Dimensions of Design Space: a Decision-Theoretic Approach to Optimal Research Portfolio Design

S. Contia, K. P. Claxtona, N. S. Hawkinsa

aCentre for Health Economics, Alcuin ‘A’ Block, University of York, Heslington, York YO10 5DD, UK

Backdrop
- Sample size determination (SSD) is a key issue in medical study design
 - In some cases (i.e. a RCT) patient allocation needs to be tuned too
- Research designs can be experimental or non-experimental
 - A research 'portfolio' combines studies of different nature
 - SSD jointly optimises design sizes and allocations within the portfolio
- From a CEA perspective, EVI lends itself as an optimality criterion
 - The design portfolio expressing maximum payoff to research is sought
 - Both financial and opportunity costs are recognised
 - Fits coherently within a Bayesian decision-theoretic setting

Methodology
- Suppose a medical decision model, indexed by parameters θ, yields net-benefits $N_B(\theta)$ under treatment option t
- The gain of information about θ following collection of samples n of patients of sizes n increases the value of the decision by
 $$EVSI(n) = \mathbb{E}_{\theta} \left[\max_{t} \mathbb{E}_{\theta} \left[N_B(\theta) \right] \right] - \mathbb{E}_{\theta} \left[\max_{t} N_B(\theta) \right]$$
- A cost of sampling function $C(n)$ is introduced to account for financial (fixed and reporting) costs attaching each sample
- Opportunity costs (i) enrolled patients forgo the study’s value of research (ii) net-benefit lost by patients on sub-optimal treatments
- After upscaling $EVSI$ to its population counterpart $PEVSI$, the societal payoff to proposed research is measured by
 $$ENBS(n) = PEVSI(n) - C(n)$$
 - Additional research based on studies of sizes n would be efficient if $ENBS(n) > 0$
 - Desired research portfolio features $n^* = \arg \max_{n} ENBS(n)$
- In principle this defines a standard integer programming problem
 - Objective function normally not available in closed form
 - A MC estimator $\hat{ENBS}(\cdot)$ is typically used as a proxy
 - Rough response surface (due to MC noise) complicates optimisation

Strategy
- General stochastic optimisation can be pursued via ‘brute-force’ MC3
 - Repeated optimiser runs produce sample of ‘candidates’ n_1, \ldots, n_m
 - Mean \bar{n} may be selected, and inferences on $\hat{ENBS}(\bar{n})$ drawn
 - The higher the MC resolution (and m), the more reliable the outcome
- MC noise attaching $\hat{ENBS}(\cdot)$ induces uncertainty around resulting \bar{n}
 - A maximin LHS n_1, \ldots, n_k is selected from previous stage
 - Inferences from samples of $\hat{ENBS}(\bar{n})$ estimates are obtained

A Test-Bed: Zanamivir vs. Standard Care
- A decision tree has been proposed to model the effect of zanamivir for treating influenza in British adults4
 - θ_{d}: LOR of complications and hospitalisation, symptom days reduction
 - θ_{e}: probabilities of complication, hospitalisation and influenza-positive
 - θ_{s}: utility of symptom day
- Examined research scenarios, each with a specific EVI load comprise
 - 1d/2d balanced/unbalanced trial of all endpoints
 - 2d, 1d, 1d separate clinical trial, epidemiological study and utility survey
 - 4d joint portfolio of clinical trial, epidemiological study and utility survey

Concluding Remarks
- Proposed approach offered useful insights on n^* and $\hat{ENBS}(n^*)$
 - Relaxed allocation constraints generally yields higher EVI
 - Research portfolio can express higher EVI than trial of all endpoints
- Joint research portfolio appeared to outperform separate SSD
 - Optimal portfolio $\hat{\theta}$ ensemble of independently optimised studies
 - Intrinsically economic factors (costs, λ) are key
- CPU-intensive estimation and/or complex models may limit applicability
 - There is scope for improvement (e.g. MC noise appeared Gaussian)
 - Balance is required between accuracy and efficiency

References