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Talk overview

 Foundations of Bayesian statistics

 Comparison between Frequentist and Bayesian
approaches

e Calculations and computer implementations
 Example from health economics

e Questions and discussion
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Hlstory of Bayesian Statistics

The reverend Thomas Bayes (1702-1761) proved a special
case of what is now known as Bayes' Theorem.

Pierre-Simon Laplace (1749-1827) proved a more general
version of Bayes' Theorem and used it for various
applications.

The relevance of Bayes' Theorem to statistics, however, was
not appreciated until the 20" century.

Revd. Thomaé Bé yes

The Frequentist paradigm has been the mainstay of probability theory during the
19" and 20™ century, with important contributions by e.g. Jerzy Neyman, Egon
Pearson, John Venn, R.A. Fisher, and Richard von Mises.

Frequentist tools such as hypothesis testing and confidence intervals have
allowed many advances in statistics. Bayesian equivalents exist, but they often
require more computations — it was during the last two decades of increasing
availability of computing resources that Bayesian statistics gained ground.

2007-03-12, Linkdping Dr Christian Asseburg 2
University of York, UK ca505@york.ac.uk | SOECCEEUIEGEES




Slide 4

| Bayes' Theorem

Bayes' Theorem can be derived easily from the expression of the joint
probability of two events A and B:

Let p(A) denote the probability that event A will occur, let p(B) denote the
probability that event B will occur, and let p(A,B) denote the probability that
both of the events occur.

Then p(4,B)=p(A4) p(B|4)=p(B) p(A|B)

Bayes' Theorem states simply that
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Prlors and Posteriors (1)

Of course, Bayes' Theorem as a way to relate the conditional probabilities
of two events is valid both in Frequentist as well as in Bayesian statistics.

However, in Bayesian statistics it is also applied to unknown parameters x
directly:
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Prlors and Posteriors (2)

Unknown parameter(s): X

Data (known): data
Probability of data given x: p(datalx)
“Prior” probability of x: p(x)
“Posterior” probability of x: p(x|data)

2007-03-12, Linkdping Dr Christian Asseburg '
University of York, UK ca505@york.ac.uk | SOECCEEUIEGEES



Slide 7

Prlors and Posteriors (2)

Unknown parameter(s): X
Data (known): data
Probability of data given x:
“Prior” probability of x: p(x)
“Posterior” probability of x: p(x|data)
“Likelihood”
p(x|data)= p(xp
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Prlors and Posteriors (2)

Unknown parameter(s): X

Data (known): data
Probability of data given x: p(datalx)
“Prior” probability of x: p(x)
“Posterior” probability of x: p(x|data)

p(x)-nldata|x)
pl(data)

p(x|data)=

The denominator is a constant and can usually be ignored.
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Prlors and Posteriors (3)

Bayes' Theorem is thus used to combine data with a prior belief on an
unknown quantity, resulting in a posterior belief on the unknown quantity.

This approach has been compared to the task of learning in humans, where
experience supports a constant updating of a person's belief system.

“Prior” probability of x: p(x)

“Posterior” probability of x: p(x|data)
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Deflnltlon of "Probabillity”

FREQUENTIST

BAYESIAN
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Deflnltlon of "Probabillity”

FREQUENTIST

The “probability” of an event A occurring (or of a quantity taking a value in
a given interval) is a frequency. Imagine many (hypothetical or actual)
circumstances in which the data have been observed. The proportion of
circumstances in which event A occurs (out of all circumstances) is the
‘probability” of A. This probability is objective.

BAYESIAN
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Deflnltlon of "Probabillity”

FREQUENTIST

The “probability” of an event A occurring (or of a quantity taking a value in
a given interval) is a frequency. Imagine many (hypothetical or actual)
circumstances in which the data have been observed. The proportion of
circumstances in which event A occurs (out of all circumstances) is the
‘probability” of A. This probability is objective.

BAYESIAN

The “probability” of an event A occurring (or of a quantity taking a value in
a given interval) is a degree of belief. The degree of belief in A may
change when we are confronted with new data. The “probability” of A is a
numerical representation of this degree of belief.

If you and | (and everyone else) agree on the belief in event A, we define
an objective probability, otherwise we define a subjective probability.
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What is flxed what is random? (1)

FREQUENTIST

BAYESIAN
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What is flxed what is random? (1)

FREQUENTIST

There is a fixed, but unknown value for each parameter. The data are
an instance of many possible data that could have been collected. A
Frequentist statistician evaluates how likely the given data are according
to different hypothetical values for the unknown quantities. Thus,
statements about the probability of observing the data given different
hypothetical parameter values are summarised in a confidence interval.

BAYESIAN
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What is flxed what is random? (1)

FREQUENTIST

There is a fixed, but unknown value for each parameter. The data are
an instance of many possible data that could have been collected. A
Frequentist statistician evaluates how likely the given data are according
to different hypothetical values for the unknown quantities. Thus,
statements about the probability of observing the data given different
hypothetical parameter values are summarised in a confidence interval.

