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Abstract

The standard decision rules of cost-effectiveness analysis either require the decision
maker to set a threshold willingness to pay for additional health care or to set an
overall fixed budget. In practice, neither are generally taken, but instead an arbitrary
decision rule is followed which may not be consistent with the overall budget, lead to
an allocation of resources which is less than optimal, and is unable to identify the
programme which should be displaced at the margin. We show, using a policy-
relevant example, how mathematical programming can be used as a generalisation of
the standard decision rules. This approach allows us to incorporate important aspects
of the decision into our framework that are not available if decision making is made
using threshold values of the incremental cost-effectiveness ratio alone. We are able
to examine alternative budgetary rules about when expenditure can be incurred, and
show the opportunity loss, in terms of health benefit forgone, of each budgetary rule.
We show that indivisibility in a patient population and other equity concerns can be
represented as constraints in the programme and we estimate the opportunity loss if

these concerns are held for some patient populations, and for all patient populations.
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Introduction

The standard decision rules of cost effectiveness analysis allow two alternative
methods of determining the efficient allocation of healthcare resources in the absence
of a market, assuming constant returns to scale, independent treatment options and
perfect divisibility [1-3]. Firstly, the decision maker can set a threshold willingness to
pay for additional health benefits and implement all independent treatments with
positive net benefit. In these circumstances the budget for healthcare is not fixed but
implicitly determined. Secondly, the decision maker can set a budget for healthcare
and select from all available treatments the subset that maximises health benefits
subject to the budget constraint. Here the shadow price of the budget constraint can
be interpreted as the reciprocal of the implied threshold willingness to pay for

additional health care benefits.

In practice, neither of these approaches is generally taken, but instead an arbitrary
decision rule is followed. The decision maker chooses a threshold willingness to pay
which may not be consistent with the existence of an overall fixed budget for
healthcare [4]. Under these circumstances, implementing a new intervention will
displace another programme at the margin but the latter is usually not identified by the
decision maker or the analyst. Without solving the allocation problem as a whole, an
arbitrary method will lead to a sub-optimal allocation of resources and does not

identify the true opportunity cost of the decision [5].

Stinnett and Paltiel showed how mathematical programming (MP) can be used to
solve the allocation problem and also used to accommodate more complex

information regarding returns to scale, indivisibilities and ethical constraints including



the cost of equity [3]. Some authors have developed theoretical aspects of this
approach in the context of health economics, considering issues such as variable
returns to scale [6], indivisibilities [7 ,8] and uncertainty of costs and effects [9]. To
date, there have only been a few applications to policy problems. Some studies have
applied MP techniques to allocate resources within specific patient groups and
healthcare programmes [10-12]. Other authors have aimed to solve the allocation
problem as a whole for healthcare organisations with a fixed budget. Wang evaluated
a hypothetical allocation problem to maximise life years gained for the population of a
US Managed Care Organisation, while Cromwell evaluated the mix of hospital
services in an Australian Area Health Service [13 ,14]. Both studies were limited by

only considering costs incurred in the first year of treatment.

The purpose of this study is to formulate a mathematical programme to allocate
resources within and between healthcare programmes. We apply the mathematical
framework to a stylised but relevant policy problem using real data. We show how to
solve the allocation problem to take account both of the long term costs of each
treatment option and the constraints of various short-term budget rules. We
demonstrate using our dataset how indivisibilities and equity concerns can be
represented as constraints, following the method of Stinnett and Paltiel and that the

opportunity cost of equity concerns varies between patient groups [3].

The paper is structured as follows. First we provide the rationale for the formulation
of the allocation problem, and provide the solution for the basic allocation problem.
We then consider how the solution would change if there are constraints on when

expenditure can be incurred as well as the overall budget. We relax the assumption of



perfect divisibility in selected patient groups and then for all patient groups, and show

how other equity concerns can also be represented as constraints.

