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Abstract  

 

The standard decision rules of cost-effectiveness analysis either require the decision 

maker to set a threshold willingness to pay for additional health care or to set an 

overall fixed budget. In practice, neither are generally taken, but instead an arbitrary 

decision rule is followed which may not be consistent with the overall budget, lead to 

an allocation of resources which is less than optimal, and is unable to identify the 

programme which should be displaced at the margin.  We show, using a policy-

relevant example, how mathematical programming can be used as a generalisation of 

the standard decision rules.  This approach allows us to incorporate important aspects 

of the decision into our framework that are not available if decision making is made 

using threshold values of the incremental cost-effectiveness ratio alone.   We are able 

to examine alternative budgetary rules about when expenditure can be incurred, and 

show the opportunity loss, in terms of health benefit forgone, of each budgetary rule.  

We show that indivisibility in a patient population and other equity concerns can be 

represented as constraints in the programme and we estimate the opportunity loss if 

these concerns are held for some patient populations, and for all patient populations. 
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Introduction 

The standard decision rules of cost effectiveness analysis allow two alternative 

methods of determining the efficient allocation of healthcare resources in the absence 

of a market, assuming constant returns to scale, independent treatment options and 

perfect divisibility [1-3].  Firstly, the decision maker can set a threshold willingness to 

pay for additional health benefits and implement all independent treatments with 

positive net benefit.  In these circumstances the budget for healthcare is not fixed but 

implicitly determined. Secondly, the decision maker can set a budget for healthcare 

and select from all available treatments the subset that maximises health benefits 

subject to the budget constraint.  Here the shadow price of the budget constraint can 

be interpreted as the reciprocal of the implied threshold willingness to pay for 

additional health care benefits. 

 

In practice, neither of these approaches is generally taken, but instead an arbitrary 

decision rule is followed.  The decision maker chooses a threshold willingness to pay 

which may not be consistent with the existence of an overall fixed budget for 

healthcare [4].  Under these circumstances, implementing a new intervention will 

displace another programme at the margin but the latter is usually not identified by the 

decision maker or the analyst.  Without solving the allocation problem as a whole, an 

arbitrary method will lead to a sub-optimal allocation of resources and does not 

identify the true opportunity cost of the decision [5].   

 

Stinnett and Paltiel showed how mathematical programming (MP) can be used to 

solve the allocation problem and also used to accommodate more complex 

information regarding returns to scale, indivisibilities and ethical constraints including 
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the cost of equity [3].  Some authors have developed theoretical aspects of this 

approach in the context of health economics, considering issues such as variable 

returns to scale [6], indivisibilities [7 ,8] and uncertainty of costs and effects [9].  To 

date, there have only been a few applications to policy problems.  Some studies have 

applied MP techniques to allocate resources within specific patient groups and 

healthcare programmes [10-12].  Other authors have aimed to solve the allocation 

problem as a whole for healthcare organisations with a fixed budget.  Wang evaluated 

a hypothetical allocation problem to maximise life years gained for the population of a 

US Managed Care Organisation, while Cromwell evaluated the mix of hospital 

services in an Australian Area Health Service [13 ,14].  Both studies were limited by 

only considering costs incurred in the first year of treatment.   

 

The purpose of this study is to formulate a mathematical programme to allocate 

resources within and between healthcare programmes. We apply the mathematical 

framework to a stylised but relevant policy problem using real data.   We show how to 

solve the allocation problem to take account both of the long term costs of each 

treatment option and the constraints of various short-term budget rules.  We 

demonstrate using our dataset how indivisibilities and equity concerns can be 

represented as constraints, following the method of Stinnett and Paltiel  and that the 

opportunity cost of equity concerns varies between patient groups [3]. 

 

The paper is structured as follows.   First we provide the rationale for the formulation 

of the allocation problem, and provide the solution for the basic allocation problem.    

We then consider how the solution would change if there are constraints on when 

expenditure can be incurred as well as the overall budget. We relax the assumption of 
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perfect divisibility in selected patient groups and then for all patient groups, and show 

how other equity concerns can also be represented as constraints. 

 

The formulation of the allocation problem   

Our basic formulation of the problem is as follows.  The objective is to determine the 

optimal values of the available healthcare treatments (xijk ) so as to maximise the gross 

benefit B  subject to an overall budgetary constraint δ, and constraints that ensure all 

members of each independent healthcare programme : 1...k K=  and population group 

: 1...
k

i I=  receive one and only one treatment : 1... kj J= , that is: 

 

         (1) 

  

The variable  varies between zero and unity ( ) where  means 

that no proportion of population group i  is allocated treatment j  in healthcare 

programmek , and 1=ijkx  means that all members of population group i  are 

allocated treatment j  in healthcare programmek .   

