, . . ., a,} we may choose any function
which for each variable is non-decreazing and continuous on the
left, and which satizsfies the following conditions:

lim Ffﬂl-al.-u;ﬂ"]FF{dl...,.#‘-_l,—ﬂﬂ,ai_”,.,,.a"]=1]_
o f=1,2,....8 8
lim Flay, ay.....8,) = F(+o0, +oo, ..., o) = 1.
-2 |:._ l}llil,+--+'qF{g1—slclpﬂ-z—ﬁg Cgoesnp By — Eulfﬂ} Ef}'
r,l:'l':l.i .
g >0, 1=1L2,%,:-4: ",

'Cf., for example, LEpESGUE, Legons sur intégration, 1928, p. 152-156,
' See the previous note,

'For & definition of Borel sets in B sce Havsporrf, Mengenlehre, 1027,

pp. 177-181.
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Fay, as, ..., a,) is called the distribution function of the vari-
ables x;, 22, . . ., 0.

The investigation of fields of probability of the above type
is sufficient for all classical problems in the theory of probability®.
In particular, a probability function in ®* can be defined thus:

We take any non-negative point function fiz,, z., . . ., Z.)
defined in RB», such that

o f o0 L]

dllr f---f_f{xl,.t,....,x,.}dxld,r!...d'x":»l

—_— —m  —om

and set
P{d) = JI'llr ...i{'f{x,,xz,...,xn}dx,dx,...dx” . (5)

flx, @, ..., x,) is, in this case, the probability densify at the
point (z,, %o, ..., .} (cf. Chap. IT1, § 2).

Another type of probahility function in RE* is obtained in the
following manner: Let (&} be a sequence of points of R», and
let {f} be a sequence of non-negative real numbers, such that
2 g = 1; we then set, as we did in Example I,

P(A) =2"p,

where the summation 2 extends over all indices i for which ¢
belongs to A. The two types of probability functions in B* men-
tioned here do not exhaust all possibilities, but are usually con-
sidered sufficient for applications of the theory of probability.
Nevertheless, we can imagine problems of interest for applica-
tions outside of this classical region in which elementary events
are defined by means of an infinite number of coordinates. The
corresponding fields of probability we shall study more closely
after introducing several concepts needed for this purpose. (Cf.
Chap. 111, § 3).

*Of., for example, R. v. Mises [1], pp. 13-18. Here the existence of proba-

hilities for “all practically possible’ sets of an n-dimensional space ia
reguired.

Chapter III

RANDOM VARIABLES

g 1. Probability Functions

Given a mapping of the set E into a set E' consisting of any
type of elements, i.e., a single-valued function % (¢) defined on E,
whose values belong to E’. To each subset A’ of E' we shall put
into correspondence, as its pre-image in E, the set u'(A") of all
elements of E which map onto elements of A’. Let ™ be the
system of all subsets A’ of E’, whose pre-images belong to the
field §. %' will then also be a field. If % happens to be a Borel
field, the same will be true of ', We now set

PO(A) =P {u='(4)}. ()

Sinee this set-function Pi+), defined on f*', satisfies with respect
to the field %™ all of our Axioms I- VI, it represents a proba-
bility function on §*, Before turning to the proof of all the facts
just stated, we shall formulate the following definition.

DEFINITION. Given a single-valued function »(¢) of a random
event 2. The function P {4"), defined by (1), is then called the
probakility function of w.

Remark 1: In studying fields of probability (f, P), we call the
function P(A) simply the probability function, but P (A"} is
called the probability function of u. In the case u(g&) = & P (A4")
coincides with P{4).

Remark 2: The event u*(A") consists of the fact that w(f)
belongs to A'. Therefore, P(=) (A"} is the probability of u(£)c A"

We still have to prove the above-mentioned properties of §™
and P, They follow, however, from a single fact, namely:

LEMMA, The sum, product, and difference of any pre-image
gets ' (A’) are the pre-imoges of the corresponding sums, prod-
ucts, and differences of the original sets A",

The proof of this lemma is left for the reader.

21
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Let A" and B’ be two sets of ™. Their pre-images A and B
belong then to . Since § is a field, the sefs AR, A + B,and A - B
also belong to % ; but these sets are the pre-imagea of the sets A'E’,
A"+ B, and A" - B', which thus belong to %™, This proves that
#% iz a field. In the same manner it can be shown that if iz a
Borel field, so is F'v,

Furthermore, it is clear that

PO (E’) = P{u-l(E)} =P(E) =1,
That Pi=} iz always non-negative, is self-evident. It remains only
to be shown, therefore, that P'*) iz completely additive (cf. the
end of §1, Chap. II).

Let us assume that the sets A°,, and therefore their pre-images
wt{d’,), are disjoint. It follows that

P[-J{Z.-_t ) = P {u- '{ZA.J}— P{Z""iiﬂ )}
._Z"P‘{u"{d..}} _; PEI Ay

which proves the complete additivity of P,

In conclusion let us also note the following. Let u,(¢) be a
function mapping E on E', and 1. (¢') be another function, map-
ping E’ on E”. The product function w.u, (¢) maps E on E”. We
shall now study the probability functions P*'{4") and P®{4")
for the funetions «,(£) and w(¢) = w1, (£). It iz easy to show
that these two probability functions are connected by the follow-
ing relation:

P (A7) = P (s (4")]. (2)

E 2. Definition of Random Variables and of
Distribution Funetions

DEFINITION. A real single-valued funetion x(£), defined on the
basic set E, is called a random variable if for each choice of a real
number o the set {x < a} of all § for which the mﬂqua.llt.y r<a
holds true, belongs to the system of sets ¥.

This function x(¢) maps the basic set E into the set R of all
real numbers. This function determines, as in § 1, a field F'= of
subsets of the set B'. We may formulate our definition of random
variable in this manner: A real function x (¢#) is a random variable
if and only if %' contains every interval of the form (-eof a).

£ 2. Definition of Random Variables and of Distribution Functions 23

Since F' iz a field, then along with the intervals (-oo; a) it
contains all possible finite sums of half-open intervals [g; b). If
our field of probability iz a Borel field, then §# and ' are Borel
fields; therefore, in this case §'° contains all Borel sefs of R

The probability function of a random variable we shall denote
in the future by P} (A"}, It is defined for all sets of the field Fi<!.
In particular, for the most important case, the Borel field of
probability, P is defined for all Borel sets of R

DeFINTTION. The function

Fia {g) = P} (~00,a) =P {x<a},

where —ee and + oo are allowable values of a, is called the distri-
bution funection of the rendom varieble z.

From the definition it follows at once that
Fifl (—oo) =0, Fia) (4 ) =1 . (1)

The probability of the realization of both inequalities a=x <,
is obviously given by the formula

P{z c [a; )} = F®{b) — Fi#H{a) (2)
From this, we have, for a<b,

Fi (a) < F (b)
which means that F'{a) is a non-decreasing function. Now let
) <y ...y < ... < b then
’-'E'{" S 2 B} =0

Therefore, in accordance with the continuity axiom,

FoO (5} — F& (a,) = P{x C [ag, b}
approaches zero asn-» 4 oc. From this it is clear that F (a) iz

continuous on the left.
In an analogous way we can prove the formulae:

lim Fie)(g) = Fist(-o0) =10, a=+-co, (3)
lim Fisi{g) = Fint{ +o0) =1, @ =+ + oo {4)

If the field of probability ({, P) is a Borel field, the values of
the probability function P?{A4) for all Borel sets A of R* are
uniquely determined by knowledge of the distribution funection
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Fis)(a) (cf. § 3, III in Chap. II). Since our main interest lies in
these values of P2 ({A), the distribution function plays a most
significant role in all our future work.

If the distribution function F'=}{a) is differentiable, then we
call its derivative with respect to a,

foda) = 7= FO(a) »
the probability density of x at the point a.
If also F'*) (g) = f fir'{a) da for each a, then we may ex-

press the probability function Pt (A) for each Borel set A in
terms of ' {e) in the following manner:

P®(A) = [ (a) da. (5)
A
In this case we call the distribution of x continuous. And in the

general case, we write, analogously
Pix) (4) =fa’F"ltaJ . (6)
A
All the concepts just introduced are capable of generalization
for conditional probabilities. The set function
P5'(d) = Pg(x = A)
is the conditional probability function of z under hypothesis B.
The non-decreasing function
Fi(a) = Pglz < a)

is the corresponding distribution function, and, finally (in the
case where FiJ (a) is differentiable)

() = 4= Fi(a)

is the conditional probability density of z at the point o under
hypotheais B.

§ 3. Multi-dimensional Distribution Functions

Let now n random variables z,, Zu, . . ., &, be given. The point
2= (2, %2 . . - , To) Of the n-dimensional space B~ is a function
of the elementary event ¢ Therefore, according to the general
rules in §1, we have a field = = .-om consisting of
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subsets of space B and a probability function P@®.=....=0 (A7)
defined on §'. This probability function iz called the n-dimensional
probability function of the random vasiables =, 2., . . ., z..

As follows directly from the definition of a random variable,
the field % contains, for each choice of i and a, (i=1,2,...,n),
the set of all points in B~ for which x, < a;. Therefore §’ also con-
tains the intersection of the above sets, ie. the set L., ..
of all points of R* for which all the inegualities z, < a; hold
(i=1,2,...,n)%

If we now denote as the n-dimensional half-open interval

[ﬂ-u E'ir*"+a'u:bh bm e ,bn} »

the set of all points in R», for which @, =z < b, then we see at
once that each such interval belongs to the field § since

[41- gy ooy g, b.. b!,._., th}
=Lt tn ™ Laypycba = Liyaabc e = = L by

The Borel extension of the system of all n-dimensional half-
open intervals consists of -all Borel sets in R*, From this it follows
that in the case of a Borel field of probability,the field § contains
all the Borel sets in the space E».

THEOREM : I'n the case of a Borel field of probability each Borel
flnetion z = f(x,, £s ..., 2.) of o finite number of random vari-
ables x,, %1, . . ., T, 18 also @ random variable.

All we need to prove this is to point out that the set of all
points {z,, 2s, ..., 2,) in B* for which =z = f(z,, 25 ..., T.) <a,
is a Borel set. In particular, all finite sums and products of random
variables are also random variables.