The formulation of the allocation problem

Our basic formulation of the problem is as follows. The objective is to determine the
optimal values of the available healthcare treatments (x; ) so as to maximise the gross
benefit B subject to an overall budgetary constraint 6, and constraints that ensure all
members of each independent healthcare programme £ :=1...K and population group

i:=1...1, receive one and only one treatment j:=1...J, , thatis:

The variable  varies between zero and unity ( ) where means
that no proportion of population group i is allocated treatment j in healthcare
programmek , and x;, =1 means that all members of population group i are

allocated treatment j in healthcare programmek

The time horizon (T) is the total time over which costs and benefits arising from the
available treatments are evaluated. The model presented here is static; that is, the

proportion of the population selected now for each treatment will not change over



time. The review period is denoted by 7 ; that is, we assume that the same treatment
decision will also be applied to patients who are newly diagnosed during the next t
years and their costs are also taken into account. After T years it is assumed the
decision will be reviewed and the costs of no further incident patients are considered.

The time index variable is¢, where 7 =1...T . Denote also by ¢, (¢) the incremental
cost at year ¢ of treatment j in healthcare programme k& if the treatment is given to all
members of population group i ; that is, both the pre-existing and newly diagnosed
patient population. The cost ¢, (¢) of each treatment j ( j>1) in year ¢ is relative
to a comparator treatment ( j = 1) for which costs are defined to be zero. The

comparator is usually current care. The total incremental cost in year ¢ of all
healthcare programmes (relative to current care) across all treatments is therefore

given by

Ji Iy

C(t) = g E E Xy (1) t=1.T

i=1

2)

For benefits, it is assumed that the cumulative incremental quality adjusted life years
(QALYs) —relative to the comparator treatment — are known only over the time
horizon of the model and these are denoted by b;x where b, is the gross benefit of
treatment ;j in healthcare programmek if the treatment is applied to all members of

population groupi. The total incremental benefit relative to current care is therefore



3)
This formulation of the problem assumes both costs and benefits show constant

returns to scale. The coefficients b are discounted to allow for time preference.

Problem (1) is a Linear Programming (LP) problem. The linear programme is solved
using the Mathematica Version 5 built-in LP solver “DualLinearProgramming” [15].
This returns the optimal values of the decision variables and the shadow prices of the

constraints.

A policy example

The approach taken in this paper recognises certain important features of the policy
problem. Resources are allocated in a publicly-funded system by planning
mechanisms. Ideally, all treatments for all population groups in all healthcare
programmes would be compared against one another to maximise overall health
benefits, subject to budget, equity and other constraints. This is unlikely to be feasible.
A more limited but relevant policy problem is suggested, in the context of the UK
health system, by the recognition that funding should be made available to National
Health Service (NHS) bodies in order to implement the recommendations made by the
National Institute for Health and Clinical Excellence (NICE). NICE currently
undertakes technology appraisals, in which the independent appraisal committee
makes recommendations about a set of healthcare technologies, which take into
account the cost of additional QALY's by calculating the incremental cost

effectiveness ratio. The threshold of willingness to pay for additional health benefits



is not precisely defined but is usually in the range £20000 to £40000 [16]. Maynard
(2004) recommends that NICE receives an annual, ‘top-sliced’ budget and is required
to fund all advice within that expenditure envelope [17]. The consequence of such a
policy would be that it would no longer be efficient for NICE to make
recommendations for each appraisal in isolation from the others. In order to ensure
that its recommendations were affordable within the overall financial envelope, all

options would have to be compared against one another in a mathematical programme.

To explore how this might work, three healthcare programmes have been identified
from the 6™ and 7™ wave of appraisals considered by NICE that were published
between 2002 and 2003 [18]. The healthcare programmes included in this study, their
prevalent and incident populations, and the treatments which were evaluated in the
assessment reports are shown in Table 1. The dimensions of the LP problem (1)
corresponding to this policy example (Table 1) are:

K=31=41,=21,=2,J, =4,J, =2,J, =2. The healthcare programmes are
evaluated over 15 years (i.e. 7 = 15) and the revision time of decisions is assumed to

be 5 years (i.e. T =5). We estimate the coefficients for incremental benefits b, and

costs ¢, (¢) from the information provided by the assessment reports.

Solution of allocation problem

Table 2 shows the optimum level of implementation of treatments for each healthcare
programme and population groups at budgets of £20m, £50m, £180m and £240m. In
linear allocation problems where there is a single budget constraint, there will always
be at most one independent programme that will offer mixed treatments and all the

other treatments in all the other programmes will be pure; that is, one treatment will



be implemented in full and the other options are not offered at all. The level of
implementation of the each treatment, and whether an intervention is mixed or pure,
changes with the budget. This solution is identical to that obtained by following the

standard decision rules set out by Johannesson and Weinstein [1].