 

The time horizon (T) is the total time over which costs and benefits arising from the 

available treatments are evaluated.  The model presented here is static; that is, the 

proportion of the population selected now for each treatment will not change over 
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time.  The review period is denoted by ! ; that is, we assume that the same treatment 

decision will also be applied to patients who are newly diagnosed during the next !  

years and their costs are also taken into account.  After !  years it is assumed the 

decision will be reviewed and the costs of no further incident patients are considered.  

The time index variable is t , where Tt K1= .  Denote also by )(tcijk  the incremental 

cost at year t  of treatment j  in healthcare programmek  if the treatment is given to all 

members of population group i ; that is, both the pre-existing and newly diagnosed 

patient population.   The cost )(tcijk  of each treatment j   ( 1>j ) in year t  is relative 

to a comparator treatment ( 1=j ) for which costs are defined to be zero.  The 

comparator is usually current care.  The total incremental cost in year t  of all 

healthcare programmes (relative to current care) across all treatments is therefore 

given by 
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       (2)   

 

For benefits, it is assumed that the cumulative incremental quality adjusted life years 

(QALYs) – relative to the comparator treatment –  are known only over the time 

horizon of the model and these are denoted by bijk  where ijkb  is the gross benefit of 

treatment j  in healthcare programmek  if the treatment is applied to all members of 

population group i . The total incremental benefit relative to current care is therefore 
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        (3) 

This formulation of the problem assumes both costs and benefits show constant 

returns to scale.  The coefficients bijk  are discounted to allow for time preference.   

                      

Problem (1)  is a Linear Programming (LP) problem. The linear programme is solved 

using the Mathematica Version 5 built-in LP solver “DualLinearProgramming” [15].  

This returns the optimal values of the decision variables and the shadow prices of the 

constraints. 

 

A policy example 

The approach taken in this paper recognises certain important features of the policy 

problem.   Resources are allocated in a publicly-funded system by planning 

mechanisms.  Ideally, all treatments for all population groups in all healthcare 

programmes would be compared against one another to maximise overall health 

benefits, subject to budget, equity and other constraints.  This is unlikely to be feasible.  

A more limited but relevant policy problem is suggested, in the context of the UK 

health system, by the recognition that funding should be made available to National 

Health Service (NHS) bodies in order to implement the recommendations made by the 

National Institute for Health and Clinical Excellence (NICE).    NICE currently 

undertakes technology appraisals, in which the independent appraisal committee 

makes recommendations about a set of healthcare technologies, which take into 

account the cost of additional QALYs by calculating the incremental cost 

effectiveness ratio.  The threshold of willingness to pay for additional health benefits 
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is not precisely defined but is usually in the range £20000 to £40000 [16].  Maynard 

(2004) recommends that NICE receives an annual, ‘top-sliced’ budget and is required 

to fund all advice within that expenditure envelope [17].  The consequence of such a 

policy would be that it would no longer be efficient for NICE to make 

recommendations for each appraisal in isolation from the others.  In order to ensure 

that its recommendations were affordable within the overall financial envelope, all 

options would have to be compared against one another in a mathematical programme.     

 

To explore how this might work, three healthcare programmes have been identified 

from the 6th and 7th wave of appraisals considered by NICE that were published 

between 2002 and 2003 [18].  The healthcare programmes included in this study, their 

prevalent and incident populations, and the treatments which were evaluated in the 

assessment reports are shown in Table 1.  The dimensions of the LP  problem (1) 

corresponding to this policy example (Table 1) are: 

2,2,4,2,2,4,3
321321
======= JJJIIIK .  The healthcare programmes are 

evaluated over 15 years (i.e. 15=T ) and the revision time of decisions is assumed to 

be 5 years (i.e. 5=! ).  We estimate the coefficients for incremental benefits ijkb and 

costs )(tcijk  from the information provided by the assessment reports.  

 

Solution of allocation problem 

Table 2 shows the optimum level of implementation of treatments for each healthcare 

programme and population groups at budgets of £20m, £50m, £180m and £240m.  In 

linear allocation problems where there is a single budget constraint, there will always 

be at most one independent programme that will offer mixed treatments and all the 

other treatments in all the other programmes will be pure; that is, one treatment will 
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be implemented in full and the other options are not offered at all. The level of 

implementation of the each treatment, and whether an intervention is mixed or pure, 

changes with the budget.  This solution is identical to that obtained by following the 

standard decision rules set out by Johannesson and Weinstein  [1]. 