DEFINITION : The function

Fis, ilu---ﬁ]‘:n_" - A ‘.] = Pif1, Za, ooop Zad {th..--h]
iz called the n-dimensional distribution. function of the random
variables x,, £, .. ., Tn

As in the one-dimensional case, we prove that the n-dimensional
distribution function F#u® =g, o, ..., a,) is non-decreas-
ing and continuous on the left in each variable, In analogy to
equations (3) and (4) in § 2, we here have

'The oy may also assume the infinite values + oo
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Tim Fay, ay, -« -, @) = Flay, - - -5, =90, &gy - - &) =0, (T)
& — —oo

lim Fla,, 4y, - - -, @) = F{+o0, +eo, ..., 4oo) = 1. (8)

iy = foe, gy 08, ., Gy SOR
The distribution function Fi==...z0 gives directly the values
of P, o) only for the special sets Ly q, .., 4. 1f our field, how-
ever, is a Borel field, then? Pt s, ... 7 is uniquely determined for
all Borel sets in R by knowledge of the distribution function
Fimiy Tag oo T
If there exists the derivative

-
flay, age. o a,) = a

g Bilg oo u.Fhll:l.“”I“}{ﬂp Ty, ...Iﬂ:nj

we call this derivative the n-dimensional probability densgify of

the random variables ., Zs, . . - , Z. at the point @, as,. . ., 8. If
also for every point (&, a4, . . ., @)
Fisuss omd {a a, oo ) .—rf J' 7 .J.j{n],a,. coag)dagda ... dag,

then the distribution of #,, =, . . . , ¥, is called continuous. For
every Borel set Ac R~, we have the equality

P Ta, coei ) (A) __.ff_ --ﬁ':“l-“:- o g da dag .. odag.  (9)
i

In closing this section we shall make one more remark about
the relationships between the various probability functions and
distribution functions. -

Given the substitution

sa(t 2 )
fi0 Pgo .. EBuf g
and let rgdenote the transformation =4
= %4 (k=1,2...,n)
of space R» into itself. It is then obvious that
(10)
Now let 2’ = p,(z) be the “projection” of the space R= on the

gpace R* (k< n), so that the point (&1, 2, - - - » =) is mappedonto
the point (%, T3, ..., Tx). Then,as a result of Formula {2) in § 1,

P, Ty o i) (A) = P':‘"r"""z"‘}{?‘iif-‘ﬂ}-

*Cf. §8, IV in the Second Chapter,
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| SLE T PP T | f.{} — Ft#..n,....:.}{#}ﬂ{-‘!}}‘ (11)

For the corresponding distribution functions, we obtain from
{10} and (11} the equations:

Flis 7o e 7i) (@0 @, oo oy) = FEemda gy, o a,), (12}
iz 7a, ....ﬂ#{ﬂ!r g, vy = Fi= .-r..---.:.r{u“ B S T +W}.{13]

& 4. Probabilities in Infinite-dimensional Spaces

In § 8 of the second chapter we have seen how to construct
various fields of probability common in the theory of probability.
We can imagine, however, interesting problems in which the
elementary events are defined by means of an infinite number
of coordinates, Let us take a set M of indices u (indexing set) of
arbitrary cardinality m . The totality of all systems

& ={x}
of real numbers = where x runs through the entire set M, we
ghall eall the space R™ (in order to define an element ¢ in space
RM, we must put each element p in set M in correspondence with
a real number x, or, equivalently, assign a real single-valued
function x, of the element u, defined on M)*. If the set M consists
of the first n natural numbers 1, 2, . .., n, then B¥ is the ordinary
n-dimensional space v, If we choose for the set M all real num-
bers R, then the corresponding space RM = R¥ will consist of
all real functions
, En) = %,

of the real variable p.

We now take the set BR¥ (with an arbitrary set M) as the
basic set E. Let & = {x,} be an element in E; we shall denote by
Prsia... (&) the point (x,,%.....%,) of the n-dimensional
space B A subset A of E we shall call a cylinder sef if it can
be represented in the form

4= ﬁ‘i:rﬂ-a-ﬂ{‘i:}

where A’ is a subset of E* The class of all cylinder sets coincides,
therefore, with the class of all sets which can be defined by rela-
tions of the form

' Cf, HavsponrFF, Mengenlehre, 1927, p. 23.
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l‘{xp,p.zmu.-.,,."ﬂl =1 . (il}

In order to determine an arbitrary cylinder set fu,u,... (4" by
such a relation, we need only take as f a function which equals 0
on A’, but outside of A’ equals unity.

A cylinder set is a Borel cylinder set if the corresponding set
A’ iz a Borel set. All Borel cylinder sets of the space RM form a
field, which we shall henceforth denote by FM*.

The Borel extension of the field F we shall denote, as always,
by BFM. Sets in B%™ we shall call Borel sets of the space M.

Later on we shall give a method of constructing and operating
with probability functions on ¥, and consequently, by means of
the Extension Theorem, on BFY also. We obtain in this manner
fields of probability sufficient for all purposes in the case that the
set M is denumerable. We can therefore handle all questions
touching upon a denumerable sequence of random variables. But
if M is not denumerable, many simple and interesting subsets of
RM™ yemain outside of BF. For example, the set of all elements ¢
for which x, remaing smaller than a fixed constant for all
indices u, does not belong to the system BR™ if the set M is
non-denumerable.

It is therefore desirable to try whenever possible to put each
problem in such a form that the space of all elementary events ¢
has only a denumerable set of coordinates.

Let a probability function P(A) be defined on . We may
then regard every coordinate x, of the elementary event ¢
ag a random variable. In consequence, every finite group
(¥u0s Fpgs - - -+ %) OF these coordinates has an n-dimensional
probability function P, ..(4) and a corresponding digtribu-

* From the above it follows that Borel cylinder sets are Borel sets definable
by relations of type (1). Now let A and B be two Borel cylinder sets defined
by the relations

Flpge Fpge oo or Fpa) = 0, glrr,. . ... 1) =10 .
Then we can define the sets 4 + B, AR, and A - B respectively by the relations
f-g=0,
f+egt=0,
P4 wig) =0,

here —o for + 0 and w(0) =1 If f and g are Borel functions, so
e e b Tk g and i+ w(g): therefore, A + B, AB and A—J are Borel
cylinder sets, Thus we have shown that the system of sets " is a field.

LIRS e
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tion function F, .. . .00, @ ...
every Borel cylinder set

, @), It 18 obvious that for

4= .ib;.:ﬂn---r:. (A7),

the following equation holds:
Pld) = Pup, . pld?,

where A" is a Borel set of K. In this manner, the probability
function P is uniquely determined on the field F of all eylinder sets
by means of the values of all finite probability functions P ... s
for all Borel sets of the corresponding spaces R~ However, for
Borel sets, the values of the probability functions Pu,.,... ., are
uniquely determined by means of the corresponding distribution
funetions. We have thus proved the following theorem:

The set of all finite-dimensional distribution functions
Frpy...na uniquely determines the probability function P(A) for
oll sefs in M. If P(A) iz defined on %M, then (according to the
extension theorem) if iz uniguely defermined on BFM by the
values of the distribution functionsF, . . . .

We may now ask the following. Under what conditions does a
system of distribution functions F,,, .. given a priori define
a field of probability on ¥ {and, consequently, on BF¥) 7

We must first note that every distribution function F, . ..
must satisfy the conditions given in § 3, 1II of the second chap-
ter; indeed this iz contained in the very concept of distribution
function. Besides, as a result of formulas (12} and (14) in §2,
we have also the following relations:

.a) . (2)
v o), (3)

I:ﬁln,-...-p,-,"[“i.- Biyy wr W) = Fpy o pia (810 B0 oo

'Fm.r'----#t{alv LTI d'l} _—"j';u.u,_...n..tﬂu TR

where & < n and {: o :) is an arbitrary permutation.

TR T
These necessary conditions prove also to be sufficient, as will
appear from the following theorem.

FUNDAMENTAL THEOREM: Every system of disiribufion func-
tiong F,, ... . ... satisfying the conditions (2) and (3), defines a
probability function P{A) on %Y, which satisfies Axioms I- VI
This probability function P(A) can be extended (by the exten-
sion theorem) to BEY alzo.

Y P =
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Proof. Given the distribution funections F,,, ... satisfying
the general conditions of Chap. I1, § 3, IIT and also conditions (2)
and (3). Every distribution function F, ,, . defines uniquely
a corresponding probability function P,,,, .. for all Borel sets
of B= (cf. §3). We shall deal in the future only with Borel sets
of B~ and with Borel cylinder sets in E.

For every cylinder sat

A=pr  wld) >
we set

F‘{{” = PF1 fg---fin [A*,:I : {41

Since the same cylinder set A can be defined by various sets 4°,
we must first show that formula (4) yields always the same
value for P{A).

Let (x,.%,,....%,) be a finite system of random variables
%,. Proceeding from the probability function P, pyoe OF these
random variables, we can, in accordance with the rules in §3,
define the probability function Pu . ..., of each subsystem
(%us,e Zwyo - - -0 %) - From equations (2) and (3) it follows that
this probability function defined according to § 3 is the same as
the funetion Py, u, ..., given a priori. We shall now suppose that
the cylinder set A is defined by means of

A=pr gt
and simultaneously by means of

4= '#;Jillpfl""‘ﬁn{.’{”}
where all random variables x, and x, belong to the system

(i Ho g, %, » which is obviously not an essential restriction.
The conditions

(s - Bpgr o Zu ) C A
and
(an . x"‘.u' Thee x"‘;-] cA”

are equivalent. Therefore
Pty o (A = P (B s Fing, o -0 %) = A)
= P pein (B Fagyr oo By ) € AT = P (47,

which proves our statement concerning the uniqueness of the
definition of P(A).

ppp—
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Let us now prove that the field of probability (FM, P) satisfies
all the Axioms I - VI. Axiom [ requires merely that § be a field.
This fact has already been proven above. Moreover, for an arbi-
trary u:

E=pt{RY,
F{E) =F.(RY) =1,

which proves that Axioms IT and IV apply in this case. Finally,
from the definition of P(A4) it follows at once that P{A4) is non-
negative (Axiom IIT).
It is only slightly more complicated to prove that Axiom V
is also satisfied. In order to do so, we investigate two cylinder sets
A=pile )
and B =ty B

We shall assume that all variables x,, and =, belong to one inclu-
give finite system (x,,x,,... x,) . If the sets A and B do not
intersect, the relations

(x"‘i.’ LR
(Fugr Zyr o1 Fu) < B
are incompatible. Therefore

o x e d
and )

Pid 4+ B) = P#-#----#-{{x.u.-,- Tuis voon Xp) A
or [xﬂi.x#ﬁ..,.,xﬂ_]cﬂ"}
= Pp.,lr-g... "'i(x"iﬂ' g e x,.‘hj [ A’}

b Pl S 5 ) € B = P P,

which concludes our proof.
Only Axiom VI remains. Let
d,odio oA

be a decreasing sequence of cylinder sets satisfying the condition
limP(4,) =L = 0.

