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Talk overview

● Foundations of Bayesian statistics
● Comparison between Frequentist and Bayesian 

approaches
● Calculations and computer implementations
● Example from health economics
● Questions and discussion
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History of Bayesian Statistics

Revd. Thomas Bayes

The reverend Thomas Bayes (1702-1761) proved a special 
case of what is now known as Bayes' Theorem.

Pierre-Simon Laplace (1749-1827) proved a more general 
version of Bayes' Theorem and used it for various 
applications.

The relevance of Bayes' Theorem to statistics, however, was 
not appreciated until the 20th century.

The Frequentist paradigm has been the mainstay of probability theory during the 
19th and 20th century, with important contributions by e.g. Jerzy Neyman, Egon 
Pearson, John Venn, R.A. Fisher, and Richard von Mises.

Frequentist tools such as hypothesis testing and confidence intervals have 
allowed many advances in statistics. Bayesian equivalents exist, but they often 
require more computations – it was during the last two decades of increasing 
availability of computing resources that Bayesian statistics gained ground.
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Bayes' Theorem
Bayes' Theorem can be derived easily from the expression of the joint 
probability of two events A and B:

Let p(A) denote the probability that event A will occur, let p(B) denote the 
probability that event B will occur, and let p(A,B) denote the probability that 
both of the events occur.

Then               

Bayes' Theorem  states simply that

p B∣A= p B⋅p A∣B
p A

p A , B= pA⋅p B∣A= pB⋅pA∣B
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Priors and Posteriors (1)
Of course, Bayes' Theorem as a way to relate the conditional probabilities 
of two events is valid both in Frequentist as well as in Bayesian statistics.

However, in Bayesian statistics it is also applied to unknown parameters x 
directly:

p x∣data= p x ⋅p data∣x
p data

p B∣A= p B⋅p A∣B
p A
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Priors and Posteriors (2)
Unknown parameter(s): x

Data (known): data

Probability of data given x: p(data|x)

“Prior” probability of x: p(x)

“Posterior” probability of x: p(x|data)

p x∣data= p x ⋅p data∣x
p data
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Priors and Posteriors (2)
Unknown parameter(s): x

Data (known): data

Probability of data given x: p(data|x)

“Prior” probability of x: p(x)

“Posterior” probability of x: p(x|data)

p x∣data= p x ⋅p data∣x
p data

“Likelihood”
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Priors and Posteriors (2)
Unknown parameter(s): x

Data (known): data

Probability of data given x: p(data|x)

“Prior” probability of x: p(x)

“Posterior” probability of x: p(x|data)

p x∣data= p x ⋅p data∣x
p data

The denominator is a constant and can usually be ignored.
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Priors and Posteriors (3)
Bayes' Theorem is thus used to combine data with a prior belief on an 
unknown quantity, resulting in a posterior belief on the unknown quantity.

This approach has been compared to the task of learning in humans, where 
experience supports a constant updating of a person's belief system.

“Prior” probability of x: p(x)

“Posterior” probability of x: p(x|data)

p x∣data= p x ⋅p data∣x
p data
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Definition of “Probability”
F R E Q U E N T I S T

B A Y E S I A N
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Definition of “Probability”

The “probability” of an event A occurring (or of a quantity taking a value in 
a given interval) is a frequency. Imagine many (hypothetical or actual) 
circumstances in which the data have been observed. The proportion of 
circumstances in which event A occurs (out of all circumstances) is the 
“probability” of A. This probability is objective.

F R E Q U E N T I S T

B A Y E S I A N



  

Bayesian Statistics: An Introduction Slide 12

Dr Christian Asseburg
   University of York, UK ca505@york.ac.uk2007-03-12, Linköping

Definition of “Probability”

The “probability” of an event A occurring (or of a quantity taking a value in 
a given interval) is a frequency. Imagine many (hypothetical or actual) 
circumstances in which the data have been observed. The proportion of 
circumstances in which event A occurs (out of all circumstances) is the 
“probability” of A. This probability is objective.

The “probability” of an event A occurring (or of a quantity taking a value in 
a given interval) is a degree of belief. The degree of belief in A may 
change when we are confronted with new data. The “probability” of A is a 
numerical representation of this degree of belief.
If you and I (and everyone else) agree on the belief in event A, we define 
an objective probability, otherwise we define a subjective probability.