BAYESIAN

The value for each parameter is unknown. The data are known, they
have been observed. A Bayesian statistician evaluates how likely different

values for the underlying quantities are, given the observed data. Thus,
statements can be made about the probability of the unknown quantity
taking a value in a certain credibility interval.
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What is flxed what is random? (2)

FREQUENTIST

A 95% confidence interval for a quantity x:

A4

2.5 4.7

BAYESIAN
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What is flxed what is random? (2)

FREQUENTIST

A 95% confidence interval for a quantity x:

“If new data are collected many times and

confidence intervals are calculated, then 95%
of these confidence intervals contain the true
value of x.” 55 47

A4

BAYESIAN
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What is flxed what is random? (2)

FREQUENTIST

A 95% confidence interval for a quantity x:

“If new data are collected many times and
confidence intervals are calculated, then 95%
of these confidence intervals contain the true
value of x.”

BAYESIAN

A 95% credibility interval for a quantity x:

“The probability that the value of x lies
between 2.5 and 4.7 is 95%, given the
observed data and the prior belief.”

2007-03-12, Linkoping Dr Christian Asseburg
University of York, UK

A4

2.5 4.7
2.5 4.7 ?

cab505@york.ac.uk

Centre For Health Economics



Slide 19

Hypothe3|s testing

FREQUENTIST
Given two hypotheses, H, and H,, ...

BAYESIAN
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Hypothe3|s testing

FREQUENTIST
Given two hypotheses, H, and H,, calculate the probability of observing
the data (or more extreme data) if H, is true. If this probability is low
(p-value), reject H,.

BAYESIAN

Given two hypotheses, H, and H,, ...
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Hypothe3|s testing

FREQUENTIST
Given two hypotheses, H, and H,, calculate the probability of observing
the data (or more extreme data) if H, is true. If this probability is low
(p-value), reject H,.

BAYESIAN

Given two hypotheses, H, and H,, calculate the probability of each of

them, given the data and the priors. Favour the hypothesis that has the
higher probability.
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Hypothe3|s testing

FREQUENTIST
Given two hypotheses, H, and H,, calculate the probability of observing
the data (or more extreme data) if H, is true. If this probability is low
(p-value), reject H,.
== Because a hypothesis is either true or false (this is just not known)

and only the likelihood of observing the data is calculated, a
Frequentist cannot assign a probability to each hypothesis.

BAYESIAN

Given two hypotheses, H, and H,, calculate the probability of each of

them, given the data and the priors. Favour the hypothesis that has the

higher probability.

== The probability of each of the hypotheses being true can be
calculated. Relative statements (e.g. “H, is twice as likely as H,")
can be made.
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number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that
= this wheel gives a red number?
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ASlmpIe Example (1) .

4 In roulette, a spin of the wheel results in a red or a black
#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that
| = this wheel gives a red number?

FREQUENTIST

The probability of observing 25 red and 15 black numbers can be
described by a Binomial distribution with 25 successes out of 40.

The sample proportion of success is 25/40, or 0.625. Using the central
limit theorem, an approximate confidence interval for a proportion can be
found. The sampling distribution is summarised by its mean (0.625) and
standard deviation (0.0765), and these are used to obtain a 95%
confidence interval for the mean of a normal distribution. After correcting
for the discrete nature of the data, the confidence interval for z

is found: [0.46, 0.79].
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ASlmpIe Example (2) .

4 In roulette, a spin of the wheel results in a red or a black

#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that
| — this wheel gives a red number?

BAYESIAN

The probability of observing 25 red and 15 black numbers can be
described by a Binomial distribution with 25 successes out of 40.

The prior probability for z is assumed to be Beta(1,1).

Bayes' Theorem is used to calculate the posterior probability of z.
(See next slide)

The 95% credibility interval for z is [0.47, 0.76].
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ASlmpIe Example (3) :

4 In roulette, a spin of the wheel results in a red or a black
#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that

= this wheel gives a red number~

BAYESIAN

Bayes' theorem 5 (z|data)oc p(z)- p(data|z)

(The denominator of Bayes' Theorem, p(data), is a constant and can
usually be ignored.)

p(datalz) = Binomial (25 out of 40 with prob. z)

p(z) = Beta(1, 1)
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ASlmpIe Example (4)

4 In roulette, a spin of the wheel results in a red or a black

#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that
| — this wheel gives a red number?

BAYESIAN

Zl—l<1_Z>1—1 40/ 25(1_2)40—25

dut
A1t - 8540 =5

p(z|data)oc225(1—z)15

So p(z|data) = Beta(26,16), and the credibility interval can be calculated
easily by looking up the cumulative probabilities.

