CUBIC AND QUARTIC EQUATIONS

From the point of view of medieval mathematiciansthereare actually 13 different
typesof cubicequationgatherthanjust one.Basicallythisis becaus¢hey notmerely
did not admitimaginaryor complex numbers put only considerecgpositive real num-
bers,soalsodid not admitnegative numbersor zero. Thusto themz? + z = 6 wasa
differenttypeof equatiorfrom 23 = 4+ 6. Now we canwrite agenerakubicequation

ay +by’ +cy+d=0
(in whicha # 0 or theequationis not genuinelycubic)in theform
v 4+by:+ey+d=0

afterdividing by a constantThecasewhered = 0 leadsto aninadmissiblerooty = 0
andaryway s easilysoluble ,sowe getdifferentcasesas
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leadingto 18 casesHowever, thecases

b=¢c=0, d>0
b=c=0, d<0

are not taken seriouslyas cubic equations(and indeedthe first hasno real positive
solution),while evidently the cases

b>0, ¢>0, d>0
b=0, ¢>0, d>0
b>0, ¢c=0, d>0

have norealpositive solution. This leaves13 casego beconsidered.

Thecaseof the cosaandthe cube,in modernnotationthecasey® + cy = d where
¢ andd arepositive, wassolved by Scipionedel Ferro(1465-1626)karlyin the six-
teenthcentury He taughthis methodto his pupil Antonio Maria Fior (Florido) (dates
unknawn), who hada contestwith Nicolo Tartaglia(1500-1557which resultedn the
latter’s discovery of the methodfor solving this particulartype. Girolamo Cardano
(JeromeCardan)(1501-1576persuadedartagliato tell him the solution, first in a
cryptic verseandthenwith a full explanation,after swearinghe would keepthe solu-
tion secretBut, afterhe hadfoundthe solutionin the posthumougaperof del Ferro,
Cardartfelt free to publish,which he did in his Ars Magna (1545). However, Cardan
wentfurtherthanhis predecessofsecausde considereall 13 formssuccessiely.

We can expressCardans approachin moderntermsasfollows. We first define
x =y + g, sothattheequationbecomes

(x—g)°+bx—g)?+cx—g)+d=0.



If wetake g = b/3, thecoeficientof z? vanishesothattheequationcanbewrittenin
theform
z* +pr+q=0.

Now write z = h + k, sothat
3+ k2 + (p+3hk)(h+ k) +q=0.
Clearlyh andk will satisfythis equationif

R+ k2 =—¢q
hk = —p/3.

Settingu = A% andv = k3 theseequationsamountto

u+v=—q
ww = —p* /27

andsolutionsof theseequationsanbefoundby consideringhe quadratic
& +q6-p*/271=0
sothatwe cantake v andv as
q a\% , (P\?
-5V (3) ()

As u andv enterinto the problemsymmetricallywe mayaswell take u astheexpres-
sionwith the 4+ signandv asthe expressiorwith the — sign. We canthentake

h=<u
k= —p/3h.

Finally we canfind z ash + k, thatis as
= Ju+ Jv.
If we supposeherootsarez, 2> andzs, thenthe equatiormustbe equivalentto
(x—z1)(x —22)(x —23) =0
sothat

T+ 20+ 23 =0
T2Z3 + T3T1 + T1T2 =P

21T2T3 = —¢q
andhenceit canshowvn that

[(z1 — 22) (25 — 21) (72 — 33)]° = —4p® — 27¢°



(cf. Chapter5, §6 of the book by Birkhoff and MacLanequotedbelow). The latter
quantityis oftenreferredto asthediscriminant anddenotedD. We seethattheabove
expressiongor v anv canbewrittenas

—q/2+\/=DJ108

sothat

z=<u+Jv= \3/—q/2+ —D/108 + {/—q/2 —/—D/108.

Thisis thecelebratedormulaof Cardan.