We can show how the budget constraint, the shadow price and the threshold cost per
QALY are related in the basic allocation problem (Figure 1). The shadow price is the
gain in QALYs if the budget were to grow by £1m. The reciprocal of the shadow
price is proportional to the threshold willingness to pay for additional QALYs. The
shadow price falls (or the threshold willingness to pay increases) with the size of the
budget. In this example, at a budget of £338m, all the most effective treatments in all
patient groups are funded in full and further budget will have no additional health
benefits. Figure 1 shows that the shadow price follows a characteristic step (i.e.
piecewise-constant) function. If an additional £1m budget expands the feasible
solution region without changing its basic shape, so that the same set of optimal
treatments are selected as before but with different levels of implementation, then the
shadow price (the additional QALY per additional £1m) will remain constant. If the
additional £1m changes the optimal solution so that a treatment which was previously
implemented partially is now dropped entirely, then the shape of the feasible solution
region will change and the shadow price will be lower than before. When the budget
reaches the point at which all the most effective treatments for each population group
are funded in full, additional funding will not achieve any additional benefits and so
the shadow price will be zero. If the budget is exogenously defined, then the
threshold maximum willingness to pay for additional health benefits is a positive not

normative question.



Evaluating alternative budget rules

Problem (1) imposes no constraints about when the budget can be spent, and the
solution shows us the optimal allocation of resources over time. Conventional
methods of cost-effectiveness analysis assume that the decision maker has complete
flexibility about when the budget can be spent. However, a budget in the context of
the NHS is usually a sum of money allocated for a particular purpose for a given
period of time, usually one year. If we have constraints on when the budget can be
spent as well as its total size, then the timing of expenditure for each treatment is
important over and above discounting. Decision making using incremental cost-
effectiveness ratios (ICERs) alone cannot handle more than one constraint and

therefore cannot deal with this.

It is possible to explore alternative budget rules. Firstly, we consider the case where
the total allocation ¢ is divided into equally sized maximum annual budgets over the
time horizon of the analysis, that is, 15 years. The cost constraint in LP problem (1) is
amended so that we now have 15 budget constraints, one for each year, as shown by

Eqn (4)

Ct)=d/15  t=1..T

4)

Secondly, we consider the case where the total allocation has to be spent within the
first 5 years. The budget rule is given by Eqn (5). In this formulation, treatments that

have a cost beyond 5 years are permitted only if their costs are offset by other

10



programmes which are cost saving in these time periods. There are now 10 budget

constraints — one for the first five years and a further 9 for each of years 6 to 15.

jC(t)=5
Ct)=0 t=6...15

()

Table 3 shows the health gain achieved at an (arbitrarily chosen) budget of £180m
with no equity constraints under alternative budget rules. Under these alternative
rules, not all the budget will be spent and there will be an opportunity loss compared
with the basic solution. Figure 2 shows the variation of health gains (QALYSs) for
each of the budget allocation rules at different values of the overall budget. At values
of the total budget less than £75million, the basic formulation and the formulation
where the total allocation has to be spent within 5 years give the same solution,
indicating that up to this budget these additional constraints are non-binding.
However, as the total budget increases, the restrictions become binding and lead to an

opportunity loss.

The decision making algorithms using ICERs are unable to handle the case where
there are alternative budgetary rules. The mathematical programme is able to
incorporate these rules as additional constraints. It is possible to incorporate other
resource constraints; for example, rules restricting expenditure on specific budgets

such as pharmaceuticals or capacity constraints for specialist personnel or facilities.

Indivisibility and horizontal equity

11



In Problem (1), the decision variables are permitted to take fractional values. This is
the assumption of perfect divisibility. Only a proportion of the population would be
allocated to receive each of the treatments under consideration (although all members
of the population would receive some treatment). This might be thought of as the
‘efficient’ solution in the absence of any equity concerns. Its implementation, were it
possible, would require some arbitrary allocation mechanism, such as first-come first-
served. This might be considered inequitable since the members of the population are

assumed to all be of equal need [3].