2007-03-12, Linkdping Dr Christian Asseburg _
University of York, UK ca505@york.ac.uk SESEEERIEEYE




ASlmpIe Example (5) I

4 In roulette, a spin of the wheel results in a red or a black
#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that

T this wheel gives a red number~

BAYESIAN

In this simple example, when the prior is from a particular family (Beta)
and the likelihood of the data is also from a particular family (Binomial),
the posterior likelihood also belongs to a particular family of distributions
(Beta). The Beta prior and Binomial likelihood distribution are called

conjugate.

This is a special case — usually the Bayesian posterior distributions
cannot be calculated analytically, and numerical methods are required to
approximate the posterior distribution.
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ASlmpIe Example (6)

4 In roulette, a spin of the wheel results in a red or a black

#l number (or 0). In one hour, the roulette wheel resulted in
25 red and 15 black numbers. What is the probability z that
| = this wheel gives a red number?

BAYESIAN

Different choices of prior distributions lead to different posterior
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47,0.76]

Beta(50,50) 25 outof 40 Beta(75,65) [0.45, 0.62]

Beta(26,16) 25 outof 40 Beta(51,31) [0.52, 0.72]
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ASlmpIe Example (7)

Different choices of prior distributions lead to different posterior
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47,0.76]
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ASlmpIe Example (7) .

Different choices of prior distributions lead to different posterior
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47,0.76]

Beta(50,50) 25outof40 Beta(75,65) [0.45,0.62]
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ASlmpIe Example (7) .

Different choices of prior distributions lead to different posterior
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]
Beta(50,50) 25outof40 Beta(75,65) [0.45,0.62]

Beta(26,16) 25outof40 Beta(51,31) [0.52, 0.72]

) L
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Priors - again...

Different choices of prior distributions lead to different posterior
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47,0.706]
Beta(50,50) 25outof40 Beta(75,65) [0.45,0.62]

Beta(26,16) 25 outof40 Beta(51,31) [0.52, 0.72]

So how does one choose the “right”
prior?
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Controversy regarding priors

There is no “right” prior.

+ A good prior choice may be obvious, for example when earlier
studies on a model quantity can be used.

+ The influence of the prior on the model output can be minimised by
choosing an “uninformative” prior or a “reference prior”.

+ If different stakeholders are involved, whose prior opinions on a model
quantity differ, each of them may propose a prior. The model can then
be run in turn for each prior. Afterwards, it may be possible to
reconcile the different posterior opinions.

In general, if the prior choice makes a difference to the model's output,
then more data should be collected. A good modelling application should
either have an informative prior or be robust to prior choice.
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| Model Selection

In Bayesian statistics, it is relatively straightforward to evaluate different
explanations for a data-set (nested models or totally different models).
The models are all evaluated simultaneously, together with additional
parameters m. for the probabilities of each of the models.

The posteriors for the parameters m, summarise how well each of the

competing models fits the data. Depending on the model application,
one most suitable model may be found, or predictions can be made from
all models simultaneously, using the posterior values for m. as weights

(model averaging).

In Frequentist statistics, it is relatively easy to evaluate nested models —
but the evaluation of other competing models is not straightforward.
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Probability

Statements

Objectivity

Computation

Flexibility

Model selection
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Summary
FREQUENTIST BAYESIAN
Frequency Belief

Probability of observing Probability of model quantity
data

Result depends only Result depends on prior and
on data data — subjective
Often feasible Often complicated

Some applications re-  no intrinsic limitations
quire normal or other
simplifying assumptions

Sometimes possible Straightforward

Dr Christian Asseburg '
University of York, UK ca505@york.ac.uk SESEEERIEEYE



Slide 37

...... any questions? .......

Good Bayesian text book that starts with a comparison of Bayesian and
Frequentist methods:

D'Agostini, G: Bayesian Reasoning in Data Analysis.
World Scientific Publishing, Singapore, 2003.

Why use Bayesian methods in health economics? E.g. B Luce, Y Shih,

K Claxton: International Journal of Technology Assessment in Health
Care 17/1, 2001, pp 1-5.
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Calculatlng Bayesian Posteriors

Models that can be solved analytically (such as the simple example
before) are rare and require conjugacy. Most multi-dimensional models
do not fall in this class.

The problem is that, for each possible set of parameter values, Bayes'
Theorem gives the posterior probability, but if the parametric form of the
distribution cannot be recognised, there is no obvious method for
calculating e.g. its mean value, or for sampling from it.

Therefore, a Bayesian model usually requires numerical methods for
calculating the posteriors of interest. Any algorithm that generates

samples from a distribution that is defined by its probability density
function could be used.

p(Ol|data)oc p(O)- p(data|®)
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Calculatlng Bayesian Posteriors
p(Bldata)c p(O)- p(data|®)

The most commonly used algorithms for sampling from the Bayesian
posterior fall in two groups:

+ Metropolis-Hastings: some algorithms in this class are Markov chain
Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

—=pp |hese algorithms work well when the posterior model
space can be written as a product, such that factors
correspond to subspaces.

* Sequential Importance Sampling.

