Session A | 2nd September | 17.00-18.30

Interactions between pesticides and microorganisms

1. Accelerated degradation; identifying the microbial mechanisms responsible; \textit{Rachel Yale; University of York; UK}
2. The biotic degradation of metaldehyde; \textit{John Thomas; University of York; UK}
3. Isolation of pesticide-degrading bacteria by Most Probable Number (MPN) method using tetrazolium salts; \textit{Magalie Stauffert; Clermont Université; France}
4. Biodegradation of sulcotrione herbicide in a Vertic dark soil: impact of pesticide/soil/bacteria interactions; \textit{Edith Dumas; Clermont Université; France}
5. Isolation and characterization of edaphic herbicide-degrading fungal strains after exposure to a mixture of herbicides; \textit{Magalie Stauffert; Clermont Université; France}
6. Fungal-bacterial consortia increase degradation of the phenylurea herbicide diuron in water-unsaturated systems; \textit{Lea Ellegaard-Jensen; Geological Survey of Denmark & Greenland (GEUS); Denmark}
7. Slow degradation of fungicides in soils from cold temperate climate; \textit{Marit Almvik; Norwegian Institute for Agricultural and Environmental Research (Bioforsk); Norway}
8. Soil microbial community responses to common pesticides of conventional, IPM and organic farming; \textit{Giorgia Pertile; Università Cattolica del Sacro Cuore; Italy}
9. Genetic and metabolic analysis of the carbofuran degradation pathway in Sphingomonas sp. KN65.2.; \textit{Nguyen Thi Phi Oanh; KU Leuven; Belgium}
10. Bentazone mineralization in buffer strip soils adjacent to agricultural soils; \textit{Pieter Vandermeeren; KU Leuven; Belgium}
11. Efficiency of a farm biobed in a Mediterranean climate; \textit{Alessandra Cardinali; DAFNAE-University of Padua; Italy}
12. Invasion of a sand filter biofilm community by Aminobacter sp. MSH1, a bioaugmentation strategy for the treatment of 2,6-dichlorobenzamide (BAM) contaminated drinking water; \textit{Benjamin Horemans; KU Leuven; Belgium}
13. Long-term isoproturon and MCPA mineralization capacity in a recently restored wetland; Pieter Vandermeeren; KU Leuven; Belgium

14. Rapid degradation of pesticides at low concentrations - the possibility of using biodegradation to purify polluted groundwater during sand filtration; Christian Nyrop Albers; Geological Survey of Denmark & Greenland (GEUS); Denmark

15. Implementation of Surface Water Mineralisation Studies, Conducted According to OECD309, in Agrochemical Regulation; Harriet Moreland; Syngenta; UK

Micro-scale processes in soil and water

16. APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics): A new, freely available software tool to predict the photodegradation kinetics of organic contaminants in surface waters; Davide Vione; University of Turin; Italy

17. The influence of desorption dynamics on herbicide bioaccessibility; Laurence Hand; Syngenta; UK

18. Fate and behaviour of acidic herbicides in both fresh and estuarine waters; Fadi Housari; AL Furat University; Syria

19. Cover crop residues influence herbicides behaviour in soils: the case of S-metolachlor; Cécile Nobile; Université de Toulouse; France

20. Effect of the organic amendment rate on the immobilization of pesticides in amended vineyard soils; Alba Álvarez-Martín; IRNASA-CSIC; Spain

21. Adsorption of pesticides applied alone or in mixtures on an agricultural Vertic dark soil; Edith Dumas; Clermont Université; France

22. Cover crop residues influence herbicides behaviour in soils: the case of glyphosate; Ana Cassigneul; Université de Toulouse; France

23. Plant Uptake Factor – Theory and a Simple Experimental Procedure; Jackie Webb; Syngenta; UK

24. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond; Romain Vallee; LIEC, UMR 7360 CNRS-Université de Lorraine; France

25. Dissipation and bioavailability of fungicides in a vineyard soil amended with spent mushroom substrate at different rates; Alba Álvarez-Martín; IRNASA-CSIC; Spain
26. Degradation of mesotrione in amended soils and response of soil microbial communities; Eva Pose-Juan; IRNASA-CSIC; Spain

27. Transformation of the herbicide fluroxypyr under distinct environmental conditions; Uta Ulrich; University of Kiel; Germany

28. The effect of (non-UV) light on the biodegradation of Crop Protective products in an OECD-like regulatory system; Mark Day; University of Warwick; UK

Emissions and fate of pesticides in air

29. Atmospheric levels of currently used pesticides in the atmosphere of a rural site in France; Clara Coscollà; Centre for Public Health Research (CSISP-FISABIO); Spain

30. Application of XAD-2 passive samplers for the evaluation of the atmospheric contamination by pesticides; Céline Liaud; ICPEES (UMR 7515), University of Strasbourg/CNRS; France

31. Determination of pesticides in vineyard soil and air before, during and after applications; Justine Cruz; Université de Bordeaux; France