F R E Q U E N T I S T

B A Y E S I A N
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What is fixed, what is random? (1)
F R E Q U E N T I S T

B A Y E S I A N
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What is fixed, what is random? (1)

There is a fixed, but unknown value for each parameter. The data are 
an instance of many possible data that could have been collected. A 
Frequentist statistician evaluates how likely the given data are according 
to different hypothetical values for the unknown quantities. Thus, 
statements about the probability of observing the data given different 
hypothetical parameter values are summarised in a confidence interval.

F R E Q U E N T I S T

B A Y E S I A N
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What is fixed, what is random? (1)

There is a fixed, but unknown value for each parameter. The data are 
an instance of many possible data that could have been collected. A 
Frequentist statistician evaluates how likely the given data are according 
to different hypothetical values for the unknown quantities. Thus, 
statements about the probability of observing the data given different 
hypothetical parameter values are summarised in a confidence interval.

The value for each parameter is unknown. The data are known, they 
have been observed. A Bayesian statistician evaluates how likely different 
values for the underlying quantities are, given the observed data. Thus, 
statements can be made about the probability of the unknown quantity 
taking a value in a certain credibility interval.

F R E Q U E N T I S T

B A Y E S I A N



  

Bayesian Statistics: An Introduction Slide 16

Dr Christian Asseburg
   University of York, UK ca505@york.ac.uk2007-03-12, Linköping

What is fixed, what is random? (2)

A 95% confidence interval for a quantity x:
F R E Q U E N T I S T

B A Y E S I A N
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What is fixed, what is random? (2)

A 95% confidence interval for a quantity x:

“If new data are collected many times and
confidence intervals are calculated, then 95%
of these confidence intervals contain the true
value of x.”

F R E Q U E N T I S T

B A Y E S I A N
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What is fixed, what is random? (2)

A 95% confidence interval for a quantity x:

“If new data are collected many times and
confidence intervals are calculated, then 95%
of these confidence intervals contain the true
value of x.”

A 95% credibility interval for a quantity x:

“The probability that the value of x lies
between 2.5 and 4.7 is 95%, given the
observed data and the prior belief.”

F R E Q U E N T I S T

B A Y E S I A N
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Hypothesis testing

Given two hypotheses, H0 and H1, ...
F R E Q U E N T I S T

B A Y E S I A N
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Given two hypotheses, H0 and H1, calculate the probability of observing 
the data (or more extreme data) if H0 is true. If this probability is low 
(p value‑ ), reject H0.

Hypothesis testing

Given two hypotheses, H0 and H1, ...

F R E Q U E N T I S T

B A Y E S I A N
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Hypothesis testing

Given two hypotheses, H0 and H1, calculate the probability of observing 
the data (or more extreme data) if H0 is true. If this probability is low 
(p‑value), reject H0.

Given two hypotheses, H0 and H1, calculate the probability of each of 
them, given the data and the priors. Favour the hypothesis that has the 
higher probability.

F R E Q U E N T I S T

B A Y E S I A N
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Hypothesis testing

Given two hypotheses, H0 and H1, calculate the probability of observing 
the data (or more extreme data) if H0 is true. If this probability is low 
(p‑value), reject H0.

Given two hypotheses, H0 and H1, calculate the probability of each of 
them, given the data and the priors. Favour the hypothesis that has the 
higher probability.

Because a hypothesis is either true or false (this is just not known) 
and only the likelihood of observing the data is calculated, a 
Frequentist cannot assign a probability to each hypothesis.

The probability of each of the hypotheses being true can be 
calculated. Relative statements (e.g. “H0 is twice as likely as H1”) 
can be made.

F R E Q U E N T I S T

B A Y E S I A N
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A Simple Example (1)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?
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A Simple Example (1)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

F R E Q U E N T I S T

The probability of observing 25 red and 15 black numbers can be 
described by a Binomial distribution with 25 successes out of 40.

The sample proportion of success is 25/40, or 0.625. Using the central 
limit theorem, an approximate confidence interval for a proportion can be 
found. The sampling distribution is summarised by its mean (0.625) and 
standard deviation (0.0765), and these are used to obtain a 95% 
confidence interval for the mean of a normal distribution. After correcting 
for the discrete nature of the data, the confidence interval for z
is found: [0.46, 0.79].
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B A Y E S I A N

A Simple Example (2)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

The probability of observing 25 red and 15 black numbers can be 
described by a Binomial distribution with 25 successes out of 40.

The prior probability for z is assumed to be Beta(1,1).