—=pp Very suitable for posteriors that can be written as products,
such that factors correspond to individual data.
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Calculatlng Bayesian Posteriors
p(Bldata)c p(O)- p(data|®)

The most commonly used algorithms for sampling from the Bayesian
posterior fall in two groups:

+ Metropolis-Hastings: some algorithms in this class are Markov chain
Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

= p(0O|data)cp(O,) p(data|®,) p(O,) p(data|®,)

* Sequential Importance Sampling.

== p(0O|data)c p(O) p(data,|®)- p(data,|®)-...
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I\/Iarkov chain Monte Carlo (1)

MCMC generates samples from the posterior space M by defining a
chain C={x Xz ...} IN M.

1’ 2’

At each step i in the chain, candidate values x™ are generated randomly
for each of the parameters. (The proposal distribution may depend on
the current values, xl..)

The posterior probabilities are calculated for both x; and x*. Depending
on the likelihood of x* relative to x, an acceptance probability is
calculated, and the chain either moves to x* (x,,,=x*) or stays at its
current value (x., ,=x.).

i+1 i

Ergodic theory ensures that, in the limit, the distribution of the values of
C converges to the posterior distribution of interest. The beginning of the
chain is discarded because the initial values dominate it ("burn-in”).

2007-03-12, Linkdping Dr Christian Asseburg '
University of York, UK ca505@york.ac.uk | SOECCEEUIEGEES




Slide 42

I\/Iarkov chain Monte Carlo (2)

lHlustration:

O/
o B. At step i in the MCMC, the chain
f may jump to the candidate value
i °Q* 6* or stay at the current value 6.
i This depends on the posterior
probabilities for these two points

In parameter space.
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I\/Iarkov chain Monte Carlo (2)

¥

lHlustration:

At step i in the MCMC, the chain
may jump to the candidate value
6" or stay at the current value 6.

In the long run, the
distribution of points in the
chain approximates the
posterior distribution.

2007-03-12, Linkoping

This depends on the posterior
probabilities for these two points
In parameter space.
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I\/Iarkov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model
with several unknown parameters), parameters can be grouped together
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and
parameters in the other blocks retain their current value). The candidate
values for that block are either accepted or rejected. Then the same is done
for the next parameter block, etc.

2
Example
1. Suggest a candidate for a.
b (In this example, a* is accepted.)
i+ @ o) 2.
aﬂli a* > 3.
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I\/Iarkov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model
with several unknown parameters), parameters can be grouped together
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and
parameters in the other blocks retain their current value). The candidate
values for that block are either accepted or rejected. Then the same is done
for the next parameter block, etc.

)
Example
o’ 1. Suggest a candidate for a.
b“ a (In this example, a* is accepted.)
I+ ® O 2. Suggest a candidate for b.
(In this example, b™ is accepted.)
,j"_ a:'-li-l )é 3.
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I\/Iarkov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model
with several unknown parameters), parameters can be grouped together
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and
parameters in the other blocks retain their current value). The candidate
values for that block are either accepted or rejected. Then the same is done
for the next parameter block, etc.

S
Example
g 1. Suggest a candidate for a.
b“ ® (In this example, a* is accepted.)
I+ ® 2. Suggest a candidate for b.
(In this example, b™ is accepted.)
3"_ af+i1 > 3. The chain moves to [a* b*.
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Gibbs sampling

Gibbs sampling is a special case of MCMC. Here, the posterior
parameter space is divided into blocks of parameters, such that for each
block, the conditional posterior probabilities are known.

Then, at each step i in the chain, candidate values x* are generated
randomly from the conditional posterior probability for each parameter
block, given the current values of the other parameters in the model.

Because x*is a draw from the conditional posterior probability, the
calculation of the MCMC acceptance probability always gives 1. Thus,
the chain always moves to x* (x, ,=x*). The sampler thus converges

more quickly.
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leflcultles with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always
work well, and some care is needed when checking for convergence to
the posterior distribution of interest.

The most common problems are:

+* Bad “mixing”: The chain does not move
well because the candidate acceptance
rate is too low.
Cause: The candidate generator often
suggests candidates that are too unlikely >I
compared to the current value.
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leflcultles with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always
work well, and some care is needed when checking for convergence to
the posterior distribution of interest.

The most common problems are:
* Bad “mixing”

* Trends in the chain: The exploration of
posterior model space is slow and the
chain seems to have a direction.
Cause: The candidate generator
suggests candidates too close to the
current values.
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leflcultles with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always
work well, and some care is needed when checking for convergence to
the posterior distribution of interest.

The most common problems are:
* Bad “mixing”

* Trends in the chain
* Poor coverage of posterior probability

The chain seems to mix well, but it is stuck
at a local maximum of posterior probability.

The samples thus do not exhaust the
posterior model space.

Cause: Inappropriate candidate generator.
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leflcultles with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always
work well, and some care is needed when checking for convergence to
the posterior distribution of interest.