32. Atmospheric degradation of ethalfluraline; Amalia Muñoz; Fundación CEAM; Spain

33. Particulate matter formation from photochemical degradation of pesticides; E. Borrás; Fundación CEAM; Spain

34. Chlorothalonil accelerates the photodecomposition of other pesticides exposed to sunlight on wax films; Shirin Monadjemi; UMR CNRS n°6296; France

35. Effective mitigation measures to reduce worker exposure via inhalation during shank soil fumigation with chloropicrin; Federico Ferrari; Aeiforia srl, spin off company of Università Cattolica del Sacro Cuore; Italy

36. Volatilisation of pesticides: a greenhouse trial; Michael Houbraken; Ghent University; Belgium

37. A new laboratory system to measure pesticide volatilization and gaseous deposition onto water; Olivier Fanucci; NRA-AgroParistech; France

38. Comparison of an outdoor wind tunnel and a laboratory test system for investigating the deposition of pesticides following volatilisation; Gunnar Fent; RLP AgroScience; Germany
39. Comparison of Long-Range Transport and dry and wet deposition of selected C3 – C6 Chlorinated Organic Compounds on two different climatic regions of Europe; Jose Luis Palau; Fundación CEAM; Spain

Innovative approaches in mathematical modelling

40. Modelling drainage with machine learning methods; Vladimir Kuzmanovski; Jozef Stefan Institute; Slovenia

41. Comparison of 1D and 2D modelling of pesticide transfer in tile-drained context. Application on La Jaillière site; Romain Dairon; National Research Institute of Science and Technology for Environment and Agriculture; France

42. Wash-off parameterization in FOCUSgw models; Gerald Reinken; Bayer Crop Science; Germany

43. Pore scale heterogeneities as cause for differences in pesticide degradation comparing lab and field conditions; Mona Richter; BASF SE, Technische Universität Braunschweig; Germany

44. Estimators for the median DegT50 from a limited number of lab or field studies; Zhenglei Gao; Tier 3 solutions GmbH; Germany

45. Evaluation of degradation kinetics of a mobile compound in the field using inverse modelling; Klaus Hammel; Bayer Crop Science; Germany

46. Integration of a pesticide fate module in the crop model STICS: evaluation on three experimental sites; Wilfried Queyrel; UMR Sisyphe, Mines ParisTech / UPMC, EPHE, CNRS; France

47. PERSAM: a software tool for calculating PECs in soils; Ingeborg Joris; VITO; Belgium

Session B | 3rd September | 12.50-14.20

Innovative approaches in mathematical modelling

1. Adapting LISEM to improve modelling of pesticide transport by runoff and erosion; Marie Lefrancq; University of Strasbourg; France

2. Parameterisation of FOCUS drainage scenarios using PEARL; Erik van den Berg; Alterra, Wageningen UR; Netherlands

3. Long term surface water simulations using the FOCUS scenarios; Michael Klein; Fraunhofer IME; Germany
4. Feedback from ANSES on the use of FOCUS Surface Water tools for Southern zonal risk assessment; Emilie Farama; ANSES - French Agency for Food, Environmental and Occupational Health & Safety; France
5. Assessing the coverage of surface water exposure via drainage by the FOCUS scenarios in France; Lucas Garcia; BASF SE; Germany
6. Assessment of the Representativeness of FOCUS Surface Water Scenario D2 in France; John Hollis; Independent consultant;
7. Pesticide metabolite exposure in surface water modelled with TOXSWA; Wim Beltman; Alterra, Wageningen UR; Netherlands
8. AMPA and glyphosate in the Meuse – a modelling approach to distinguish pollution sources and conversion processes; Nele Desmet; VITO; Belgium
9. Update of FROGS and adaptation to PEARL 4.4.4 and FOCUS groundwater II guidance; Ludovic Loiseau; Syngenta; UK
10. Development of PECGW scenarios for tomatoes grown as protected crops in the Southern Zone; Sue Hayes; Syngenta; UK
11. A new model of pesticide transfers from land to water at the catchment scale; Mick Whelan; Leicester University; UK
12. Incorporating depth to groundwater and unsaturated zone characteristics into calculation of predicted environmental concentrations in groundwater; Colin Brown; University of York; UK
13. Development and verification of a GIS Layer to identify shallow groundwater regions for monitoring in the EU; Timothy Negley; ARCADIS; US
14. Leaching of metribuzin from field with cold winter climate under conventional cropping practices in Norway, simulated with MACRO, PEARL and PRZM; Patricia Gomez Aledo; INRA-AgroParisTech; France
15. New tools to support pesticide registration at the national and EU levels; Igor Dubus; Footways; France
16. Review and evaluation of exposure models in the framework of the 4FUN project; Tineke De Wilde; Arche; Belgium
17. Integration of Local Conditions in Risk Assessment; Amy Ritter; Waterborne Environmental, Inc.; US
Advances in design and use of pesticide monitoring campaigns

18. Development of EuroPEARL 2012 to support large-scale exposure assessments and monitoring programs; Gerco Hoogeweg; Waterborne Environmental, Inc.; US

19. Calibration and field evaluation of passive samplers for monitoring pesticides in water; Lutz Ahrens; Swedish University of Agricultural Sciences (SLU); Sweden