 

We can show how the budget constraint, the shadow price and the threshold cost per 

QALY are related in the basic allocation problem (Figure 1).  The shadow price is the 

gain in QALYs if the budget were to grow by £1m.  The reciprocal of the shadow 

price is proportional to the threshold willingness to pay for additional QALYs.   The 

shadow price falls (or the threshold willingness to pay increases) with the size of the 

budget.  In this example, at a budget of £338m, all the most effective treatments in all 

patient groups are funded in full and further budget will have no additional health 

benefits.  Figure 1 shows that the shadow price follows a characteristic step (i.e.  

piecewise-constant) function.  If an additional £1m budget expands the feasible 

solution region without changing its basic shape, so that the same set of optimal 

treatments are selected as before but with different levels of implementation, then the 

shadow price (the additional QALYs per additional £1m) will remain constant.  If the 

additional £1m changes the optimal solution so that a treatment which was previously 

implemented partially is now dropped entirely, then the shape of the feasible solution 

region will change and the shadow price will be lower than before.   When the budget 

reaches the point at which all the most effective treatments for each population group 

are funded in full, additional funding will not achieve any additional benefits and so 

the shadow price will be zero.  If the budget is exogenously defined, then the 

threshold maximum willingness to pay for additional health benefits is a positive not 

normative question.   
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Evaluating alternative budget rules 

Problem (1) imposes no constraints about when the budget can be spent, and the 

solution shows us the optimal allocation of resources over time.  Conventional 

methods of cost-effectiveness analysis assume that the decision maker has complete 

flexibility about when the budget can be spent.  However, a budget in the context of 

the NHS is usually a sum of money allocated for a particular purpose for a given 

period of time, usually one year.  If we have constraints on when the budget can be 

spent as well as its total size, then the timing of expenditure for each treatment is 

important over and above discounting.  Decision making using incremental cost-

effectiveness ratios (ICERs) alone cannot handle more than one constraint and 

therefore cannot deal with this. 

 

It is possible to explore alternative budget rules.  Firstly, we consider the case where 

the total allocation δ is divided into equally sized maximum annual budgets over the 

time horizon of the analysis, that is, 15 years.  The cost constraint in LP problem (1) is 

amended so that we now have 15 budget constraints, one for each year, as shown by 

Eqn (4) 

                                  

( ) /15 1C t t T!" = K            

        (4) 

 

Secondly, we consider the case where the total allocation has to be spent within the 

first 5 years.  The budget rule is given by Eqn (5).  In this formulation, treatments that 

have a cost beyond 5 years are permitted only if their costs are offset by other 
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programmes which are cost saving in these time periods.  There are now 10 budget 

constraints – one for the first five years and a further 9 for each of years 6 to 15.  
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Table 3 shows the health gain achieved at an (arbitrarily chosen) budget of £180m 

with no equity constraints under alternative budget rules.   Under these alternative 

rules, not all the budget will be spent and there will be an opportunity loss compared 

with the basic solution.  Figure 2 shows the variation of health gains (QALYs) for 

each of the budget allocation rules at different values of the overall budget.  At values 

of the total budget less than £75million, the basic formulation and the formulation 

where the total allocation has to be spent within 5 years give the same solution, 

indicating that up to this budget these additional constraints are non-binding.  

However, as the total budget increases, the restrictions become binding and lead to an 

opportunity loss. 

 

The decision making algorithms using ICERs are unable to handle the case where 

there are alternative budgetary rules. The mathematical programme is able to 

incorporate these rules as additional constraints.   It is possible to incorporate other 

resource constraints; for example, rules restricting expenditure on specific budgets 

such as pharmaceuticals or capacity constraints for specialist personnel or facilities. 

 

Indivisibility and horizontal equity 
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In Problem (1), the decision variables are permitted to take fractional values.  This is 

the assumption of perfect divisibility.  Only a proportion of the population would be 

allocated to receive each of the treatments under consideration (although all members 

of the population would receive some treatment).  This might be thought of as the 

‘efficient’ solution in the absence of any equity concerns.  Its implementation, were it 

possible, would require some arbitrary allocation mechanism, such as first-come first-

served.  This might be considered inequitable since the members of the population are 

assumed to all be of equal need [3]. 

 

We can relax the assumption of perfect divisibility for some or all patient populations.  