The most common problems are:
* Bad “mixing”

+* Trends in the chain

* Poor coverage of posterior probability

Because of these difficulties, generating samples from a Bayesian
posterior requires a lot of attention to detail and can often not be fully
automated.

Diagnostic criteria exist to aid in detecting convergence and good mixing
of the MCMC sampler.
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

In SIS, the posterior distribution of interest is approximated by a “swarm”
of particles, where each particle is one possible realisation of the model.
For example, in a model with two parameter values, a and b, a particle
could be the pair (a=4.5, b=-2).

The posterior density function is split into factors, and at each step in the
algorithm, all particles are resampled based on weights. These weights
are derived from the factors that make up the pdf. For example, the first
step might weight the particle sample according to the Bayesian prior.
The second step might weight the updated set of particles according to
the factor that corresponds to the first datum. The next resampling may
take into account the next datum, etc, until the data are used up.
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

p(O|data)of p(O) Y (data,|®)- p(data,|®)-...

Aior

* a=2.5
@ a=3.1
* a=-1
2 a=4
2 a=2.7
° a=1.7

a LI I
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

p(O|data)oc p (O ){p(data,|®)-p(data,|®)-...

2 9=2.5 Weights due to the first datum
* a=3.1
2 3=-1
2 =4
s a=2.7
s a=1.7
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

p(O|data)oc p (O ){p(data,|®)-p(data,|®)-...

Weighted resampling...

* a=2.5 1.5 a=-1
@ a=3.1 0.1 a=-1
* a=-1 5.5 a=-1
2 a=4 0.0 a=-1
2 a=2.7 13 a=1.7
° a=1.7 3.4 a=1.7
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

p(O|data)c p(O)- p(data,|Of p(data,|®))..

again, calculate weights and resample...

* a=2.5 1.5 a=-1 2.5 a=-1
@ a=3.1 0.1 a=-1 2% a=-1
* a=-1 5.5 a=-1 2.5 a=-1
2 a=4 0.0 a=-1 2.5 a=-1
2 a=2.7 13 a=1.7 0.1 a=-1
° a=1.7 3.4 a=1.7 0.1 a=1.7
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Sequentlal Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially,
for example to monitor an industrial process. SIS (usually implemented
as a particle filter) can also be applied to more general problems.

* a=2.5
@ a=3.1
* a=-1
2 a=4
2 a=2.7
° a=1.7

2007-03-12, Linkoping

p(Oldata)cp(O)-p

—_— ) — )

S L. O
rwooaO
VOO L LY
[T

—_—
~N N

2.5
2.5
2.5
2.5
0.1
0.1

Dr Christian Asseburg
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(data)|®)- p

1 1 1
_— ) )

OO YV DOLAY®Q

—

(data,|®)-...

When all the data are used
up, the final swarm of
particles is a sample from
the posterior distribution.

Because of its sequential

structure, SIS is often used
with time-series data.
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leflcultles with SIS

The main problem with SIS is particle depletion: At each resampling
step, the number of different particles is reduced, and no new particles
are created. Because the number of particles is finite, eventually there
are many identical particles.

Different solutions have been suggested, usually based on randomly
generating new particles at each step that are slightly different from the
existing particles but not too different to break the ergodic properties of
the sampler. Other methods are being explored — this is an area of
active research.
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Comparlson MCMC and SIS

MCMC SIS

Sampling Chain generates All samples are generated
samples one by one at once

Data Required from the start Can be added sequentially

Computational  10,000's of iterations 10,000's of particles

cost

Challenges Convergence and Particle depletion
mixing

Uses Very versatile “Live” time-series
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Implementations

For MCMC, many ready-made implementations exist. A good place to
start is the package OpenBUGS (ongoing development of WinBUGS),
which implements the Gibbs and other samplers. With a familiar
Windows interface and a very general symbolic language to specify
models, OpenBUGS can solve most classes of Bayesian models.

R offers several add-on packages with MCMC capabilities, as well as an
interface to OpenBUGS, called BRugs.

In terms of speed and efficiency, it may be best to hand-code the MCMC
sampler directly in Fortran, C or another suitable language.

For SIS, | am not aware of any ready-made packages, but there are
ongoing developments.
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Hands -on Example

Here | demonstrate the use of OpenBUGS. I've made up this example —
but the basic approach carries through to real applications in health
economics.

8 RCTs have been carried out to investigate the effectiveness of
treatments A and B (observing the number of symptom-free patients
after 1 year). Treatment A costs SEK 10,000, whereas treatment B costs
SEK 14,000. QALY values are given by a probability distribution.

The trial data is summarised as follows:

n 120 15 84 398 80 40 97 121
" 65 9 39 202 45 17 48 63
n® 120 16 45 402 77 20 100 115
r° 81 15 29 270 52 12 68 80

QALY symptom-free: Beta(9,1) QALY with symptoms: Beta(5,5)
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| Statistical model

An evidence synthesis model is required to combine the information
from the 8 RCTs.