We shall prove that the product of all sets A, is not empty, We
may assume, without essentially restricting the problem, that in
the definition of the first n cylinder sets A, only the first n co-
ordinates z,, in the sequence

Bpr Fpar vorg Xpes v o
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occur, i.e.
A"‘ = :pr:ulm rt-{ﬂ‘}‘
For brevity we set
Pﬁ!t P Fh{B} = Pﬂ.{B] H
then, obviously
P.(B,) =P(A,) =L >0
In each set B, it is possible to find a closed bounded set UV, such

that
£
P.(B.- 1) = =
From this inequality we have for the set
Vo=t el Unl
the inequality
P(4.-V,) = -;_ (5)
Let, morever,
W=V Vy... V..
From (5) it follows that
P (An - WF, é E-
Since W,cV,c 4, , it follows that
PW)=Pld) —e=L—¢.

If £ 18 sufficiently small, P(W,) > 0 and W, is not empty. We
shall now choose in each set W, a point ¢ with the coordinates
z™ Every point ¢+, p =10, 1, 2, .. ., belongs to the set V,;
therefore

Exf:+r1' xf,':*"':'. ey z}::"'ﬂ) — ﬁ;ir....,u.{'s{‘i-ﬂ] cl,.
Since the sets [/, are bounded we may (by the diagonal method)
choose from the sequence {§™} a subsequence

Eim) E{""J R .E[N].

for which the corresponding coordinates xf::"" tend for any k to
a definite limit z,. Let, finally, £ be a point in set E with the
coordinates

Xpp = X
B

X.=0,

k=1,2,3....

& 6. Equivalent Random Variables; Various Kinds of Convergence a3

As the limit of the sequence (+{, =i, | &, i=1,2,8,..., the
point (x4, L., ..., x,) belongs to the set /.. Therefore, ¢ belongs to

Ay V=0 (U
for any & and therefore to the product
A= ?‘A} C

§ 5. Equivalent Random Variables; Various Kinds of Convergence

Starting with this paragraph, we deal exclusively with Borel
fields of probabilify. As we have already explained in §2 of the
second chapter, this does not constitute any essential restriction
on our investigations.

Two random variables x and y are called equivalent, if the
probability of the relation z ==y is equal to zero. It is obvious that
two equivalent random variables have the same probability fune-
tion:

Pisi{d) = P (4).

Therefore, the distribution functions F'*! and F are also
identical. In many problems in the theory of probability we may
substitute for any random wariable any equivalent variable.
Now let
By Lgr v v o s Bngare (1}

be a sequence of random variables. Let us study the set 4 of all
elementary events ¢ for which the sequence (1) converges. If we
denote by 4% the sets of ¢ for which all the following inequalities
hold

|tner = 5l < 7 k=129

then we obtain at onece
A=DEDAY . (2)

According to § 3, the set AT always belongs to the field & The
relation (2) shows that 4, too, belongs to §. We may, therefore,
speak of the probability of convergence of a sequence of random
variables, for it always has a perfectly definite meaning.

Now let the probability P(A) of the convergence set A be
equal to unity. We may then state that the sequence (1) con-
verges with the probability one to & random variable r, where
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the random variable x is uniguely defined except for equivalence.
To determine such a random variable we set

T = lim x, T =+ 0o

on 4, and £ = 0 outside of A. We have to show that z iz a random
variable, in other words, that the set 4 (a) of the elements ¢ for
which =z < a, belongs to . But

Afa) = ASD{xayp < a}
in case a = 0,and

Afa) = AGD{xnip <} + A4

in the opposite caze, from which our statement follows at once.

If the probability of convergence of the sequence (1) to =z
equals one, then we say that the sequence (1) converges almost
surely to x. However, for the theory of probability, another con-
ception of convergence is possibly more important.

DEFINITION. The sequence #., ¥+, . . . , ¥u, . . . of random vari-
ables converges in probabilily (converge en probabilité) to the
random variable z, if for any ¢ = 0, the probability

P{ls — x| > )
tends toward zero as n=—em b,

1. If the sequence (1) converges in probability to = and also
to x', then x and z" are equivalent. In fact

o> o1 12

since the last probabilities are as small as we please for a suffici-
ently large n it follows that

P{|x — '] }il =0
and we obtain at once that
Plx &)= ;‘P[h: —#|> 2 =0,
I1. If the sequence (1) almost surely converges to x, then it

* This concept is due to Bernoulli; its completely general treatment was
introduced by E. E. Slutsky (see [1]).
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also converges to x in probability. Let A be the convergence set
of the sequence (1) ; then

1 =P{A) < limP{|x,,, —z]<e.2=0,4,2,.. )} = limP{|x, — x| <},
L - oo

from which the convergence in probability follows.

1I1. For the convergence in probability of the sequence (1)
the following condition is both necessary and sufficient: For any
¢t = 0 there exists an n such thot,for every p > 0, the following
ineguality holds:

Pllepep — %al = €} <& .

Let Fo(a), Fala), ..., Fala), ..., F(a) be the distribution
functions of the random variables x,, 2 . . ., Tny - - -, % If the
sequence z, converges in probability to z, the distribution funec-
tion F{a) is uniquely determined by knowledge of the functions
F.{a)., We have, in fact,

THEOREM ; If the sequence Xy, Ls, o . . 4 Tny « » - CORVErgEs in
probability to x, the corresponding sequence of distribution fune-
tions F,(a) converges at each point of continwity of F(a) to the
distribution function F(a) of x.

That F(a) is really determined by the F,(a) follows from the
fact that F(a), being a monotone function, continuous on the left,
is uniquely determined by its values at the points of continuity®. To
prove the theorem we assume that F is continuous at the point
a. Let o' < a; then in case z < @', . =« it is necessary that
| Tn -z | > a—o'. Therefore

limP(x=<a, x,=a) =0,
Fa)=P(s<d) = P(zy<a) +Plx<a', sy ma) = Fy(a) + Plx<a, xa =4},
Fla") @ liminiF,(a) + limP{x<a’ x,=a),

Fla') = liminfF.la) . {3)
In an analogous manner, we can prove that from a” > a there
follows the relation

Fi{a")y = limsup Fy(a) . {4}

* In fact, it has at most only o countable set of discontinuities (see LEBESGUE,
Legons sur Uintégrotion, 1028, p. 50, Therefore, the points of continuity are
evarywhere dense, and the value of the funetion F{a} at a peint of discon-
tinuity is determined as the limit of its values at the points of continuity
on its left.
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Since F'(a") and F{a") converge to F{a) for a’' = a and a” — g,
it follows from (3) and (4) that

lim Fo(a) = F(a),

which proves our theorem.

e ————

Chapter IV

MATHEMATICAL EXPECTATIONS'

§ 1. Abstract Lebesgue Integrals

Let x be a random variable and A a set of . Let us form, for a
positive i, the sam

b o=
S = kiPklgx< (R+1)1, Ecd). (1)

k= —oa
If this series converges absolutely for every A, then as A — 0, 5,
tends toward a definite limit, which is by definition the integral

[P (dE) . (2)

r
In this abstract form the concept of an integral was introduced
by Fréchet?; it is indispensable for the theory of probability.
{The reader will see in the following paragraphs that the usual
definition for the conditional mathematical expectation of the
variable * under hypothesis 4 coincides with the definition of
the integral (2) except for a constant factor)

We shall give here a brief survey of the most important
properties of the integrals of form (2). The reader will find their
proofs in every textbook on real variables, although the proofs
are usually carried out only in the case where P(A) is the Lebeague
measure of sets in B". The extension of these proofs to the general
case does not entail any new mathematical problem: for the most
part they remain word for word the same.

1. If a random variable z is integrable on A, then it is in-
tegrable on each subset A" of 4 belonging to #.

II. If z is integrable on A and A4 is decomposed into no

! Am was stated inE 6 of the third chapter, we are considering in this, as well
as in the following chapters, Borel fieldz of probability only.

'FRECHET, Sur lintdgrale d'une functionnelle étendue d un ensemble
abetriit, Bull. Soc. Math, France v. 43, 1915, p. 248,

37



38 IV, Mathematical Expectations

more than a countable number of non-intersecting sets 4, of &,

then fo::e’E]:foP[a‘E’j_

A L

III. If z is integrable,| z | is also integrable, and in that case

|[+P@R)| £J|x|P(dEJ,

A

IV. If in each event £ the inequalities 0 = y = z hold, then
along with =, ¥ is algo integrable’, and in that case

[yPar) :5ij|[¢:!£‘]._
A
V. If m=x=M where m and M are two constants, then

mP (d) ﬁfo{n‘.E}ﬁMP[A},

VI. If z and ¥ are integrable, and K and L are two real con-
stants,then Kz + Ly iz also integrable, and in this case

[(Ex + Ly)P@E) = K [xP(E) + L [yP(dE).
A A A

VII. If the series
D[ 1zl PE)
n 4
converges, then the series
Zr. =
s|,

converges at each point of set 4 with the exception of a certain
set B for which P(B) = 0. If we set r = 0 everywhere except on

A - B, then
[xP(aE) = 3 [%PE).
A L |

VIIL If z and y are equivalent (P{x & y} = 0), then for
every set A of §

[xP@E) = [yP(E). (8)
A A

Tt is assumed that y is a random variable, i.e, in the terminology of the
general theory of integration, measurable with respect to §§ .
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IX. If (3) holds for every set 4 of ¥ then x and y are
equivalent.

From the foregoing definition of an integral we also obtain
the following property, which is not found in the usual Lebesgue
theory.

X. Let Py{4) and P,({A) be two probahility functions defined

on the same field &%, P(4) = P,(A) + P.{A),and let z be integrable
on A relative to P,(A4) and P.{4). Then

[xPdE) =ijl{dE} + [%P,€E).
A A
XI. Every bounded random variable is integrable.