Bayes' Theorem is used to calculate the posterior probability of z.
(See next slide)

The 95% credibility interval for z is [0.47, 0.76].
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A Simple Example (3)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

Bayes' theorem

(The denominator of Bayes' Theorem, p(data), is a constant and can 
usually be ignored.)

p(data|z) = Binomial (25 out of 40 with prob. z)

p(z) = Beta(1, 1)

p  z∣data∝ p  z ⋅p data∣z 

B A Y E S I A N
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A Simple Example (4)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

Bayes' theorem

So p(z|data) = Beta(26,16), and the credibility interval can be calculated 
easily by looking up the cumulative probabilities.

p  z∣data∝ p  z ⋅pdata∣z 

p  z∣data∝ 1
B 1,1

z1−11−z 1−1 40 !
25! 40−25!

z25 1−z 40−25

p  z∣data∝ z25 1−z 15

B A Y E S I A N
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A Simple Example (5)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

In this simple example, when the prior is from a particular family (Beta) 
and the likelihood of the data is also from a particular family (Binomial), 
the posterior likelihood also belongs to a particular family of distributions 
(Beta). The Beta prior and Binomial likelihood distribution are called 
conjugate.

This is a special case – usually the Bayesian posterior distributions 
cannot be calculated analytically, and numerical methods are required to 
approximate the posterior distribution.

B A Y E S I A N
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A Simple Example (6)
In roulette, a spin of the wheel results in a red or a black 
number (or 0). In one hour, the roulette wheel resulted in 
25 red and 15 black numbers. What is the probability z that 
this wheel gives a red number?

Different choices of prior distributions lead to different posterior 
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]

Beta(50,50) 25 out of 40 Beta(75,65) [0.45, 0.62]

Beta(26,16) 25 out of 40 Beta(51,31) [0.52, 0.72]

B A Y E S I A N
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A Simple Example (7)
Different choices of prior distributions lead to different posterior 
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]
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A Simple Example (7)
Different choices of prior distributions lead to different posterior 
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]

Beta(50,50) 25 out of 40 Beta(75,65) [0.45, 0.62]
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A Simple Example (7)
Different choices of prior distributions lead to different posterior 
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]

Beta(50,50) 25 out of 40 Beta(75,65) [0.45, 0.62]

Beta(26,16) 25 out of 40 Beta(51,31) [0.52, 0.72]
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Priors - again...
Different choices of prior distributions lead to different posterior 
distributions and thus to different credibility intervals.

Prior Data Posterior 95% credibility interval
Beta(1,1) 25 out of 40 Beta(26,16) [0.47, 0.76]

Beta(50,50) 25 out of 40 Beta(75,65) [0.45, 0.62]

Beta(26,16) 25 out of 40 Beta(51,31) [0.52, 0.72]

So how does one choose the “right”
prior?
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Controversy regarding priors
There is no “right” prior.

A good prior choice may be obvious, for example when earlier 
studies on a model quantity can be used.

The influence of the prior on the model output can be minimised by 
choosing an “uninformative” prior or a “reference prior”.

If different stakeholders are involved, whose prior opinions on a model 
quantity differ, each of them may propose a prior. The model can then 
be run in turn for each prior. Afterwards, it may be possible to 
reconcile the different posterior opinions.

In general, if the prior choice makes a difference to the model's output, 
then more data should be collected. A good modelling application should 
either have an informative prior or be robust to prior choice.
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Model Selection
In Bayesian statistics, it is relatively straightforward to evaluate different 
explanations for a data-set (nested models or totally different models). 
The models are all evaluated simultaneously, together with additional 
parameters mi for the probabilities of each of the models.

The posteriors for the parameters mi summarise how well each of the 
competing models fits the data. Depending on the model application, 
one most suitable model may be found, or predictions can be made from 
all models simultaneously, using the posterior values for mi as weights 
(model averaging).

In Frequentist statistics, it is relatively easy to evaluate nested models – 
but the evaluation of other competing models is not straightforward.
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Summary

Probability Frequency Belief

Statements Probability of observing Probability of model quantity
data

Objectivity Result depends only Result depends on prior and
on data data – subjective

Computation Often feasible Often complicated

Flexibility Some applications re- no intrinsic limitations
quire normal or other
simplifying assumptions

Model selection Sometimes possible Straightforward

B A Y E S I A NF R E Q U E N T I S T
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Interval.......

...... any questions? .......