#* Let's choose a random-baselines, random-effects model. We model
trial outcomes on the log-odds probability scale, with the treatment
effect being additive on the log-odds scale.

Letting / denote a trial, we have:
Probability with treatment A (baseline):  logit (p;)=p,

Log-odds treatment effect: l.

1

B

Probability with treatment B: logit (p; )=u,+t,
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Statlstlcal model (2)

Random-baselines, random-effects model on the log-odds scale
Probability with treatment A (baseline):  Jogit (plf‘l) —
Log-odds treatment effect: t,

Probability with treatment B: logit ( p.)=p.+t,

We need to relate the trial-specific parameters u. and t. to their

underlying values M and T. On the log-odds scale, these are usually
assumed to be normally distributed.

Random baseline: u.~Norm (M , 0;2\4)

2
Random treatment effect: L~ Norm(T, UT)
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Statlstlcal model (3)

Next, the model requires a sampling distribution: Given a set of values
for the unknown parameters, how likely is an observed datum?

* The model yields a probability and we have binomial data, so the only
sensible choice is

ri ~Binom (p:, n!) r; ~Binom(p; , n; )
By now we have 20 unknown parameters (8 t, 8 u, M, o,,, T and o).

So far we have made arbitrary choices in model design — we could just

as well have chosen a fixed-effects model (with fewer parameters) or
designed something more complicated.
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Statlstlcal model (4)

Now, because this is a Bayesian model, we need priors for the unknown
parameters M, o,, T and o..

* |If we already know something about the parameters we could add this
knowledge as prior information.

For example, there may be further information on the baseline
probability of symptom-free days — we could express this through the
prior on M, if we consider the information relevant.

* Otherwise, we choose “sensible” priors that have little information,
along the lines of: M and T lie in the real line, and we know little about
it, so let's pick a Normal prior with mean 0 and large variance.
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Statlstlcal model (5)

Model equations: logit(pl. )ZI'li logit(pl. ):I’li+ti
u.~Norm(M ,o3,)  t.~Norm(T,o7)
Sampling

1 d B B
distribution: ri ~Binom (p;, n;') r; ~Binom (p; , n; )

Priors: M ~Norm (0,10000) (log-odds probabilities)
T ~Norm (0,10000)

o, ~ Unif (0,2) (log-odds standard deviations)
o, ~Unif (0,2)
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Statlstlcal model (6)

Model equations: logit(pl. )ZI'li logit(pl. ):I’li+ti
u.~Norm(M ,o3,)  t.~Norm(T,o7)

Sampling 9 ' M. B ' B n
distribution: Vi NB1n0m<pi » 1, ) i NBmom<pi » 1, )

The model equations and the sampling distribution are common to
the Frequentist and the Bayesian approaches. If you already have a
Frequentist model, then you (should) already have specified these.
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Statlstlcal model (7)

Priors do not occur in the Frequentist setting, so you probably have to
make them up.

In this example, the priors are meant to be uninformative, i.e. they are
supposed to add no information to the result. It is good practice to test
this by changing the priors a little bit and observing the impact on the
results of your model.

Priors: M ~Norm (0,10000) (log-odds probabilities)
T ~Norm (0,10000)

o ,,~ Unif (0,2) (log-odds standard deviation)
o ,~Unif (0,2)
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OpenBUGS

Let us fit this Bayesian model using OpenBUGS.

The OpenBUGS syntax is relatively straightforward and similar to R.

model {
for (1 in 1:N) {

logit(pA[i])<-mu[i]
logit (pB[i])<-mu[i]+t[i]
rA[i]~dbin(pA[i] ,nA[i])
rB[i]~dbin (pB[i] ,nB[1])
mu[i] ~dnorm (M, precM)
t[i] ~dnorm(T,precT)

logit (p})=p,
logit (p; )=, +t,
rfvainom(pf, nfl)

B . B B
r, ~Binom( p; , n; )
}

M~dnorm(0,0.0001)
T~dnorm(0,0.0001)
precM<-1/pow (sigmaM, 2)
precT<-1/pow (sigmaT, 2)
sigmaM~dunif (0, 2)
sigmaT~dunif (0, 2)

u.~Norm (M ,07,)
t.~Norm(T, o)
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OpenBUGS (2)

The data are specified in a separate section so that they can be entered
or changed easily.

}

2007-03-12, Linkoping

model {
for (1 in 1:N) {

M~dnorm (0,0.000
T~dnorm(0,0.000
precM<-1/pow (si
precT<-1/pow(si
sigmaM~dunif (O,
sigmaT~dunif (0, 2)

logit(pA[i])<-mu[i]
logit(pB[i])<-mu[i]+t[i]
rA[i]~dbin (pA[i] ,nA[1])
rB[i] ~dbin (pB[1], nB[l])
muf[i]~dnorm (§

t[i] ~dnorm(

list (N=8,

nA=c (120,15,84,398, 80,40, 97,121),
rA=c( 65, 9,39,202, 45,17, 48, 63),
nB=c(120,16,45,402, 77,20,100,115),
rB=c( 81,15,29,270, 52,12, 68, 80))

Dr Christian Asseburg
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The OpenBUGS window can look like this.

