Phototrophic Microorganisms: A Potent Biodegrading Community Whose Contribution to Pesticide Fate is Currently Overlooked

Laurence Hand, Samantha Marshall, Carol Nichols, Robin Oliver
Product Metabolism, Product Safety, Syngenta, Jealott’s Hill International Research Centre
Background (1)

- Syngenta has been interested in the role of phototrophic organisms (algae and macrophytes) in active metabolism of CPPs since 1998

 - First publication on *Lambda*-cyhalothrin in 2001

- This was followed by development of a modified OECD308 study under non-UV light, to allow the investigation of algal metabolism in isolation from photolysis

 - First used on the fungicide, Isopyrazam

 - This showed significant enhancement of degradation
Background (2)

- A post doctoral research project was then conducted to investigate across a range of chemistries
 - Clear enhancement of degradation observed in five of the six test compounds
 - Extent of enhancement ranged from 1.5 – 20 x, depending on the compound
 - Sub-communities of the water column biomass selectively cultured and metabolic potential assessed with one compound (Fludioxonil)
 - All phototrophic communities and individual species shown to be metabolically competent
 - Non-phototrophic communities (bacteria and fungi) did not degrade fludioxonil under the conditions used.
From the precedent observed in aquatic systems, the obvious question was:
- *Is metabolism by soil algae also a significant process which is not captured by OECD307 regulatory soil degradation studies?*

Higher tier studies were therefore developed to investigate this.

These higher tier aquatic and soil studies were conducted in the regulatory study package for the new Syngenta fungicide, Solatenol™ (Benzovindiflupyr)
- This represents the first comprehensive investigation of the role of algae in agrochemical metabolism
Metabolism in Pure Algal Cultures

- In order to conclusively demonstrate the capability of algae to metabolise Benzovindiflupyr, a 14C pure culture experiment was conducted
 - Two species were used
 - *Scenedesmus quadricauda* (Chlorophyta)
 - *Anabaena cylindrica* (Cyanophyta)
- Significant metabolism was observed in both species
Aquatic Studies – Tiered Approach

Tier 1 – Regulatory OECD308

- 14C study in continuous darkness

Tier 2 – Modified OECD308

- 14C study in fluorescent light/dark cycle. Otherwise identical design to regulatory study

Tier 3 – Outdoor Microcosm

- 14C study under natural UK summer conditions. Integrated system in which all degradation processes can occur
Aquatic Studies – Tier 1 (Regulatory OECD308)

- Relatively rapid dissipation from water column to sediment
- Very little degradation in the sediment

<table>
<thead>
<tr>
<th>Compartment</th>
<th>SFO DT<sub>50</sub> (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Column</td>
<td>18</td>
</tr>
<tr>
<td>Total System</td>
<td>427</td>
</tr>
</tbody>
</table>

- Compound is not readily degraded by heterotrophic communities
Aquatic Studies – Tier 2 (Modified OECD308)

- Significantly faster dissipation from the water column and lower peak % in sediment
 - Metabolism by planktonic algae
- Significant degradation also observed in sediment
 - Metabolism by algae on sediment surface

<table>
<thead>
<tr>
<th>Compartment</th>
<th>SFO DT<sub>50</sub> (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Column</td>
<td>4</td>
</tr>
<tr>
<td>Total System</td>
<td>52</td>
</tr>
</tbody>
</table>

![Graph showing % Applied Radioactivity as Parent over days for Total System, Water Column, and Sediment compartments.](image)
Aquatic Studies – Tier 3 (Outdoor Microcosm)

- Dissipation from the water column similar to modified OECD308
- Lower peak % in sediment and degradation again observed
- Route of metabolism consistent with modified OECD308 and pure algal cultures
 - But different from aqueous photolysis
- Metabolism by phototrophs is the dominant process

<table>
<thead>
<tr>
<th>Compartment</th>
<th>SFO DT(_{50}) (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Column</td>
<td>4.3</td>
</tr>
<tr>
<td>Total System</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Aquatic Studies – Overview

- Water Column
- Sediment
- Total System

Graphs showing the percentage of applied radioactivity as parent (Total System) over days for different conditions:
- Regulatory OECD308
- Modified OECD308 (non-UV Light)
- Outdoor Microcosm
Soil Studies – Tiered Approach

Tier 1 – Regulatory OECD307

\(^{14}\text{C}\) study using sieved soil in continuous darkness

Tier 2 – Undisturbed Cores

\(^{14}\text{C}\) study in either fluorescent or UV light/dark cycle. Moisture supplied from below to simulate groundwater

Tier 3 – \(^{14}\text{C}\) Field Study

\(^{14}\text{C}\) bare soil TFD study under natural US summer conditions.
Soil Studies – Tier 1 (Regulatory OECD307)

- Very slow degradation in all soils tested

<table>
<thead>
<tr>
<th>Soil</th>
<th>SFO DT<sub>50</sub> (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil 1</td>
<td>>1000</td>
</tr>
<tr>
<td>Soil 2</td>
<td>514</td>
</tr>
<tr>
<td>Soil 3</td>
<td>550</td>
</tr>
<tr>
<td>Soil 4</td>
<td>924</td>
</tr>
<tr>
<td>Soil 5</td>
<td>940</td>
</tr>
</tbody>
</table>

- Compound is not readily degraded by heterotrophic soil communities
Soil Studies – Tier 2 (Undisturbed Cores)

- Parallel testing of undisturbed cores in the dark, non-UV light and Suntest (to allow assessment of photolysis)
 - No photolysis observed in regulatory thin soil layer study
- Slow degradation in the dark (confirming OECD307 results)
- Degradation rapid under non-UV light/dark cycle (algal metabolism)
- Not degraded any quicker under UV light (confirming photolysis is negligible).

<table>
<thead>
<tr>
<th>Conditions</th>
<th>SFO DT$_{50}$ (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark</td>
<td>349</td>
</tr>
<tr>
<td>Non-UV Light</td>
<td>36</td>
</tr>
<tr>
<td>UV Light</td>
<td>35</td>
</tr>
</tbody>
</table>

% Applied Radioactivity as Parent

Days

Days

non-UV Light

Suntest

Darkness
● The rate of degradation observed under field conditions over the first 60 elapsed days (130 time-step normalised days) is matched by that observed in the soil cores under non-UV light/dark regime

● Field degradation can be attributed to metabolism by the surface algal communities
Soil Studies – Overview

- Regulatory OECD307
- Undisturbed Cores (non-UV Light)
- Radiolabelled Field Dissipation
Conclusions

- Recent research and the studies reported herein demonstrate that algae can be significant contributors to the biotransformation of pesticides in both aquatic and terrestrial ecosystems.
- Current regulatory laboratory studies do not capture this autotrophic mechanism, as they are conducted in continuous darkness.
- For some compounds, autotrophic degradation may be the most significant loss mechanism.
- Simple studies can be conducted in the laboratory to investigate whether this mechanism is significant for a given compound.
 - These studies can also provide useful data for the “conceptual model” of field behaviour.
- Without this data, assessments of persistence will be made on the basis of an incomplete understanding of a compound’s environmental fate.
Thank you for your attention