Good Bayesian text book that starts with a comparison of Bayesian and 
Frequentist methods:

D'Agostini, G: Bayesian Reasoning in Data Analysis.
World Scientific Publishing, Singapore, 2003.

Why use Bayesian methods in health economics? E.g. B Luce, Y Shih, 
K Claxton: International Journal of Technology Assessment in Health 
Care 17/1, 2001, pp 1-5.
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Calculating Bayesian Posteriors
Models that can be solved analytically (such as the simple example 
before) are rare and require conjugacy. Most multi-dimensional models 
do not fall in this class.

The problem is that, for each possible set of parameter values, Bayes' 
Theorem gives the posterior probability, but if the parametric form of the 
distribution cannot be recognised, there is no obvious method for 
calculating e.g. its mean value, or for sampling from it.

Therefore, a Bayesian model usually requires numerical methods for 
calculating the posteriors of interest. Any algorithm that generates 
samples from a distribution that is defined by its probability density 
function could be used.

p ∣data∝ p ⋅p data∣
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Calculating Bayesian Posteriors

The most commonly used algorithms for sampling from the Bayesian 
posterior fall in two groups:

Metropolis-Hastings: some algorithms in this class are Markov chain 
Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

Sequential Importance Sampling.

These algorithms work well when the posterior model 
space can be written as a product, such that factors 
correspond to subspaces.

Very suitable for posteriors that can be written as products, 
such that factors correspond to individual data.

p ∣data∝ p ⋅p data∣
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Calculating Bayesian Posteriors

The most commonly used algorithms for sampling from the Bayesian 
posterior fall in two groups:

Metropolis-Hastings: some algorithms in this class are Markov chain 
Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

Sequential Importance Sampling.

p ∣data∝ p a p data∣a⋅p b p data∣b

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...

p ∣data∝ p ⋅p data∣
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Markov chain Monte Carlo (1)
MCMC generates samples from the posterior space M by defining a 
chain C={x1, x2, x3, ...} in M.

At each step i in the chain, candidate values x* are generated randomly 
for each of the parameters. (The proposal distribution may depend on 
the current values, xi.)

The posterior probabilities are calculated for both xi and x*. Depending 
on the likelihood of x* relative to xi, an acceptance probability is 
calculated, and the chain either moves to x* (xi+1=x*) or stays at its 
current value (xi+1=xi).

Ergodic theory ensures that, in the limit, the distribution of the values of 
C converges to the posterior distribution of interest. The beginning of the 
chain is discarded because the initial values dominate it (“burn-in”).
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Markov chain Monte Carlo (2)
Illustration:

At step i in the MCMC, the chain 
may jump to the candidate value 
θ* or stay at the current value θ

i
. 

This depends on the posterior 
probabilities for these two points 
in parameter space.
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Markov chain Monte Carlo (2)
Illustration:

At step i in the MCMC, the chain 
may jump to the candidate value 
θ* or stay at the current value θ

i
. 

This depends on the posterior 
probabilities for these two points 
in parameter space.

In the long run, the 
distribution of points in the 
chain approximates the 
posterior distribution.
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Markov chain Monte Carlo (3)
To sample from a multi-dimensional posterior (e.g. the posterior of a model 
with several unknown parameters), parameters can be grouped together 
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and 
parameters in the other blocks retain their current value). The candidate 
values for that block are either accepted or rejected. Then the same is done 
for the next parameter block, etc.

Example
1. Suggest a candidate for a.

(In this example, a* is accepted.)
2.

3.
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Markov chain Monte Carlo (3)
To sample from a multi-dimensional posterior (e.g. the posterior of a model 
with several unknown parameters), parameters can be grouped together 
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and 
parameters in the other blocks retain their current value). The candidate 
values for that block are either accepted or rejected. Then the same is done 
for the next parameter block, etc.

Example
1. Suggest a candidate for a.

(In this example, a* is accepted.)
2. Suggest a candidate for b.

(In this example, b* is accepted.)
3.
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Markov chain Monte Carlo (3)
To sample from a multi-dimensional posterior (e.g. the posterior of a model 
with several unknown parameters), parameters can be grouped together 
(block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and 
parameters in the other blocks retain their current value). The candidate 
values for that block are either accepted or rejected. Then the same is done 
for the next parameter block, etc.

Example
1. Suggest a candidate for a.

(In this example, a* is accepted.)
2. Suggest a candidate for b.

(In this example, b* is accepted.)
3. The chain moves to [a*, b*].
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Gibbs sampling
Gibbs sampling is a special case of MCMC. Here, the posterior 
parameter space is divided into blocks of parameters, such that for each 
block, the conditional posterior probabilities are known.