Thereis adifficulty in thissolutionwhichwasfirst obsenedby Cardanalthoughhe
did notseethewayroundit. Whentherootsof thecubicareall realanddistinct,thenD
isrealandpositive, sothattheaboverootsfor h andk arecomple. Thismeanghatthe
realrootscanbe expressedn termsof the cuberootsof complex numbers.However,
thesereal rootscannotbe obtainedby algebraicmeansthatis, by radicals. This case
wascalledirreducible by Tartaglia.(For example—6 is arootof z3 = 63z +162 which
Cardans expressiorterivesas {/81 + 30v/—3 + /81 — 30v/=3 = (=3 +2v/=3) +
(=3 — 2¢/=3).) In factthe Ars Magna includedseveral complex rootsof quadratics,
but Cardarsaysof them,“So progressearithmeticsubletytheendof which, asis said,
is asrefinedasit is useless{ChapterXXXVII). Cardanalsodiscussedhe numberof
rootsto be expectedn a cubicandbeganthe studyof symmetricfunctions.

Sinceevery numberhasthreedistinctcuberoots,we have evidently obtainedser-
eralvaluesof z. Thisis asit shouldbe,for a cubicequationusuallyhasthreedistinct
roots. But at first sightit appearghattherearenine, or even eighteenpossibilitiesin
the formula, sincealternatve solutionsexist for squarerootsandalsofor cuberoots.
As for squareroots,a glanceshaws thatthe signsarefixed—onemustbe positive and
onenegative. Accordinglywe considetthe cuberoots.

Let thedistinctrootsof 2 — 1 = 0 bel, w,w?, sothat

1 V3 . 1 V3
1 2: = —— ) —— 2:———'—_
+w4w 0, w 2—|—z2, w 2 12

Thenw?® = 1 andwe canreplaceh by wih andk by w’k wherei, j = 1,2,3. Now h
andk wereconstructedo satisfy
W+ E =—q
hk =—p/3
but while _ _
(W'h)? + (Wk)? = —¢
for ary i, j, theequation . '
(w*h)(wk) = —p/3

holdsonlyif i + 5 = 0 mod 3, reducingusto threepossibilities.
Givenaquartic(or biquadraticequation

ay + by + e +dy+e=0



(wheree is not necessarilythe baseof naturallogarithms)in whicha # 0, we can
divide throughby a constantsothatwe canactasif a = 1. Wethendefinez = y + g,
sothattheequatiorbecomes

(@ —9)" +b(z—9)* +c(v—9)* +dz - g) +e=0.

If wetake g = b/4, thecoeficientof 3 vanishesothe equationcanbewrittenin the
form
2t +p2® +qr+r=0.
Now theleft-handsideof
x4—|—pw2 =—qr—rT
containstwo of the termsof the squareof z2 + p. Completethe squareby adding
px? + p? to eachsideto get

(2 +p)2 =2 +2p22 +p* =p2® +p* —qr — .

We now introduceanothemunknaovn for the purposeof corvertingtheleft-handsideof
thethis equationinto (z2 + p + 2)2. Thisis doneby adding2(z? + p)z + 22 to each
side,andleadsto

(@ +p+2)=pe?+p° —qr —r+ 2% +p)z+ 22
= (p+22)2” —qz + (p> —r + 2pz + 2°).

The problemnow reduceso finding a value of z that makesthe right-handside, a
quadraticin z, a perfectsquare. This will be the casewhenthe discriminantof the
quadratids zero;thatis, when

@ = 4(p+22)(p* —r + 2pz + 27,
whichrequiressolvingacubicin z, namely
823 + 20p2> + (16p* — 8r)z + (4p° — 4pr — ¢*) = 0.

Thelastequationis known asthe resolvent cubic of the givenquarticequationandit
canbesolvedasdescribecabore. Therearein generathreesolutionsof theresohent
cubic,andz canbedeterminedrom ary oneof themby extractingsquareoots.Once
avalueof z is known, the solutionof the original quarticis readilydeduced.

An expressiorfor the quarticdiscriminantis givenby Turnkull in equation(12) on
p. 1230f thebookquotedbelow.

Thesolutionof the quarticwasfirst givenby Ludovico Ferrari(1522—1565).
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