A requirement that equity considerations should be incorporated can be thought of as 

imposing additional constraints on the mathematical programme.  The ‘horizontal 

equity’ consideration that people with equal need should receive equal access to 

treatment imposes the constraint that the decision variables are binary for some 

population group i  and healthcare programme k  (Eqn. (6)).    

                                               

( ) KkJjIix kkijk KKK 1,1,11,0 ===!         

       (6) 

 

For example, we might require that all patients with type 1 diabetes are treated in the 

same way (i.e. are indivisible), or that patients aged less than 60 years with non-

Hodgkins lymphoma are treated in the same way, or that all patient populations are 

indivisible.  
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Horizontal equity concerns (Problem (1) with the additional constraint Eqn (6) 

imposed on one or more population groups) are a 0-1 Mixed Integer Linear Program 

(0-1 MILP).  Problems of this type can be difficult to solve.  In this paper, we use a 

computationally-intensive method of constraining the selected treatment options to 

take values of 0 or 1, evaluating the linear programme for each possible permutation, 

and choosing the permutation that maximises the objective function.   This method is 

only feasible when a very limited number of decision variables take binary values.  

Further work will focus on efficient methods to solve MILP problems [19-21].  

 

Table 4 shows the opportunity loss if indivisibility is imposed separately in two 

patient populations, and if indivisibility is required in all populations.  The base case 

for this comparison is chosen as the “equally phased” budget for illustrative purposes 

because, in the basic mathematical programme, the equity constraints would not be 

binding if we imposed them on more than one population.  In the large population 

with type 1 diabetes, the opportunity loss is 520 QALYs.  The effect (compared with 

the base case) is to decrease the health of the type 1 diabetes population, who now all 

receive the less effective treatment where previously only a proportion would have 

done, but to increase health in other populations more of whom now receive more 

effective treatments.  The requirement for indivisibility only in the small population 

aged less than 60 with non-Hodgkins lymphoma costs 19 QALYs.  The requirement 

for horizontal equity in all populations does not impose further opportunity loss 

because, in this example, the other constraints are not binding once the indivisibility 

has been imposed in the population with type 1 diabetes. 

 

Further equity constraints 
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Further equity considerations can be incorporated into the mathematical programme.  

Any characteristic which is known to affect cost, quality of life or survival could be 

used to differentiate patients with respect to the treatments they are offered. It may not 

be considered equitable to allow different access to treatment if patients are similar in 

some respects but differ in others.  For example, in some cases it may be acceptable to 

differentiate between patient groups on the basis of age.  However, other 

characteristics may be more controversial such as gender or social class.  This can be 

expressed as the requirement that patients within the same health care programme 

have the same probability of receiving a given treatment, regardless of other 

characteristics.   The examples available in this stylised scenario are rather artificial, 

but are used to illustrate the issue.  For example, it may be considered unfair to use 

patients’ age to differentiate with respect to the treatment offered for lymphoma 

(which can be written as a constraint in the form
122 222
x x= ), or unfair to allow patients 

with type 1 and type 2 diabetes different probabilities of receiving the more effective 

long acting insulin treatment (written as a constraint in the form
123 223
x x= ).    These 

concerns can be written as equity constraints which can be imposed either separately 

or together, or conceivably together with indivisibilities.  

 

Table 5 shows the results of an equity concern that it is unfair to use particular 

characteristics to differentiate with respect to the treatment offered, firstly for access 

to rituximab for non-Hodgkins lymphoma and, secondly, for access to long acting 

insulins for diabetics.  As before, the opportunity loss of holding these equity 

concerns is not the same for all healthcare programmes.   There is an additional 

opportunity loss if we wish to hold these equity constraints in both populations. 
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The formulation of equity concerns as constraints on a mathematical programme 

allows us to evaluate their opportunity cost in terms of QALYs forgone, compared to 

the scenario where there are no equity constraints.  Furthermore, we can evaluate the 

opportunity cost of equity separately for each patient population.  In principle, this 

might be used to describe the choices and trade-offs available to decision makers 

between efficiency and equity, including the opportunity cost of having the same 

equity concerns for all patient populations. 

