Pesticide leaching under climate change: the role of climate input uncertainty

Karin Steffens¹, Mats Larsbo¹, Julien Moeys¹, Nick Jarvis¹, Erik Kjellström², Elisabet Lewan¹

¹ Swedish University of Agricultural Sciences, Uppsala, Sweden
² Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

York, 3 Sep 2013
Climate Change & Pesticide Leaching

Higher temperatures \rightarrow reduced pesticide leaching

More precipitation \rightarrow increased pesticide leaching
Sources of Uncertainty

ES = GHG emission scenario
GCM = global climate model
RCM = regional climate model
T = temperature
P = precipitation

Introduction

Parameters

Structure

Water flow
Degradation
Sorption

Leaching

Soil properties
Hydraulic properties
Pesticide properties
Crop development

ES

Initial conditions

GCM

down-scaling

T

P

Input data

Introduction
Aims

- To assess ...

 ... the impact of different climate scenarios ...
 ... the relative importance of different sources of uncertainty ...
 ... on long-term predictions of pesticide leaching under climate change
Aims

• To assess ...

... the impact of different climate scenarios ...
... the relative importance of different sources of uncertainty ...

... on long-term predictions of pesticide leaching under climate change

MACRO was run for 30 years at one site with different parameterizations and input of different climate scenarios
The MACRO-model

- Used for registration purposes in the EU
- 1D, deterministic, process-oriented
- Dual-permeability model
- Variably saturated flow, root water uptake, drain systems, pesticide degradation & sorption

Modelled Site

- Field site in SW-Sweden (Lanna)
- Tile-drained heavy clay soil
- No-till practice since 1988

Soil properties

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Clay (%)</th>
<th>Silt (%)</th>
<th>Sand (%)</th>
<th>Org.C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>46.5</td>
<td>46.2</td>
<td>7.3</td>
<td>2</td>
</tr>
<tr>
<td>30-60</td>
<td>56.1</td>
<td>40.6</td>
<td>3.3</td>
<td>0.8</td>
</tr>
<tr>
<td>60-100</td>
<td>60.6</td>
<td>37.4</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>100-175</td>
<td>66.6</td>
<td>30.5</td>
<td>2.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Model Calibration

- Monte-Carlo approach (GLUE)
- Non-reactive tracer bromide
- Bentazone: mobile, non-persistent herbicide
- 56 acceptable parameterizations of MACRO

Climate Input Data

- Future climate: 2070-2099
- Delta change approach for temperature, precipitation, solar radiation

MACRO was run for 30 years at one site with different parameterizations and input of different climate scenarios.

<table>
<thead>
<tr>
<th>MACRO-parameterizations</th>
<th>Climate Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS1</td>
</tr>
<tr>
<td>Par 1</td>
<td>Par1-CS1</td>
</tr>
<tr>
<td>Par 2</td>
<td>Par2-CS1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Par 56</td>
<td>Par56-CS1</td>
</tr>
</tbody>
</table>
The Modelling Approach

MACRO was run for 30 years at one site with different parameterizations and input of different climate scenarios.

<table>
<thead>
<tr>
<th>MACRO-parameterizations</th>
<th>Climate Scenarios</th>
<th>Climate Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 1</td>
<td>Par1-CS1</td>
<td>Par1-CS9</td>
</tr>
<tr>
<td>Par 2</td>
<td>Par2-CS1</td>
<td></td>
</tr>
<tr>
<td>Par 56</td>
<td>Par56-CS1</td>
<td>Par56-CS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative distribution function of pesticide losses

Each curve = one CS

Each point on the curve = one parameterization
Pesticide Application Scenarios

- Scaling calibrated Koc-values to obtain different hypothetical pesticides
- Crop: winter wheat
- Annual application of 0.45kg/ha pesticide
- Application within the application window on day with < 2mm rainfall
- Output: total loss of pesticide to drains as percentage of applied dose

<table>
<thead>
<tr>
<th>Koc-Scaling Factor</th>
<th>Sorption</th>
<th>Spring Application</th>
<th>Autumn Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Ws)</td>
<td>Weak</td>
<td>WsSpr</td>
<td>WsAut</td>
</tr>
<tr>
<td>10 (Ms)</td>
<td>Moderate</td>
<td>MsSpr</td>
<td>MsAut</td>
</tr>
<tr>
<td>50 (Ss)</td>
<td>Strong</td>
<td>SsSpr</td>
<td>SsAut</td>
</tr>
</tbody>
</table>
Results – Absolute Loss

- Weakly > moderately > strongly
- Autumn > spring
- Large effect of parameter uncertainty
- Fraction of parameter uncertainty (FPU): 85-98%
- No consistent direction of change
Absolute Loss & Change in Loss

WsSpr

Cumulative distribution function

Total pesticide losses [% of applied dose]

FPU: 92% (absolute loss)
Absolute Loss & Change in Loss

Results

- **FPU:** 92% (absolute loss)
- **FPU:** 54.9% (change in loss)

Charts

- **WsSpr**
 - Reference climate
 - Climate scenarios
 - Ensemble prediction

Axes

- **Cumulative distribution function**
 - Total pesticide losses [\% of applied dose]
 - Changes in total pesticide losses

Graphs

- **Left graph:** Cumulative distribution of total pesticide losses for different climate scenarios compared to reference climate.
- **Right graph:** Cumulative distribution showing changes in total pesticide losses across climate scenarios.
Absolute Loss & Change in Loss

FPU: 92% (absolute loss)

FPU: 54.9% (change in loss)
Probabilistic Ensemble Predictions

Results
Conclusions

- **Parameter uncertainty** dominates predictions of absolute losses.

- **Climate input uncertainty** is very important for predictions of changes.
 → apply an ensemble of climate scenarios.

- Deterministic approach with 1 parameterization seems sufficient for predictions of **average changes** in leaching loss (all mobile and all spring-applied pesticides).
 - Probabilistic assessments of changes require an ensemble of climate scenarios + different parameterizations.
Thank you for your attention!

Mats Larsbo¹, Julien Moeys¹, Nick Jarvis¹, Erik Kjellström², Elisabet Lewan¹

¹ Swedish University of Agricultural Sciences, Uppsala, Sweden
² Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

We thank the Swedish Farmers’ Foundation for Agricultural Research (SLF) for funding the project.

Steffens et al. (2013). Modelling pesticide leaching under climate change: parameter versus climate input uncertainty. HESS-Discussions