We can relax the assumption of perfect divisibility for some or all patient populations.
A requirement that equity considerations should be incorporated can be thought of as
imposing additional constraints on the mathematical programme. The ‘horizontal
equity’ consideration that people with equal need should receive equal access to
treatment imposes the constraint that the decision variables are binary for some

population group i and healthcare programme &k (Eqn. (6)).

x, €01) i=l.g,j=1..J.k=1..K

(6)

For example, we might require that all patients with type 1 diabetes are treated in the
same way (i.e. are indivisible), or that patients aged less than 60 years with non-
Hodgkins lymphoma are treated in the same way, or that all patient populations are

indivisible.

12



Horizontal equity concerns (Problem (1) with the additional constraint Eqn (6)
imposed on one or more population groups) are a 0-1 Mixed Integer Linear Program
(0-1 MILP). Problems of this type can be difficult to solve. In this paper, we use a
computationally-intensive method of constraining the selected treatment options to
take values of 0 or 1, evaluating the linear programme for each possible permutation,
and choosing the permutation that maximises the objective function. This method is
only feasible when a very limited number of decision variables take binary values.

Further work will focus on efficient methods to solve MILP problems [19-21].

Table 4 shows the opportunity loss if indivisibility is imposed separately in two
patient populations, and if indivisibility is required in all populations. The base case
for this comparison is chosen as the “equally phased” budget for illustrative purposes
because, in the basic mathematical programme, the equity constraints would not be
binding if we imposed them on more than one population. In the large population
with type 1 diabetes, the opportunity loss is 520 QALYs. The effect (compared with
the base case) is to decrease the health of the type 1 diabetes population, who now all
receive the less effective treatment where previously only a proportion would have
done, but to increase health in other populations more of whom now receive more
effective treatments. The requirement for indivisibility only in the small population
aged less than 60 with non-Hodgkins lymphoma costs 19 QALYs. The requirement
for horizontal equity in all populations does not impose further opportunity loss
because, in this example, the other constraints are not binding once the indivisibility

has been imposed in the population with type 1 diabetes.

Further equity constraints

13



Further equity considerations can be incorporated into the mathematical programme.
Any characteristic which is known to affect cost, quality of life or survival could be
used to differentiate patients with respect to the treatments they are offered. It may not
be considered equitable to allow different access to treatment if patients are similar in
some respects but differ in others. For example, in some cases it may be acceptable to
differentiate between patient groups on the basis of age. However, other
characteristics may be more controversial such as gender or social class. This can be
expressed as the requirement that patients within the same health care programme
have the same probability of receiving a given treatment, regardless of other
characteristics. The examples available in this stylised scenario are rather artificial,
but are used to illustrate the issue. For example, it may be considered unfair to use
patients’ age to differentiate with respect to the treatment offered for lymphoma

(which can be written as a constraint in the form x,,, = x,,, ), or unfair to allow patients

with type 1 and type 2 diabetes different probabilities of receiving the more effective

long acting insulin treatment (written as a constraint in the formx,,, = x,,;). These

concerns can be written as equity constraints which can be imposed either separately

or together, or conceivably together with indivisibilities.

Table 5 shows the results of an equity concern that it is unfair to use particular
characteristics to differentiate with respect to the treatment offered, firstly for access
to rituximab for non-Hodgkins lymphoma and, secondly, for access to long acting
insulins for diabetics. As before, the opportunity loss of holding these equity
concerns is not the same for all healthcare programmes. There is an additional

opportunity loss if we wish to hold these equity constraints in both populations.

14



The formulation of equity concerns as constraints on a mathematical programme
allows us to evaluate their opportunity cost in terms of QALY forgone, compared to
the scenario where there are no equity constraints. Furthermore, we can evaluate the
opportunity cost of equity separately for each patient population. In principle, this
might be used to describe the choices and trade-offs available to decision makers
between efficiency and equity, including the opportunity cost of having the same

equity concerns for all patient populations.