& 2. Absolute and Conditional Mathematical Expectations
Let x+ be a random variable. The integral
E(z) = [2P(dE)
E
is called in the theory of probability the mathematical expectation -

of the variable z. From the properties III,/IV, V, VI, VII, VIII,
X1, it follows that

L |E(2)| = E(]z]);

II. E{y) = E(x) if 0 = y = x everywhere;
IIL. inf (z) = E(x) = sup (x);

IV. E{Kx + Ly) = KE{x) + LE(w);

V. E{ ¥z} = ME(x,), if the series 3'E({|x,|) converges;
=

VI. If x and y are equivalent then
E(x) = E(y).

VII. Every bounded random wariable has a mathematical
expectation.

From the definition of the integral, we have
k= 402
E(z) = thka{km =x< (k4 1)m}

= lim S Em{E(Ck + 1) m) — Flkm)} .
k= — oo
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The second line is nothing more than the usual definition of the
Stieltjes integral

4o

fa dF#{a) = E(x). (1)
Formula (1) may therefore serve as a definition of the mathe-
matical expectation E(x}.

Now let © be a function of the elementary event § and x be a

random variable defined as a single-valued function x = x(u)
of % Then

Plom = x < (k -+ 1) m) = PO{km =< x(u) < (k + 1) m},

where P(*)(A4) is the probability function of w. It then follows
from the definition of the integral that

[£P@E) = [+P0(aEW)
E Eiul
and, therefore,
Efx) = bl{x{u] P (d E19) (2)
where E! denotes the set of all possible values of u.
In particular, when w itself is a random variable we have

+oe
E(x) =3[x P(dE) .—_f; (1) PO (d RY) =fx{a} dF (g) . (3)
H —ea

When x(u) is continuous, the last integral in (3) is the ordinary
Stieltjes integral, We must note, however, that the integral

4oe .

[x(a)dF (a)
can exist even when the mathematical expectation E(x) does not.
For the existence of E{x), it is necessary and sufficient that the
integral

+ o
Jf | % (a)| dF® (a)
be finite®, -

If % is a point (44, Ma + . -, Ua) of the space Evthen as a result
of (2):

‘Of. V. GLIVENKD, Sur les valewrs probables de fonctions, Rend. Accad,
Lingei v, 8, 1928, pp, 430-483.
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E(x) =.U";J’t“1' Sy, ..., thy) PO S ) (R (4)

We have already seen that the conditional probability Pg(4)
possesses all the properties of a probability function. The corres-
ponding integral

Es (2) = !x Ps{dE) (5)

we call the conditional mathematical expectation of the random
variable z with respect fo the event B, Since

Py(B) =0, [xPsldE)=o0,

B
we obtain from (5) the eguation

Eglz) =erPB|[dE‘: = [ Py(dE) +fo Ps(dE) =Jz Py(dE).
E B i
We recall that in case A =R,

Py(d) = DIABL _ PA)

FiB) ~ PiB)}
we thus obtain
Ealx) = pgg7 [*PUE}, (6)
B
[%P(dE) = P(B)Ey (). (7)

B
From (6) and the equality

[xP(dE) = [xP(E) + [xP(dE)
A H

A+H
we obtain at last
P{A)E, (2} + P(BE
Esoply) = AR LT Selt) (8)
and, in particular, we have the formula
E(x) = P(d) E4(x) + P(4) Ej{x). (9)
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§ 3. The Tchebycheff Inequality

Let f{x) be a non-negative function of a real argument =z,
which for £ = a never becomes smaller than & > 0. Then for any
random variable z

Pleza) < YD )

provided the mathematical expectation E{f(x)}  exists. For,

Eff(x)} “jfx‘}P{d,EJ = [{(x)PUE) = bP(x=a),
{zz=a}
from which (1) follows at once.
For example, for every positive ¢,

P{x‘ba}lEE‘E:]. (2)

Now let f{z) be non-negative, even, and, for positive z, non-
decreasing. Then for every random variable z and for any choice
of the constant a > 0 the following inequality holds

P(x|za) = SN, (3)
In particular,
P{|x-—E1x}|§a}5%E-{ﬂ}. (4)

Especially important is the case f(z) = 2*, We then obtain from

(3) and (4)
P cLaj (5)

E(r —EE)F o
- .} (6)

Pllx —Enl| =a) =

where
o0 {x) = E{x — E(x}}®

is called the variance of the variable x. It is easy to caleulate that
at(x) = E(2%) — {E(x)]2,

If f(x) is bounded:
[ f(=) | =

then a lower bound for P(|z| = a) can be found. For

PR T )

§4. Bome Criteria for Convergence 43

E(fix) = j (%) P(dE) = [ynxl P(dE) + | {(x) P(dE)
HEI B H {i=]& e}
= @) P(lx| < a) + KP(lz] = a) = fla) + KP(|2| = a)
and therefore

Efftx} — fla)
J 1) (7)

If instead of f(r) the random variable z itself is bounded,
lz|=M,
then f{x) = (M), and instead of (7), we have the formula

E(fix)) — fla)
BT (8)

Pll#| = a} =

Plls] = a) 2

In the case f(x) = z*, we have from (8)

P(lx| = a) z E)— o', (9)

§4. Some Crileria for Convergence
Let
L R (1)
be a sequence of random variables and f(z) be a non-negative,

even, and for positive r a monotonically increasing function®.
Then the following theorems are true:

L. In order that the sequence (1) converge in probability the
following condition is sufficient : For each & > 0 there exists an n
such that for every p > 0, the following inequality holds:

E {f(*npp — 2w} <€ . (2)

II. In order that the sequence (1) converge in probability to
the random variable x,the following condition is sufficient :
lim E{f(z, — x)} = 0. (3)
L]

II. If f(z) is bounded and continuous and f(0) =0, then
conditions 1 and IT are alao Necessary.

IV. If f{x) is continuous, f(0) = 0,and the totality of all
E1y T2y« o 4y Ty« o ., & 18 bounded,then conditions I and 11 are also
Necessary.

* Therefore fix) > 0 if = *n.
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From II and IV, we obtain in particular
V. In order that sequence (1) converge in probability to =,
it is sufficient that
limE(z,—z)*=0. (4)

If also the totality of all z,, z,, .. ., Tuy . . . , & is bounded, then the
condition is also necessary.

For proofs of I-IV see Slutsky [1] and Fréchet [1]. How-
ever, these theorems follow almost immediately from formulas
{3) and (8) of the preceding section.

§ 5. Differentiation and Integration of Mathematical Expectations
with Respect to a Parameter

Let us put each elementary event ¢ into correspondence with a
definite real function x(¢) of a real variable {. We say that z(t)
is a random funetion if for every fixed f, the variable z(f) iz a
random variable. The question now arizes, under what conditions
can the mathematical expectation sign be interchanged with the
integration and differentiation signs. The two following theorems,
though they do not exhaust the problem, can nevertheless give a
satisfactory answer to this question in many simple cases.

THEOREM 1: If the mathematical expectation E[x(2)] is finite
for any &, and () iz always differentiable for any ¢, while the
derivative x'(t) of z(t) with respect o ¢ iz always less in abso-
lute value than some consiant M, then

T EG) = E).

TueoreM II: If x(t) always remains less, in absolute value,
than some constant K and is integrable in the Riemann sense, then

fE{xm} d1=E|fxm.u].

provided E[z ()] is integrable in the Riemann sense.

Proof of Theorem I. Let us first note that ' (£) as the limit of
the random variables
#le+ ) — x(8)

1 1
+ h=1, - ik

AT e I

is also a random wvariable. Sinece z'(#) is bounded, the mathe-

§ 5. Differentiation and Integration of Mathematical Expectations 46

matical expectation E[x'(t)] exists (Property VII of mathe-
matical expectation, in § 2).  Let us choose a fixed t and denote

by 4 the event
2+ A — #(f)
|—'T_" - x’[::||:3= £,

The probability P{A) tends to zero as b — 0 for every £ > 0, Since
|’—‘f—+—"}:-’i‘ﬂ =M, |sl)j=M

holds everywhere, and moreover in the case A

) !’it"‘"‘&_x“}—x’{ﬂlge ,

then

|Ext+ B~ Ex(e)
i ]

=P B, XA =20 20|+ PA) B | TR =20 |
= 2MP(4) +¢.

We may choose the « > 0 arbitrarily, and P(A) is arbitrarily

small for any sufficiently small h. Therefore

Ex(i+ 4 —Ex(t)
k

—~E¢'{£}||§E|M—x‘[s]|

2 Ex() = lim —Ex(Y),

b0

which was to be proved.
Proof of Theorem II. Let

k=
S‘=%2’x{;+§h}_ hm Bl
ey
b

Since 8§, converges to J = f:r{ﬂ} dt, we can choose for any

e >0 an N such that from n = N there follows the inequality
PlA) =P5i—J|=e}l<e.

If we set r
St=¢ D Ex(t+ kh) = E(S,),
k=1
then

[Sa—EN=|ES.— DN=ES.— T
=P(A)E4|Su — J| + P(A)E4|S, — [l = 2KP(A) + ¢ = (2K + 1)e.
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Therefore, 5% converges to E{J}, from which results the equation

]
JrExm dt = limS* = E(J).
[}

Theorem I can easily be generalized for double and triple
and higher order multiple integrals. We shall give an application
of this theorem to one example in geometric probability. Let G bea
measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event ¢ of a field
of probability a definite measurable plane region G. We shall
denote by J the area of the region &, and by P(zx, y) the prob-
ability that the point (z, ¥) belongs to the region 7. Then

E()) = [[Plx,y)dxdy.
To prove this it i3 sufficient to note that
I =[[H=.v)dzdy,
Pix,¥) = Ef{x.3),

where f(x,y) is the characteristic funetion of the region &
(f(z,y) = lon G and f(z, y) = 0 outside of )"

*Of. A, KouMocogoy and M. LEoNTOICH, Zur Berechnung der mittleren
Brownschen Flache, Physik, Zeitsehr, d. Sovietunion, v. 4, 1933,

Chapter V

CONDITIONAL PROBABILITIES AND
MATHEMATICAL EXPECTATIONS

§ 1. Conditional Probabilities

In § 6, Chapter 1, we defined the conditional probability, Pa(8),
of the event B with respect to trial 9. It was there assumed that %
allows of only a finite number of different possible results. We
ean, however, define Py(B) also for the case of an % with an infinite
set of possible results, i.e. the case in which the set E is partitioned
into an infinite number of non-intersecting subsets, In particular,
we obtain such a partitioning if we consider an arbitrary function
u of ¢ and define as elements of the partition %, the sets « = con-
stant. The conditional probability Py_(B)we also denote by P.(BE).
Any partitioning % of the set £ ean be defined as the partitioning
9, which is “induced"” by a function u of £, if one assigns to every £,
as w(¢), that set of the partitioning % of F which contains £

Two functions u and u’ of £ determine the same partitioning
9, = N, of the set E if and only if there exists a one-to-one cor-
respondence w' = f(u) between their domains §™ and F" such
that «' (¢) is identical with fu(£). The reader can easily show that
the random variables P,(B) and P.{B),defined below, are in this
case the same. They are thus determined, in fact, by the partition
N, = N, itself.