20. Temporal evaluation of the pollution by pesticides in natural surface and ground waters in a wine-growing region; Eliseo Herrero-Hernández; IRNASA-CSIC; Spain

21. Setting groundwater monitoring sites in a European wide spatial context by modelling; Tim Häring; BASF SE; Germany

22. Occurrence of pesticides in ground waters of the Czech Republic; Vít Kodeš; Czech Hydrometeorological Institute; Czech Republic

23. Water monitoring of emerging pesticides in France: Organization of a screening study from prioritization to measurements; Fabrizio G. Botta; INERIS; France

24. Comprehensive Insecticide and Fungicide Monitoring Using Advanced High Resolution Mass Spectrometry; Christoph Moschet; Eawag; Switzerland

25. Passive sampling – a suitable screening method of pesticides in a water phase; Roman Grabic; University of South Bohemia; Czech Republic

26. Specific pesticide groundwater vulnerability and contamination risk maps of the Czech Republic; Vít Kodeš; Czech Hydrometeorological Institute; Czech Republic

27. Webtool for data presentation and analysis of surface water and groundwater monitoring for plant protection products; Nele Smeets; VITO; Belgium

28. The Swedish environmental monitoring program for pesticides and examples of monitoring data applications; Martin Larsson; Swedish University of Agricultural Sciences (SLU); Sweden

Mechanisms and routes of transport of pesticides at field scale

29. Leaching of metabolite CGA108906 demonstrate shortcoming in the EU pesticide authorization procedure; Annette E. Rosenbom; Geological Survey of Denmark & Greenland (GEUS); Denmark
30. Potato Cropping and pesticide leaching risk; Ole Stig Jacobsen; Geological Survey of Denmark & Greenland (GEUS); Denmark
31. Glyphosate use and losses in a residential area; Wesley Boënne; VITO; Belgium
32. Pesticide losses in surface runoff from a clay soil in south east Sweden; Mats Larsbo; Swedish university of agricultural sciences (SLU); Sweden
33. Surface runoff of pesticides in Sweden – risk assessment and mitigation; Kristin Boye; Centre for Chemical Pesticides (CKB), Swedish University of Agricultural Sciences; Sweden
34. Development of a field methodology for quantifying the efficiency of vegetative buffers in removing pesticide contained in surface runoff.; Tim Pepper; Cambridge Environmental Assessments (ADAS UK Ltd); UK
35. Field experiments to measure efficacy of detention ponds to reduce pesticide transfer to surface water; Colin Brown; University of York; UK
36. Strategies for implementation of sound cereal production methods with low loss of pesticides and phosphorus; Marianne Stenrød; Norwegian Institute for Agricultural and Environmental Research (Bioforsk); Norway
37. Determination of Pesticides in Bees and Pollen by Liquid and Gas Chromatography coupled to mass spectrometry; Ove Jonsson; Swedish University of Agricultural Sciences (SLU); Sweden
38. Dispersive liquid-liquid microextraction combined with Gas Chromatography for Chlorpyrifos and Methyl Parathion analysis; Ghisliane Echeverry; GICAMP, Universidad del Valle; Colombia

Pesticides in developing countries
39. Health risk assessment of pesticides residue in maize and cowpea from Ejura, Ghana; Godfred Darko; Kwame Nkrumah University of Science & Technology; Ghana
40. Pesticide use, application and pollution status in India; Purusothaman Chirakkuzhyil Abhilash; Banaras Hindu University; India
41. Fate of Chlordecone in volcanic tropical soils and water in the French West Indies; Marc Voltz; INRA, UMR LISAH; France
42. Leaching potential of fenoxaprop-p-ethyl and pendimethaline in silty loam soil; Muhammad Suleman; The University of Agriculture Peshawar; Pakistan
Managing environmental impacts of pesticides

43. Investigating pesticide photodegradation in plastic-protected growing environments: development of a pesticide action spectrum; Elizabeth Hill; Lancaster University; UK

44. Comparison of three pesticide fate models for S-metolachlor leaching under field conditions in different maize cropping systems; Jesús M. Marín-Benito; INRA-AgroParisTech; France

45. Evidence for filtering capabilities of different elements of the landscape: key parameters favouring natural attenuation of pesticides in vineyard areas; Stéphane Pesce; Irstea; France

46. A network of long term experimental sites to include quantitative modelling of pesticides losses in the multi-criteria assessment of innovating cropping systems in France; Pierre Benoit; INRA-AgroParisTech; France

47. Fate and impact of Pesticides: A multi-scale and interdisciplinary study for a rational use; Edith Dumas; Clermont Université; France

48. Evaluation of the Dutch policy plan on sustainable crop protection; Aaldrik Tikток; PBL Netherlands Environmental Assessment Agency; Netherlands

49. Environmental Impact Quotient (EIQ) as an indicator for the sustainability in tomato crops with traditional and GAPs systems; Martha I. Páez; Universidad del Valle; Colombia

50. Assessment of PBTs in the EU: A critical review and proposed evaluation scheme with reference to plant protection products; Michael Matthies; University of Osnabrueck; Germany