Discussion

In this paper, we have used mathematical programming to allocate limited healthcare
resources for treatments between and within a set of patient populations. Johannesson
and Weinstein showed that, if one was to implicitly accept the resulting level of
expenditure as the budget, decision making using a threshold willingness to pay is
equivalent to the basic LP problem set out in this paper as Problem (1) [1]. Stinnett
and Paltiel argued that mathematical programming techniques allowed the
incorporation of more complex information and additional constraints [3]. This paper
adds to this work by showing that the profile of costs over time may be important and
that it is possible to evaluate alternative budgetary rules. We are also able to
incorporate indivisibility and other equity concerns as constraints and find that
different equity concerns have different implications for efficiency, and that the effect
will vary from patient population to population. It is not possible to use a threshold
willingness to pay to make decisions where there are constraints additional to an
overall budget constraint. We have shown that mathematical programming to assist
priority setting is feasible in a context where there is a finite number of clear

alternative options and a fixed budget. One such context may be the decisions made
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each year by an agency such as NICE, and we have demonstrated an application using

published or publicly available information.

Our application of mathematical programming to a policy-relevant decision has
revealed several methodological challenges that should be addressed if these
techniques are to progress. We discuss two of these. Firstly, we have made some
attempt to incorporate the effects of time in to the analytic framework. We have
included annual budget constraints because we believe these constraints may be an
important feature of the decision problem. We have also considered not just the
current prevalent population but future incident patients, up to a review date of five
years. However, this review date has been arbitrarily chosen for convenience. An
alternative approach might be suggested by multistage or dynamic programming, in

which allocation decisions can change over time [22]

Secondly, the parameters of the model are not known with certainty. There is
uncertainty in the costs and benefits per patient, and the epidemiological parameters
of current prevalence and future incidence, and in the budget constraints. A
probabilistic approach to handling uncertainty would need to incorporate the
coefficients of the model as random variables with a priori specified probability
distributions, preferably including the correlations between them (particularly
between costs and effects). The formulation of the problem as a stochastic
mathematical programme, where the coefficients are random variables, has been
proposed [9]. The solution to this type of stochastic problem is unlikely to be the
same as that for the deterministic case even when the coefficients take their expected

values. More importantly stochastic analysis would allow decision makers to
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consider the value of conducting research to inform the allocation problem as a whole
[23 ,24]. In this sense, it provides a framework where the value of information about
a particular technology or particular parameters can be considered in the context of

the system-wide allocation problem.

We have shown that the use of an arbitrary threshold willingness to pay does not
identify the correct opportunity cost of the decision and will, therefore, lead to a sub-
optimal allocation of resources. Johannesson and Weinstein have argued that
decisions are usually made at the margins of implicit budgets and, therefore, a MP (or
budget-constrained) approach is unrealistic and unnecessary [1]. However, we know
that even the healthcare systems of large, developed economies such as the UK are
subject to annual budget constraints. Currently, NICE makes recommendations about
new treatments without considering which programmes are to be displaced and this
causes confusion and delay among those who are required to implement the decisions.
Although a number of methodological challenges still need to be addressed,
mathematical programming offers a transparent and coherent decision making
framework to identify opportunity cost, account for annual budgets and show the

opportunity costs of different equity concerns.
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Table 1: Programmes, treatments, populations and time horizon reported in the

assessment reports for the sample of NICE technology appraisals.

Healthcare Population: Treatments (j) Time horizon of
programme (k) and Prevalent Incident assessment
population groups (i) Hr report
k=1: Influenza Four treatments available Less than 1
year

1. Adults 4.805m 4.805m 1. Current care (no

2. Elderly 1.075m 1.075m medication)

3. Residential 0.025m 0.025m 2. Amantadine

elderly 4.047m 4.047m 3. Oseltamivir

4. Children 4. Zanamivir
k=2: Rituximab for non-Hodgkins Two treatments available 15 years
lymphoma

1. Over 60s 236 11 1. Current care (CHOP)

2. Under 60s 1243 59 2. Rituximab+CHOP
k=3: Long acting insulins for diabetes Two treatments available 9 years

1. Typel 117000 4056 1. Current care (NHP)

2. Type2 39000 2790 2. Insulin glargine

* Current care is the current mix of services : 30% have hospital dialysis, 30%
satellite and 40% home dialysis. Hospital dialysis is not considered as a treatment
option since it is less effective and more costly than alternatives in every year.
However, future analyses may consider switch costs which are not included here.
** Healthcare programmes are indexed with letter £, treatments with letter j and

population groups with letter i.
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