To define P, (B) we may use the following equation:

Pueay{B) = Eque 43 Pul(B). (1)

It is easy to prove that if the set E'* of all possible values of u is
finite, equation {1) holds true for any choice of A (when P, (B}
iz defined as in § 6, Chap. I). In the general case (in which P, (B}
is not vet defined) we shall prove that there always exists one
and only one random variable P,(B) (except for the matter of
equivalence) which is defined as a function of u and which satis-
fies equation (1) for every choice of 4 from F'* such that

47
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Pi(A) = 0. The function P,(B) of u thus determined to within
equivalence, we call the conditional probability of B with respeet
to u (or, for a given u). The value of P,(E) when u = ¢ we shall
designate by P,(a; B).

The proof of the existence and unigueness of P,(B). If we
multiply (1) by P{sc A4} = P (A4), we obtain, on the left,

P{uc A}Puc4(B) = P(B{uc A)) = P(Bu-'(4))
and, on the right,

P{4 < 4} Eque 0y Pu(B) = [Pu(B) P(AE) = [P, (B) PM @dEW),
fucd} A

leading to the formula
P(Bu-'(d)) = [Py(B) PO (dE™) (2)
A

and conversely (1) follows from (2). In the case Pis)({4) = 0,
in which case (1) is meaningless, equation (2) becomes trivially
true. Condition (2) is thus equivalent to (1). In accordance with
Property IX of the integral (§ 1, Chap. IV) the random variable
z is uniquely defined (except for equivalence) by means of the
values of the integral

!:Pd{E}

for all sets of §. Since P.(B) is a random variable determined
on the probability field (§F™), P}, it follows that formula (2)
uniquely determines this variable P,(B) except for equivalence.

We must still prove the existence of P,(B). We shall apply
here the following theorem of Nikodym:*:

Let % be a Borel field, P(4) a non-negative completely additive
set funection defined on § (in the terminology of the probability
theory, a random variable on (#, P)), and let Q{A) be another
completely additive set function defined on §, such that from
Q{A)+ 0 follows the inequality P{A)} = 0. Then there exists &
funetion f(£) (in the terminology of the theory of probability,
a random variable) which is measurable with respect to %, and
which satisfies, for each set A of &, the equation

' 0. NIKoDYM, Sur une généralization des intégrales de M. J. Ro don, Fund.
Math. v. 15, 1930 p. 168 [ Theorem III). d o
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Q(4) = [f(&) P (dE).
A

In order to apply this theorem to our case, we need to prove
17 that
Q(A) = P(Bu—'(4))
is a completely additive funetion on F, 2° that from Q(A) $0
follows the inequality P {A4) = 0.
Firstly, 2° follows from
0= P{Bu-1(4)) = P{u-'(4) = P™(4).

For the proof of 1° we set

A= T4,
then )
wl(d) = Fu-(4,)
and Bu-1{d) = X Bu-'(4,).

Since P is completely additive, it follows that
P{B u-1jd,)) = Z‘ P(Bu-1A)) ,
L]

which was to be proved.

From the equation (1) follows an important formula (if we
set 4 = Ewd)

P(B) = E(Pu(B)). (3)

Now we shall prove the following two fundamental properties
of conditional probability.

THEOREM 1. [t iz almost sure that

0=P.(B) =1. (4)

TueoreM II. If B is decomposed into at most a countable
number of sets B, :

B = ZIB,; ¥
"
then the following equality holds almost surely:
FulB) =§.‘Pu[E.J- (5)

These two properties of P,(H) correspond to the two char-
acteristic properties of the probability function P(B): that
0 = P(B) = 1 always, and that P(B) is completely additive, These



60 V. Conditional Probabilities and Mathematical Expectations

allow us to carry over many other basic properties of the absolute
probability P(B) to the conditional probability P,(R). However,
we must not forget that P,(B) is,for a fixed set E, a random vari-
able determined uniquely only to within equivalence.

Proof of Theorem I. If we assume—contrary to the assertion
to be proved—that on a set M = E'= with Pi* (M) > 0, the in-
equality P,(B) =1 +e, ¢> 0, holds true, then according to for-
mula (1)

Pruc a3 (B) = Efuean PulB) =1 4+ ¢,

which is obviously impossible. In the same way we prove that
almost surely P (B} = 0.

Proof of Theorem II. From the convergence of the series
2 E|Pu(B)| = T E(P.(B)) = X P(B,) = P(B)
n n n

it follows from Property V of mathematical expectation {Chap.
IV, § 2) that the series
2 PulBd)

almost surely converges. Sinee the series
;E{;g A Pu(Ba}| = 2 Epue 3 (PulBy)) = F Pruc 43(Ba) = Ppuc 1)(B)
" "

converges for every choice of the set A such that P {4) = 0,
then from Property V of mathematical expectation just referred
to it follows that for each A of the above kind we have the relation

E{t:.ll} (; P'B{BI}} — g E{‘nc A}{P-‘Bn}] — P{sci} fﬂ} L E{acl}{Pi{Bl]JI

and from this, equation (5) immediately follows.

To close this section we shall point out two particular cases.
If, first, u(g) =¢ (a constant), then P.(4) = P(4)} almost
surely, If, however, we set u(¢) = ¢ thenwe obtain at once
that Py(4) is almost surely equal to one on A and is almost surely
equal to zero on A. Py(4) is thus revealed to be the characteristic
function of set A.

§ 2. Explanation of a Borel Paradox

Let us choose for our basic set E the set of all points on a
spherical surface. Our § will be the aggregate of all Borel sets
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opposite points for our poles, so that each meridian cirele will be
unigquely defined by the longitude ,0=w < x . Since v varies
from 0 only tos, — in other words, we are considering complete
meridian circles (and not merely aemicirclel;} -—thg latitude @
must vary from —x to 4a (and not from —3 to -3 ). Borel set
the following problem: Required to determine “the conditional
probability distribution” of latitude ® —a=6@ < +4x, for a
given longitude v,
It is easy to caleulate that

y
Pr{6; = 0 < 6} = §[|c0s8) 48 .
By

The probability distribution of @ for a given ¥ iz not uniform.

If we assume that the conditional probability distribution of
& “with the hypothesis that ¢ lies on the given meridian circle”
must be uniform, then we have arrived at a contradiction.

This shows that the concept of a conditional probability with
regard to an isolated given hypothesiz whose probability equala 0
is inadmissible. For we can obtain a probability distribution
for @ on the meridian circle only if we regard this circle as an
element of the decomposition of the entire spherical surface into
meridian circles with the given poles.

§ 8. Conditional Probabilities with Respect 1o a Random Variable

If » is a random wvariable and P,(B) as a function of z is
measurable in the Borel sense, then P,(B) can be defined in an
elementary way. For we can rewrite formula (2) in § 1, to look
as follows:

P(B) PF (4) =fF.{B} PENIE). (1)
A

In this caze we obtain from (1) at once that
a
P(B)F§ (a) = [P.(a; B) dF ¥ (a) . (2)

In accordance with a theorem of Lebesgue? it follows from (2)
that

o . Fila+ k) — Fi(a)
Pula; B) = P(B) lim g k-0 (3)

of the spherical surface. And finally, our P(A) is to be propor-
tional to the measure of set A. Let us now choose two diametrically

which is always true except for a set H of points a for whic
Pin(H) =0. £ 8 H. &

' Lebesgue, L e, 1928, pp. 301-302.
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P.(z; B} was defined in §1 except on a set G, which is
such that P () = 0. If we now regard formula (3) as the defi-
nition of P;(a; B) (setting P.(a; B) = 0 when the limit in the
right hand side of (3) fails to exist), then this new variable
gatisfies all requirements of §1.

If, besides, the probability densities /) (a) and f§ (o) exist
and if fi(a) = 0, then formula (3) becomes

Pe(e; B) = P(B) gvf%. (4)
Moreover, from formula (3) it follows that the existence of a
limit in (8) and of a probability density fi*}{a) results in the
existence of /%% (a). In that case

P(B) f§(a) = [“)a) . (5)
If P(B) = 0, then from (4) we have

f5 (o) = 2@, (6)

In case fi*}(a) = 0, then according to (5) f={a) = 0 and there-
fore (B) also holds. If, besides, the distribution of x is continuous,
we have

+0a +aoa
P(B) = E(Pu(B)) = [P, (a; B) dF)(a) = [P,(a; B) /" (a)da. (T)

From (8) and (7) we obtain

fla) = — el B e (8)
S Pela; BY fo(a) da

This equation gives us the so-called Bayes Theorem for continu-
ous distributions. The assumptions under which this theorem is
proved are these: P,{B} is measurable in the Borel sense and at
the point a is defined by formula (3}, the distribution of z is con-
tinuous, and at the point a there exists a probability density
fier{a).

§ 4. Conditional Mathematical Expectations

Let u be an arbitrary function of ¢ and y a random variable.
The random variable E,(y), representable as a function of « and
satiafying, for any set 4 of F* with Pi¥{ 4} = 0, the condition
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E{uﬂ-l}b'] — E{IEA}EK{}IJ I {l:l

is called (if it exists) the conditional methematical expectation af
the variable ¥ for known value of .
If we multiply (1) by P (4}, we abtain

[yP@E) = [Ely) PO (@ES) . (2)
{ue A} A
Conversely from (2) follows formula (1). In case P (4) =0,
in which case (1) is meaningless, (2) becomes trivial. In the
same manner as in the case of conditional probability (§1) we
can prove that E.(y) is determined uniquely—except for equiva-
lence—by (2).

The value of E,(y) for ¥ = a we shall dencte by E.(a; y). Let

us also note that E,(y), as well as P,(y), depends only upon the
partition ¥, and may be designated by Ey_(v).