MEX]

|-;‘ winbugs
File Tools Edit Attributes Info Model Inference Options Doodle Map  Text  Window Examples Help
— Y
B X1 & X
{ “ 81 #data i
for (i in 1:NH} ¢ Listi(N=8,
logit(pA[i])<-mu[i] nA=c{120,15,84,398, 80,48, 97,121),
logit(pB[i])<-mu[i]+t[i] rA=c{ 65, 9,39,282, 45,17, 48, 63),

¥

o Dynamic trace

rA[i]~dbin{pA[i],nA[i])
vB[i]~dbin{pB[i],nB[i])}
mu[i]~dnorm{M,prect)
t[i] ~dnorm{T,precT)

H*dnorm{8,0.0881)
T~dnorn{ @, 0_008061)
precH{-1/pow{sigmat,2)
precT<-1/pow{sigmaT,2)
sigmat™dunif{@,2)
sigmaT~dunif(@8,2)

<] B

nB=c(128,16,45,482,
rB=c( 81,15,29,278,

¥7,208,180,115),
52,12, 68, 88))

x

hode [« - chains|1— to |3— percentiles

25

5
end 10000000 i |1 T

28
median
78

beg |1

clear | | trace | histary | density|

90
stats | coda | quantiles| bgrdiag| autocor| 95

975

check madel |

load inits

updates 10000 refresh 100
update | thin |1 iteration {12000

I aver relax

rum of chaing |3

I dynamic compilation

muf3]
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et meileng Y

T T
11900 11930

iteration
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OpenBUGS (4)

In this example, OpenBUGS explores the model's posterior reasonably well.

:6: Dynamic trace == <
A
=3
[ e Aoy
= Sptapmle e
o
22350 22400 22450
teration
=3
[an]
- ol .
— _ﬂ:hﬂpﬂm'mﬁa&%&hﬂl{w
=
1'_| T T I
22350 22400 22450
teration "

2007-03-12, Linkoping

Dr Christian Asseburg
University of York, UK

The three colours denote
three chains that are run in
parallel.

Note that there is no
evidence that initial values
are influencing the chains.

Also, each chain appears to
‘wiggle” quite well and the
three chains overlap,
iIndicating that they are
exploring the same posterior
space (as they should).

Centre For Health Economics

cab505@york.ac.uk



Slide 73

OpenBUGS (5)

Here's a screenshot from another model, in which the sampler did not
converge (just to give you an idea of what to look for...).

%Dyna' race [Z]@
gc!: g 55:
EIEHISEIII EIEI!;IEIIII EIEIE%IEEI EIEHISEIII EIEIEIIIZIEI EIEI!;IEEI EIEHISEIII EIEIE%IEIEI EIEI!;IEEI
iteration iter ation iter ation
Sl Poor mixing: Three chains (which should all explore
I the same parameter space) are far from each other,
Saem and trends are evident.
99350 99900 99950 99350 99300 99950 99350 99300 99930
teration tteration tteration

CHF
i
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Model convergence

WinBUGS and OpenBUGS provide a few formal diagnostics to check for
convergence and performance of the sampler, for example the Brooks-
Gelman-Rubin diagram and plots of within-chain autocorrelation.
High “MC _error’ can also indicate convergence problems.

To avoid convergence problems, bear in mind the following.

1. It is difficult to fit many unknown parameters to little data.

2. If you can exploit conjugate distributions, do so.

3. Sometimes you can get around convergence problems by re-writing
your model equations without changing the underlying model.

4. If high within-chain autocorrelation is the only problem, you can thin
the posterior samples and only keep every nth draw.
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Example continued

When you are satisfied with the posterior sampling, you can generate
any desired summary statistic for your posterior.
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For example, here's an overview of the posterior means and credibility

intervals.

=:";.= Hode statistics

mean sil MC_error val2.5pc  median
0.04836 0.08293 QO.00Z2087 -01076  0.04576
07127 0.1249 000317 0.431 0.710%
0.09838 0.09447 Q0002391 0.004115 0.07186
0.1345 0.1373 0.003368 0.0058719 0.09571

val%/.5pc start

0.21249
0.9601
0.3512
0.49849

10001
10001
10001
10001

BEX

sample
30000
30000
30000
30000

In this example, the treatment effect T is positive (on the log-odds
scale), i.e. the treatment B has a higher probability of symptom-free.
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When you are satisfied with the posterior sampling, you can generate
any desired summary statistic for your posterior.