 

Discussion 

In this paper, we have used mathematical programming to allocate limited healthcare 

resources for treatments between and within a set of patient populations.  Johannesson 

and Weinstein showed that, if one was to implicitly accept the resulting level of 

expenditure as the budget, decision making using a threshold willingness to pay is 

equivalent to the basic LP problem set out in this paper as Problem (1) [1]. Stinnett 

and Paltiel argued that mathematical programming techniques allowed the 

incorporation of more complex information and additional constraints [3].  This paper 

adds to this work by showing that the profile of costs over time may be important and 

that it is possible to evaluate alternative budgetary rules.  We are also able to 

incorporate indivisibility and other equity concerns as constraints and find that 

different equity concerns have different implications for efficiency, and that the effect 

will vary from patient population to population.  It is not possible to use a threshold 

willingness to pay to make decisions where there are constraints additional to an 

overall budget constraint.  We have shown that mathematical programming to assist 

priority setting is feasible in a context where there is a finite number of clear 

alternative options and a fixed budget.  One such context may be the decisions made 
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each year by an agency such as NICE, and we have demonstrated an application using 

published or publicly available information.   

 

Our application of mathematical programming to a policy-relevant decision has 

revealed several methodological challenges that should be addressed if these 

techniques are to progress.  We discuss two of these.  Firstly, we have made some 

attempt to incorporate the effects of time in to the analytic framework.  We have 

included annual budget constraints because we believe these constraints may be an 

important feature of the decision problem.  We have also considered not just the 

current prevalent population but future incident patients, up to a review date of five 

years.  However, this review date has been arbitrarily chosen for convenience.  An 

alternative approach might be suggested by multistage or dynamic programming, in 

which allocation decisions can change over time [22]   

 

Secondly, the parameters of the model are not known with certainty.  There is 

uncertainty in the costs and benefits per patient, and the epidemiological parameters 

of current prevalence and future incidence, and in the budget constraints.  A 

probabilistic approach to handling uncertainty would need to incorporate the 

coefficients of the model as random variables with a priori specified probability 

distributions, preferably including the correlations between them (particularly 

between costs and effects).  The formulation of the problem as a stochastic 

mathematical programme, where the coefficients are random variables, has been 

proposed [9].  The solution to this type of stochastic problem is unlikely to be the 

same as that for the deterministic case even when the coefficients take their expected 

values.    More importantly stochastic analysis would allow decision makers to 
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consider the value of conducting research to inform the allocation problem as a whole 

[23 ,24].  In this sense, it provides a framework where the value of information about 

a particular technology or particular parameters can be considered in the context of 

the system-wide allocation problem. 

 

We have shown that the use of an arbitrary threshold willingness to pay does not 

identify the correct opportunity cost of the decision and will, therefore, lead to a sub-

optimal allocation of resources.  Johannesson and Weinstein have argued that 

decisions are usually made at the margins of implicit budgets and, therefore, a MP (or 

budget-constrained) approach is unrealistic and unnecessary [1].  However, we know 

that even the healthcare systems of large, developed economies such as the UK are 

subject to annual budget constraints.  Currently, NICE makes recommendations about 

new treatments without considering which programmes are to be displaced and this 

causes confusion and delay among those who are required to implement the decisions.  

Although a number of methodological challenges still need to be addressed, 

mathematical programming offers a transparent and coherent decision making 

framework to identify opportunity cost, account for annual budgets and show the 

opportunity costs of different equity concerns. 
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Table 1: Programmes, treatments, populations and time horizon reported in the 

assessment reports for the sample of NICE technology appraisals.  

Healthcare 

programme (k) and 

population groups (i) 

Population: 

Prevalent 

 

Incident 

/yr 

Treatments (j) Time horizon of 

assessment 

report  

     

k=1: Influenza   Four treatments available Less than 1 

year 

1. Adults 

2. Elderly 

3. Residential 

elderly 

4. Children 

4.805m 

1.075m 

0.025m 

4.047m 

4.805m 

1.075m 

0.025m 

4.047m 

1. Current care (no 

medication) 

2. Amantadine 

3. Oseltamivir 

4. Zanamivir 

 

k=2: Rituximab for non-Hodgkins 

lymphoma 

 Two treatments available 15 years 

1. Over 60s 

2. Under 60s 

236 

1243 

11 

59 

1. Current care (CHOP) 

2. Rituximab+CHOP 

 

k=3: Long acting insulins for diabetes  Two treatments available 9 years 

1. Type 1 

2. Type 2 

117000 

39000 

4056 

2790 

1. Current care (NHP) 

2. Insulin glargine 

 

 

* Current care is the current mix of services : 30% have hospital dialysis, 30% 

satellite and 40% home dialysis.  Hospital dialysis is not considered as a treatment 

option since it is less effective and more costly than alternatives in every year.  

However, future analyses may consider switch costs which are not included here. 

** Healthcare programmes are indexed with letter k, treatments with letter j and 

population groups with letter i.