The existence of E(y) iz implied in the definition of E,(y) (if
we set A = E™, then Eg.q(y) = E(y)).

We shall now prove that the existence of E(y) 18 also suficient
for the existence of E,(y). For this we only need to prove that by
the theorem of Nikodym (§ 1), the set function

Q(d) = [yP(E)

{u=a}

is completely additive on F% and absolutely continuous with
respect to P ({4), The first property is proved verbatim as in
the case of conditional probability (§1). The second property—
absolute continuity—is contained in the fact that from @(A)3=0
the inequality P®'{4) = 0 must follow. If we assume that
P (A) =P {uc 4} = 0,it is clear that

Q(4) = [yP@E) =0,
fuwe 4}

and our second requirement is thus fulfilled.
If in equation (1) we set 4 = E'!, we obtain the formula

E(y) =EE(v) . (3)
We can show further that almost surely
E,{ay + bz} = aE,(y) + bE,(2) . {4)

where a and b are two arbitrary constants. (The proof is left to
tha reader.)
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If u and v are two functions of the elementary event £ then
the couple (%, v) can always be regarded as a function of & The
following important equation then holds:

Eu B (¥} = Eufy). (5)
For,E,{y} is defined by the relation
Euweay () = Euey Ealy)

Therefore we must show that EE,, ., (y) satisfies the equation

E{m: aly) = E{Ir_J}El El:-.t-:l . (6)
From the definition of E, ., (y) it follows that
E{lu: A} f}'] = E{ul: A} E1_u,l} {:f'} . {T]
From the definition of E.E,,., () it follows, moreover, that
E{l:l: A} El:um] {}'] — E(u.n: AY Eu E[u.r] [j"} - {S]

Equation (6) results from equations (7) and (&) and thus proves
our statement.

If we set y = P, (B) equal to one on B and to zero outside of B,
then Eufy) = Pu(B),
Epu yily) = P.:.,,,}{HJ .
In this case,from formula (5) we obtain the formula

E.Pu (B =P, (B). (9)

The conditional mathematical expectation E,(y) may also be

defined directly by means of the corresponding conditional prob-
abilities. T'o do this we consider the following sums :

]

Si{m) T—E RAP (Rl m y < (k4 1)1} = ;‘R;. (10)

If E(y) exists, the series {10} almost certainly* converges. For
we have from formula (3), of §1,

E|Ry| = |k2|P{ki = y < (k + 1)} 4},

and the convergence of the series

L= 4o
L RP(RE =y < (k4 1)1} = X E|Ry|
- ol ]

* We use almost certainly interchangeably with almost surely.
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is the neceasary condition for the existence of E(y) (see Chap. IV,
§1). From thia convergence it follows that the series (10) con-
verges almost certainly (see Chap. IV, §2, V). We can further
show, exactly as in the theory of the Lebesgue integral, that from
the convergence of (10) for some A, its convergence for every a
follows, and that in the case where series (10) converges, 5, (u)
tends to a definite limit as A — 0®. We can then define

E.{y) = Jiiﬂsgcu} c (11}

To prove that the conditional expectation E,(y) defined by rela-
tion {11) satisfies the reguirements set forth above, we need only
convinee ourselves that E,(y), as determined by (11), satisfies
equation {1). We prove this fact thus:

Efucay Euly) = iirr:'E{u 4y 51 (u)

= ol
=lim S R1Puc (ki Sy < -+ D1} = Eaen0)-

The interchange of the mathematical expectation sign with the
limit sign is admissible in this computation, since 5, (1) con-
verges uniformly to E, (¥) as A — 0 (a simple result of Property V
of mathematical expectation in §2). The interchange of the
mathematical expectation sign and the summation sign is also
admissible since the series

-]

ke
, 2 Ewen (b Pk =y < (k4 1) 2)

k= 4%oma
TZ_'I*lIP{.H;{H =y<(k+ 14

- - =)

converges (an immediate result of Property V of mathematical
expectation).
Instead of (11) we may write

E.ly) = [yPu(dE). (12)
E
We must not forget here, however, that (12) is not an integral

*In thie ease we consider only a tountable sequence of values of 4; then
all probabilities P, {kl g ¥ < (8 + 1)} are almost certainly defined for all
these valusof A,
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in the sense of §1, Chap. IV, so that (12) is only a symbolic
expression.
If z iz a random variable then we call the function of » and a

F®{a) = P, (v < a)

the conditional distribution function of ¥ for known x.

F,"(a) is almost certainly defined for every a. If ¢ < b then
almost certainly

F¥(a) = F®(b).

From (11} and {10) it follows* that almost certainly

k= 3
E: (¥} = ;in}Jt ZH[F';“{[J! + 1)1) — F{g1)], (13)
This fact can be expressed symbolically by the formula
Eae
Ely) = [ad F¥(a) (14)

By means of the new definition of mathematical expectation [(10)
and (11)]it is easy to prove that,for a real function of u,

Eulf () ¥] = fiw) Euly) . (15)

* Cf. footnota B.

Chapier VI

INDEPENDENCE; THE LAW OF LARGE NUMBERS

§ 1. Independence
DEFINITION 1: Two functions, « and v of ¢ are mutually inde-
pendent if for any two sets, 4 of %, and B of ", the follow-
ing equation holds:

Pluc A, veB) =Pluwc A)Plve B) = P={A) PR({B) . (1)
If the sets E'= and £ consist of only a finite number of elements,

E®) =ty + thy + -+ + #,

Eft =p v+ o0 + vy,

then our definition of independence of u and v is identical with
the definition of independence of the partitions

E =¥{l¢ == “i’}l
E=%‘:{ﬂ == '!.l.}

as in § 5, Chap. I.

For the independence of u and v, the following condition is
necessary and sufficient. For any choice of set 4 in §! the
following equation holds almost certainly:

Poluc A) =Pluc A), (2}

In the caze Pie' (B) = 0,both equations (1) and (2) are satisfied,
and therefore we need only prove their equivalence in the case
P (B) > 0. In this case (1) is equivalent to the relation

Premivc d) = Pluc A) (3}
and therefore to the relation
EpemPoftc dA) =Pluc d) . (4)

On the other hand, it is obvious that equation (4) follows from
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(2). Conversely since P,(ucA) is uniquely determined by (4)
to within probability zero, then equation (2) follows from (4)
almost certainly.

DerFiNITION 2: Let M be a set of functions i, (£) of & These
functions are called mutually independent in their totality if the
following condition is satisfied. Let M" and M"” be two non-
intersecting subsets of M, and let 4’ (or A”) be a set from ¥
defined by a relation among «, from M’ (or M") ; then we have

P(A’A") = P(4) P(4").

The aggregate of all's, of M’ (or of M") can be regarded as
coordinates of some funetion «' (or w"). Definition 2 requires
only the independence of ¥ and u” in the sense of Definition 1 for
each choice of non-intersecting sets M" and M".

If w,, g, . . ., U, are mutually independent, then in all cases

Pluycd, uycd,, ..., u,cd,} 1

=Pl A)Plu,c Ay} ... Plu,c 4,), (6)

provided the sets A, belong to the corresponding §™' (proved
by induction). This equation is not in general, however, at all
sufficient for the mutual independence of .y, 4., . . ., Ya-

Equation (5) is easily generalized for the case of a countably
infinite product.

From the mutual independence of u, in each finite group
{um,ﬁh,...,uﬂj it does not necessarily follow that all #, are
mutually independent.

Finally, it is easy to note that the mutual independence of the
functions %, is in reality a property of the corresponding parti-
tions ‘E;P. Further,if «, are single-valued functions of the cor-
responding «,, then from the mutual independence of u, follows
that of .

§ 2. Independent Random Variables

If 2, %o, . . ., X, are mutually independent random variables
then from egquation (2) of the foregoing paragraph follows, in
particular, the formula

Fifw s cumdia, g, ..., a) = F®{a,) Fid(a,) .. Fistfa). (1)
If in this case the field = = ... =0 consists only of Borel sets of
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the spaee B*, then condition (1) iz also sufficient for the mutual
independence of the variables 2, T, ..., T

Proof. Let ' =({x, x,,....x) and 2"=(x,.x,.....x,) be
two non-intersecting subsystems of the variables z,, x. . . ., Tu.
We must show, on the basis of formula (1), that for every two
Borel sets A" and A” of B* {or B™) the following equation holds:

Prrcd x"cA)=PEcd)Pix"c A7), (2)
This follows at once from (1) for the sets of the form
A= <a, x,<ay, ... %<&,
A= {xy, << by, x5, Ty, ..., 2y, < B}

It ean be shown that this property of the sets A’ and A" is pre-
served under formation of sums and differences, from which
equation (2) follows for all Borel sets.

Now let & = {x,} be an arbitrary (in general infinite) aggre-
gate of random variables. If the field §'* cotneides with the field
BHFM (M ia the set of all u), the aggregate of equations

Fupy...paltyy 8y, ooy @) = Fo (@) Fuy(ag) ... Fuofa)  (3)

is necessary and sufficient for the mutual independence of the
varighles x, .

The necessity of this condition follows at once from formula
{1). We shall now prove that it is also sufficient. Let M' and M"™
be two non-intersecting subsets of the set M of all indices », and
let A* {or A”) be a set of BF%Y defined by a relation among the x,
with indices p from M (or M"). We must show that we then have

P(A'A") = P{A) P(4") . (4)

If A" and A" are cylinder sets then we are dealing with rela-
tions among a finite set of variables x,, equation (4) represents
in that case a simple consequence of previous results (Formula
{2)). And sinee relation (4) holds for sums and differences of
aets A’ (or A™) also, we have proved (4) for all sets of BFM
as wall,

Now for every p of a set M let there be given a priori a distri-
bution function F, (a); in that case we con construct o field of
probability such that certein random variables z, n that field
(e agsuming all values in M) will be mutwally independent, where
x. will have for its distribution function the F, (a) given a priori.
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In order to show this it iz enough to take B¥ for the basic set E
and BFY for the field &, and to define the distribution functions
Fysy...un (see Chap. 111, § 4) by equation (3).

Let us also note that from the mutual independence of each
finite group of variables x, (equation (3)) there follows, as we
have seen above, the mutual independence of all on BFM, In
more inclusive fields of probability this property may be lost.

To conclude this section, we shall give a few more criteria for
the independence of two random variables.