MC _error is another
:6: Node statistics indication for how well the
sampler performed.

mean sil alZ.hpc  median
it 0.04836 0.08293 JO.00Z087 RO1076  0.0457§
T 07127 0.1249

Rl The sampling error should
0.002391 g0.004115 0.07184

MEE] e RnEs o€ much smaller than the
estimated posterior standard

deviation.

sigrmahd 0.09838 0.09447
sigmaT 0.135 0.1373

~LIr

% B
-
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Example continued

When you are satisfied with the posterior sampling, you can generate
any desired summary statistic for your posterior.

The 95% credibility interval for the treatment efficacy parameter
T'is [0.481, 0.9601], i.e. treatment B has a very significant effect
on the probability of symptom-freeness after 1 year.

P =
:8: Node statistics E]@
mean sil MC_error val2.5pc median  val%7.5pc start sample “
it 0.04836 0.08293 0.00208%2 : 10001 30000

T 0.7127 012449 0.00317 10001 0000
sigrmahd 0.09838 0.09447  0.00239 Geisei ol it 10001 0000
sigmaT 0.135 0.1373 0.003368 0. I:II:IET'”I !3 EI EIEIET'”I 0.49849 10001 0000 -

“l L
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Example continued

But what is the probability P that treatment B is the cost-effective choice
at a willingness-to-pay (WTP) of A=SEK 50,0007

This probability P can be calculated from the model parameters as
follows.

Let's assume that the underlying baseline and treatment effect would

apply to the target populatlonB| e. in the target population
logit(p")=M and logit(p~)=M +T. We calculate the net benefit of
the treatments (NB), using the costs C and utilities U.

NBA:[p U —I_(l_pA)'Usymptoms].A_CA

free

NB [p Ufree (1 pB>.Usymptoms]°A_CB

The probability P is given by P=Pr(NB”> NB")
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Example continued

But what is the probability P that treatment B is the cost-effective choice
at a willingness-to-pay (WTP) of A=SEK 50,0007

We can calculate this directly in WinBUGS, adding a few more lines of
code.

model { Numerically, we simply look at all

logit (PA)<-M the draws from the posterior and
logit (PB) <-M+T check which of them fulfill the
Uf~dbeta(9,1) condition. This proportion is the
Us~dbeta (5,5) posterior probability P. There is no

NBA<- (PA*Uf+ (1-PA) *Us) *WTP-CA df o
NBB<- (PB*Uf+ (1-PB) *Us) *wrp-cB | M€€0 10I any further tests.

P<-step (NBB-NBA)
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Example continued

But what is the probability P that treatment B is the cost-effective choice
at a willingness-to-pay (WTP) of A=SEK 50,0007

Here's the posterior summary for our new quantities.

:8: Node statistics u@w
- FLS
mean s T . i . i sample
MBA 282100 4364.0 30000
NBH 4200 39420 30000

There is a lot of overlap between the net benefits for treatment A
(95%-CI [SEK 16240, 33200]) and B (95%-CI [SEK 15580, 31090]).

Accordingly, the probability that treatment B is cost-effective is
estimated at 0.3498.
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Example continued

But what is the probability P that treatment B is the cost-effective choice
at a willingness-to-pay (WTP) of A=SEK 50,0007

Here's the posterior summary for our new quantities.

:8: Node statistics u@w
mean s MC_error val2.5pc  median  val97.5pc start sample -
MBA 282100 4364.0 27.08 1524!] 0 2533!] 0 332000 10002 30000
BHE 24E20.0 39420 30000
F 0.34495 0.4769 30000 -

In this example, | defined the probability P by checking a condition,
rather than as a stochastic variable with its own prior and probability
density. This is why the confidence intervals for P do not mean
anything.

i

2007-03-12, Linkoping Dr Christian Asseburg
University of York, UK cab505@york.ac.uk SUCCEEUIEMENE




Bayesian Statistics: An Introduction

Example continued

Slide 82

OpenBUGS can also produce graphical output for all quantities

of interest.

For example, here are the posterior densities for the net benefits NB*

and NBB.
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They both show quite wide distributions and their support on the x-axes
overlaps substantially.
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Baye3|an decision theory

With a probabilistic net benefit function, Bayesian decision theory can be
applied to optimise management decisions.

Bayesian models can thus directly feed in to management processes.

In a Frequentist model, it is not generally possible to find a probability
distribution for an unknown parameter — because a Frequentist
calculates the likelihood of observing the data and uses this to make
inferences on the model parameters.

Frequentist models do not offer an obvious way for calculating quantities
that are derived from individual parameter values (such as the
probability P or a net benefit) — this makes them less amenable to
management processes.
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Summary

* Frequentist modelling centres on the likelihood function, i.e. how likely
are the data given a particular model.

* Bayesian modelling centres on the probabilities of models and model
parameters, by combining the likelihood of the data with prior
probabilities of the unknown parameters.

* Both can be used equally well to fit models and to make inferences on
model parameters.

* However, only Bayesian statistics is capable of assigning probabilities
to model quantities. This makes it possible to calculate derived
guantities and their uncertainties.

» Numerical methods for fitting Bayesian models require some care and
experience.
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