If two random variables = and y are mutually independent
and if E{x) and E(y) are finite then almost certainly

Ez(y) = Ely),

E,(x) = E(x). (5)

These formulas represent an immediate consequence of the
second definition of conditional mathematical expectation (For-
mulas (10) and (11) of Chap. V, § 4), Therefore, in the case of
independence both

= ELED) ~E.0)'_ (B0 ang g ELE =B _ ol )
/ T M e i

are equal to zero (provided «*(z) = 0 and «(y) = 0). The num-
ber f? is called the correlation ratio of y with respect to z, and g*
the same for « with respect to y (Pearson).

From (5) it further follows that
E(xy) = E(z) E{y) - (6)
To prove this we apply Formula (15) of § 4, Chap. V:
E{xy) = EE;(xy) = E[*E.(»)] = E[xE(¥)] = E{y) E(x) .
Therefore, in the case of independence

¥ e s —[x} - t;}

is also equal Lo zero; r, as is well known, is the correlation co-
efficient of z and y.

If two random variables z and y satisfy equation (6), then
they are called uncorrelated. For the sum

S=z,4+z+...+ 2,

£3. The Law of Large Numbers Gl

where the x,, #i, . .., #. are uncorrelated in pairs, we can easily
compute that

o*(s) = olx,) + ot (xg) + -+ + oF{zy) . (7)

In particular, equation (7) helds for the independent variables z..

§ 3. The Law of Large Numbers
Random variables & of a sequence
;T U S,
are called stable, if there exists a numerical sequence
Bty covytinger-
such that for any positive «
P{|se — da| = £}
converges to zero as n =+ oo If all E{s,) exist and if we may set
i, = E{s,),

then the stability is normal.
If all 5, are uniformly bounded, then from

P{la’.—-—d,iat}-hﬂ = o0 (1)
we obtain the relation
|E(s.) — dy| > 0 "> 4o
and therefore
P{|sy — E(ss)] = £} = 0. - Foo (2)

The stability of a bounded stable sequence is thus necessarily
normal.

Let E(sa — E{sa))® = o%(sy) = o}
According to the Tehebycheff inequality,
af
Pls. — E(s)] = e} =3
Therefore, the Markov Condition
o -+ 0 n— oo (3)

is sufficient for normal stability.
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If 8o~ E(s,) are uniformly bounded :
|as—El(s) | = M,
then from the inequality (9) in §3, Chap. IV,
Pllsn— Es)| = e} = Bt

Therefore, in this case the Markov condition (3) is also necessary
for the stability of the s,
If

b xt o dox,

s
and the variables z, are uncorrelated in pairs, we have
o= {0 x) + o (x) + - + at(x)}.

Therefore, in this case, the following condition is sufficient for
the normal stability of the arithmetical means Bnt

o, = ot(x) + o*(x) + - + o¥(x,) = o (nf) (4)

{Theorem of Tchebycheff). In particular, condition (4) is ful-
filled if all variables z, are uniformly bounded.

This theorem can be generalized for the case of weakly cor-

related variables z,. If we assume that the coefficient of correla-
tion .’ of z, and x, satisfies the inequality

Ton = €f|n — mf)
and that

k=n-1

C" = Zﬁ {.kJ ¥
E=n
then a sufficient condition for normal stability of the arithmetic
means g is?
Caol = on?), (5)
In the case of independent summands x, we can state a neces-
sary and sufficient condition for the stability of the arithmetic
means s,. For every z. there exists a constant m, (the median of
.} which satisfies the following eonditions:
P {2’-,. < 'mngJ = * v
Flzy = m,) = ¢.

‘It ia obwious that r, =1 nlways,

*Cf. A, KHINTCHINE, Sur la loi forkdes prandes nombres. C. R. de V'acad,
sci, Paris v, 186, 1928, n, 285,

£3. The Law of Large Numbers 6a

We zet
Tan = T if | Ty=Ty | é .,
e = 0 otherwise,

* Ky + g orr £ .

L T e A .
"

Then the relations

k=n k=n
EP“‘;_ ;i}”}=glpf-‘¥ui=i:xi}—'ﬂ. n-—+ 4o (6)

E=n
T p®) 2 (x0s) = o(n? (T}
o*(s7) gl 0% (¥as) = 0(n?)
are necessary and sufficient for the stability of variables s,

We may here assume the constants d, to be equal to the E(5,*)
so that in the case where

E(s*) — E{s) -0 #—= too
(and only in this case) the stability is normal.

A further generalization of Tehebycheff's theorem is obtained
if we assume that the s, depend in some way upon the results of
any = trials,

o, Aq,..., "1, .

so that after each definite outcome of all these n trials s, assumes
a definite value. The general idea of all these theorems known as
the low of lorge numbers, consists in the fact that if the depend-
ence of variables s, upon each separate trial W, (k =1,2,..., n)
is very small for a large », then the variables s, are stable. If we
regard

By = E[Eyn, .. 0 (50) — Emym, ... 0., (50}

as a reasonable measure of the dependence of variables s, upon
the trial 9., then the above-mentioned general idea of the law of
large numbers can be made concrete by the following considera-
tiona®,

LEt LSS Eu.'ih...'!t ES-] - E“l'ﬁ,---ll’=1{sﬂ.:l 4+

'Cf. A. KoLmocomroy . Cher die Swmmen durch den Zufall bestimmier
unabhingiger Grissen, Math, Ann, v, 99, 1928, pp. 309-319 (corrections and
notes tglgliia study, v. 102, 1929 pp. 484-488, Theorem VIII and a supplement
on p. .

Y Cf. A. KoLMogoRoV. Sur la loi des grandes nombres. Rend, Accad. Lincel
v. B, 1929 pp. 470-4Ta.
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Then
S~ Elsa) =5 + 29+ - + 5,
E[’ll—] = EE‘I,I....E.-{SH} - EEH.H. ve Moy f’sl:l Lo E{sn}' = Ef’n =1{.
) =E(,) = ﬂ;'m

We can easily compute also that the random variables Zox (k=
1, 2,...,n) are uncorrelated. For let i < k; then®

Eﬁ: 1. ---'Et_l.[xllixnk} = Ini Eﬂ.ﬂ....!av:{znl]
= tniBuu, . owa [Ewyw, oo (50) — Ewor, oo, (5)]
= llfIE'!d'E. .--Ut—|{5l} - El;?[...-'iu-- |{S,J] = 0

and therefore

Efzuza) = 0.
We thus have

U"[S,J — 'ﬂifzhil '1' a!txl!} + s + D‘tann:l S lﬁf'll +ﬂ1 1 e +-$r!|rr“
Therefore, the condition

ot st - +@B >0 ft— +oo
is sufficient for the normal stability of the variables 8.

§ 4. Notes on the Concept of Mathematical Expectation

We have defined the mathematical expectation of a random
variable z as

4o
E(x) = [ P(E) = [adF®{a) ,
il

where the integral on the right iz understood as

den

o i T F . | —
E{x) -_iadi’" Ha) = lim!ad}?"-l'{d}. G )
The idea suggests itself to consider the expression
+&
E*(x) = lim [ a d F(* () b oo (2)
—b

* Application of Formula {15) in §4, Chap, V.

§ 4. Notes on the Concept of Mathematical Expactation 65

as a generalized mathematical expectation. We lose in this case,
of course, several simple properties of mathematical expectation.
For example, in this case the formula

E(x +v) = E(z) + E(y)

is not always true. In this form the generalization is hardly
admissible. We may add however that, with some restrictive
supplementary conditions,definition (2) becomes entirely natural
and useful.

We can discuss the problem as follows, Let

Loy Loy v v s g Trnv v.n

be a sequence of mutually independent variables, having the same
distribution function Fie'{a) =F*(q), (n =1, 2,...) as z.
Let further
% + xy 442,
By T
We now ask whether there exists a constant E* (x) sueh that
for every ¢ > 0

imP(|s, — E*(z})] =&)}=0, n-—=doo. (3)

The answer is : If such a constant E* (x) exists, it is expressed by
Formule (2). The necessary and sufficient condition that Formula
(3) hold consists in the existence of limit {2) and the relation

P[|:¢i:>uj=u(%}. (4)

To prove this we apply the theorem that condition (4) is
necessary and sofficient for the stability of the arithmetic means
#,, where, in the case of stability, we may set®

+
d, = [adFti(a) ,
-

If there exists a mathematical expectation in the former sense
(Formula (1)), then condition (4) is alwayas fulfilled®. Since in
this caze E{x) = E*{x), the condition (3) actually does define a
generalization of the concept of mathematieal expectation. For
the generalized maethematieal erpectation, Properties 1-VII

*Cf. A, Koumogoroy . Bemerkungen zu meiner drbeit, “[ber die Summen

suflliger Grigsen.” Math, Ann. v, 102, 1929, pp, 484-488, Theorem XII,
" Thid, Thenrem XTTT
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{Chap. IV, §2) still hold; in general, however, the existence of
E*| z | does not follow from the existence of E*(z).

_ To prove that the new concept of mathematieal expeotation
iz really more general than the previous one, it is sufficient to

give the following example. Set the probability density £ (a)
equal to

'3 _ o
@) = ey

where the constant ¢ is detfnnined by
[to@aa=1.

It is easy to compute that in this case condition (4) is fulfilled.
Formula (2) gives the value

E¥(x) =10,
but the integral
e 4
Jf].:[dﬁm (a) =Jr’1u|,n=1{a3 da

diverges.

§ 5. Strong Law of Large Numbers; Convergence of Series
The randem variables s, of the sequence
. Y M.
are strongly stable if there exists a sequence of numbers
[ S M
such that the random variables
8y — il

almost certainly tend to zero as s —+ +oo. From strong stability
follows, obviously, ordinary stability. If we can choose

d, = E(a,) ,

then the strong stability i=s normal.
In the Tchebycheff case,

& 5. Strong Law of Large Numbers; Convergence of Series 67

where the variables x, are mutually independent. A sufficient®
eondition for the normal strong stability of the arithmetic means
8, is the convergence of the series
> W
]
This condition is the best in the sense that for any series of con-
gtants b, such that

e
by
ut
LE

= -toe ,

we can build a series of mutually independent random variables
x, such that
ot(x,) = &,

and the corresponding arithmetic means s, will not be strongly
stable.
If all #, have the same distribution function F'=){a}, then the
existence of the mathematical expectation
oo

E(z) = f adFi® (a)
is necessary and sufficient for the strong stability of s,; the sta-
bility in this case iz always normal®.

Again, let
ESTE AR M

be mutually independent random variables. Then the probability
of convergence of the series
P (2)
L |

is equal either to one or to zero. In particular, this probability
equals one when both series

SE() and 3 o(x)
a=1 e
converge. Let us further assume
Yo =oincase |2, | =1,
U, = Oincase |z, | > 1.
T L. A, KoLMmocorov,” Sur la loi forte des grandes nombres, C. R. Acad. Sei.

Paris v. 191, 1930, pp. 910-811.
* The proof of this statement has not yet beén published.
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Then in order that series (1) converge with the probability one,
it is necessary and sufficient’ that the following series converge
simultaneously :

3P {[5] > 1}, SEp) and 3o
me=] = A=l

"Cif, A. KHINTCHINE and A. KoLMocorov, On the O i
Ree. Math. Soc. Moscow, v. 32, 1925, p. 668.677 ah i

Appendix

ZERO-OR-ONE LAW IN THE THEORY
OF PROBABILITY

We have noticed several cases in which certain limiting
probabilities are necessarily equal to zero or one. For example,
the probability of convergence of a series of independent random_
variables may assume only these two values', We shall prove now
B Ee_neral theorem including many such cases.

THEOREM : Letf x,, 2o, . . ., Zpe . . . be any random variables and
let f(xy, 23y - . ., Tuy - . .) be a Baire function® of the variahles
Loy Lay v wy Loy« - o Such that the conditional probability

PI:.IT.- ---ru{”xj = 0}
of the relation

]F(xl-'xxJ"'.lxlr' "J =0
remoins, when the first n variables z,, 2q, . . ., T, are khown, eqal
to the absolute probability
P{f (%) = 0} (1)

for every n. Under these conditions the probability (1) equals
2ErD OF One.

In particular, the assumptions of this theorem are fulfilled if
the variables x, are mutually independent and if the value of the
funetion f(z) remains unchanged when only a finite number of
variables are changed.

Proof of the Theorem: Let us denote by A the event

flz) = 0.

We shall also investigate the field ® of all events which can be
defined through some relations among a finite number of vari-

' Cf. Chap, VI, § 5. The same thing is true of the probability
Pz, — d, —+ 0}
in the strong law of large numbers; at least, when the variables y, are mutu-
ally independent.
* A Baire function is one which ean be obtained by succesgive passages to
the limit, of sequences of functions, starting with polynomials.

]
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ables x,. If event B belongs to &, then,according to the conditions
of the theorem,

Pa(d) = P(d). (2)

In the case P(4A) =0 our theorem is already true, Let now
F(A) = 0. Then from (2) follows the formula

Py(B) == P_.._#"f”’“*?-._

" FiE, (3)

and therefore P(B) and F,(B) are two completely additive set
functions, eoinciding on &; therefore they must remain equal to
each other on every set of the Borel extension B of the field &.
Therefore, in particular,

P(A) = P, (d) =1,

which proves our theorem.

Several other cases in which we can state that certain prob-
abilities can assume only the values one and zero, were discovered
by P. Lévy. See P. LEVY, Sur un théoréme de M. Khintchine, Bull,
des Sci. Math. v. 55, 1931, pp. 145-160, Theorem I1.
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NOTES TO SUPPLEMENTARY BIBLIOGRAPHY

The fundamental work on the measure-theoretic approach to
probability theory is A. N. Kolmogorov's Grundbegriffe der
Wahrscheinlichkeitsrechnung, of which the present work is an
English translation. It is not an overstatement to say that for
the past twenty-three years most of the research work in proba-
bility has been influenced by this approach, and that the axiomatic
theory advanced by Kolmogorov is considered by workers in
probability and statistics to be the correct one.

The publication of Kolmogorov's Grundbegriffe initiated a new
era in the theory of probability and its methods; and the amount
of research generated by the fundamental concepts due to Kelmo-
gorov has been very great indeed. In preparing this second edition
of the English translation of Kolmogorov's monograph, it seemed
desirable to give a bibliography that would in some way reflect
the present status and direction of research activity in the theory
of probability.

In recent years many excellent books have appeared. Three of
meost outstanding in this group are these by Doob [12], Feller
[17), and Loéve [54]. Other books dealing with general proba-
bility theory, and specialized topies in probability are: [2], [3],
(61, (7], [9], (19], (28], [26], [27], [28], [34], [39], [41]). [42],
[471, [49], [60], [671], [TO1, [T2]. Since these books contain many
references to the literature, an attempt will be made in this bibli-
ography to list some of the research papers that have appeared in
the past few years and several that are in the course of publication.

The model developed by Kolmogorov can be briefly described
as follows: In every situation (that is, an experiment, observa-
tion, ete.) in which random factors enter, there is an associated
probability space or triple (12, £ p), where 2 is an abstract space
{the space of elementary events), ¢ is a s-algebra of subsets of
{the sets of events), and p{E) is a measure (the probability of
the event E) defined for Ee¢, and satisfying the condition
p{ )= 1. The Kolmogorov model has recently been discussed by

7
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Los {56], who considers the use of abstract algebras and o-algebras
of sets instead of algebras and s-algebras. Kolmogorov [44] has
also considered the use of metric Boolean algebras in probability.

There are many problems, especiall ¥ in theoretical physics, that
do not fit into the Kolmogorov theory, the reason being that these
problems involve unbounded measures. Rényi [68] has developed
a general axiomatic theory of probability (which contains Kolmo-
gorov's theory as a special case) in which unbounded measures
are allowed. The fundamental concept in this theory is the condi-
tional probability of an event, Csdszar [10] has studied the
measure-theoretic structure of the conditional probability spaces
that oceur in Rényi's theory,

In another direction, examples have been given by various
authors which point up the fact that Kolmogorov's theory is too
general. Gnedenko and Kolmogorov [27] have introduced a more
restricted concept which has been termed a perfect probability
space. A perfect probability space is a triple (£, & p) such that for
any real-valued &measurable function g and any linear set B
for which {w : g(w)e B} e ¢, there is a Borel set I’ e B such that
Plow :g(w)eD}= Plo : g(w)e B). Recently, Blackwell [5] has
introduced a concept that is more restricted than that of a per-
fect space. The concept introduced is that of a Lusin space. A
Lusin space is a pair (8, ¢) such that (a) ¢ is separable, and
{b) the range of every real-valued é&-measurable function g on
{2 is an analytic set. It has been shown that if {12, ¢, p) is a Lusin
space and p any probability measure on ¢ then (0.4 p) i a
perfect probability space.

In § 6 of Chap. 1, Kolmogorov gives the definition of & Markov
chain. In recent years the theory of Markov chains and processes
has been one of the most active areas of research in probability,
An excellent introduction to this theory is given in [17]. Other
references are [2], (3], [6], [12), (18], [23], [26), [34], (39],
[50], [54], [67], [T0], [T2]. Two papers of interest are those of
Harris and Robhins [29] on the ergodic theory of Markov chains,
and Chung [8] on the theory of continuous parameter processes
with a denumerable number of states. The paper by Chung unifies

and extends the results due to Doob (cf. [12]) and Lévy [51],
[62], [B3].

Notes vl

A number of workers in probability are utilizing the theory of
gemi-groups [30] in the study of Markov processes .nnd ‘theIr
structural properties [63]. In this approach, dug primarily tu
Yosida [B80], a one-parameter (discrete or m?ntmuoua) gemi-
group of operators from a Banach space to itself deﬁl?ea the
Markov process. Hille [32] and Kato [38] haw.f used serrmugroup
methods to integrate the Kolmogorov differential equations, 2.111[]
Kendall and Reuter [40] have investigated se'.rera_,l pathological
cases arising in the theory. Feller [18] and }thlel [31] have
studied the parabolic differential equations arising in the con-
tinuous case. Doob [13] has employed martin,gale. theory in the
gemi-group approach to one-dimensiomal dii’fusuw: Iproceaaes,
Also, Hunt [38] has studied semi-groups of (probability) meas-

on Lie groups.

uref:eceut]y ageveral papers have appeared which are devoted to a
more abstract approach to probability and consider random vari-
ables with values in a topological space which may have an alge-
braic structure. In [14], [21], [22], [5B], {59],and‘[61}.prub]ema
associated with Banach-space-valued random variables are con-
gidered; and in [4] similar problems are considered for zDrhcz
{generalized Lebesgue) spaces. Robbins [69] has :mnmderad
random variables with values in any compact topological group.
Segal [75] has studied the structure of probability alg:ehra.s and
has used this algebraic approach to extend Kﬂlmugm:m* 8 thmm
eoncerning the existence of real-valued random variables having
any preassigned joint distribution (cf. § 4 of Chap. I?I). Segal
{76, Chap. 3, § 13] has also considered & non-commutative proba-
bility theory. .

Prohorov [66] has studied convergence properties of prol.:a-
bility distributions defined on Banach spaces and other function
spaces. These problems have been considered also by LeCam [48]
and Parzen [64]. . ‘

The measure-theoretic definition and basic properties of 1‘.‘101Ildl-
tional probabilities and conditional expectations have been given
by Kolmogorov (Chap. IV; ef. also [12] and [64]). Using an
abstract approach, 5. T. C. Moy [60] has considered the prop-
erties of conditional expectation as a linear transformation of
the space of all extended real-valued measurable functions on a
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|:||1'-:nl:nual:ulii;;.r space into itself. In [61] she considers the conditional
expectation of Banach-space-valued random variables. Naka-
mura :_and Turamuru [62] consider an expectation as a given
::tperatmn of a C*-algebra; and Umegaki [79] considers condi-
tional expectation as a mapping of & space of measurable opera-
t-or;s helungir!g to & Ly-integrable class associated with a certain
W*-algebra into itzelf. The work of Umegaki is concerned with
the development of a non-commutative probability theory. The
results of Segal [74], Dye [16], and others, in abstract integration
theory are utilized in the above studies. Other papers of interest
are [1], [16], [36], and [45].

ThelL. Schwartz theory of distributions [73] has been utilized
by Gel'fand [24] in the study of generalized stochastic processes:
afu] by Fortet [20] and Ité [35] in the study of rand ,
distributions. e

ISevera.] hﬂu‘ks devoted to the study of limit theorems in proba-
bility are available: [27], [42], [47], and [49]. In addition [12]
and [54] should be consulted. Research and '
interest are [11], [14], [25], [37], [46]
[77], and [78].

review papers of
» [65], [57], [65], [T1],
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