Then, at each step i in the chain, candidate values x* are generated 
randomly from the conditional posterior probability for each parameter 
block, given the current values of the other parameters in the model.

Because x* is a draw from the conditional posterior probability, the 
calculation of the MCMC acceptance probability always gives 1. Thus, 
the chain always moves to x* (xi+1=x*). The sampler thus converges 
more quickly.
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Difficulties with MCMC
Unfortunately, the Markov chain Monte Carlo algorithms do not always 
work well, and some care is needed when checking for convergence to 
the posterior distribution of interest.

The most common problems are:
Bad “mixing”: The chain does not move 
well because the candidate acceptance 
rate is too low.
Cause: The candidate generator often 
suggests candidates that are too unlikely 
compared to the current value.

i
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Difficulties with MCMC
Unfortunately, the Markov chain Monte Carlo algorithms do not always 
work well, and some care is needed when checking for convergence to 
the posterior distribution of interest.

The most common problems are:
Bad “mixing”

Trends in the chain: The exploration of 
posterior model space is slow and the 
chain seems to have a direction.
Cause:    The candidate generator 
suggests candidates too close to the 
current values.
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Difficulties with MCMC
Unfortunately, the Markov chain Monte Carlo algorithms do not always 
work well, and some care is needed when checking for convergence to 
the posterior distribution of interest.

The most common problems are:
Bad “mixing”

Trends in the chain

Poor coverage of posterior probability: 
The chain seems to mix well, but it is stuck 
at a local maximum of posterior probability. 
The samples thus do not exhaust the 
posterior model space. 
Cause:   Inappropriate candidate generator.
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Difficulties with MCMC
Unfortunately, the Markov chain Monte Carlo algorithms do not always 
work well, and some care is needed when checking for convergence to 
the posterior distribution of interest.

The most common problems are:
Bad “mixing”

Trends in the chain

Poor coverage of posterior probability

Because of these difficulties, generating samples from a Bayesian 
posterior requires a lot of attention to detail and can often not be fully 
automated.
Diagnostic criteria exist to aid in detecting convergence and good mixing 
of the MCMC sampler.
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

In SIS, the posterior distribution of interest is approximated by a “swarm” 
of particles, where each particle is one possible realisation of the model. 
For example, in a model with two parameter values, a and b, a particle 
could be the pair (a=4.5, b=-2).

The posterior density function is split into factors, and at each step in the 
algorithm, all particles are resampled based on weights. These weights 
are derived from the factors that make up the pdf. For example, the first 
step might weight the particle sample according to the Bayesian prior. 
The second step might weight the updated set of particles according to 
the factor that corresponds to the first datum. The next resampling may 
take into account the next datum, etc, until the data are used up.
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...

 a=2.5
 a=3.1
 a=-1
 a=4
 a=2.7
 a=1.7
 ...

Prior
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

 a=2.5 1.5
 a=3.1 0.1
 a=-1 5.5
 a=4 0.0
 a=2.7 1.3
 a=1.7 3.4
 ...

Weights due to the first datum

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

 a=2.5 1.5 a=-1
 a=3.1 0.1 a=-1
 a=-1 5.5 a=-1
 a=4 0.0 a=-1
 a=2.7 1.3 a=1.7
 a=1.7 3.4 a=1.7
 ...

Weighted resampling...

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

 a=2.5 1.5 a=-1 2.5 a=-1
 a=3.1 0.1 a=-1 2.5 a=-1
 a=-1 5.5 a=-1 2.5 a=-1
 a=4 0.0 a=-1 2.5 a=-1
 a=2.7 1.3 a=1.7 0.1 a=-1
 a=1.7 3.4 a=1.7 0.1 a=1.7
 ...

again, calculate weights and resample...

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...
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Sequential Importance Sampling
This algorithm is very suitable for data that can be obtained sequentially, 
for example to monitor an industrial process. SIS (usually implemented 
as a particle filter) can also be applied to more general problems.

 a=2.5 1.5 a=-1 2.5 a=-1
 a=3.1 0.1 a=-1 2.5 a=-1
 a=-1 5.5 a=-1 2.5 a=-1
 a=4 0.0 a=-1 2.5 a=-1
 a=2.7 1.3 a=1.7 0.1 a=-1
 a=1.7 3.4 a=1.7 0.1 a=1.7
 ...

When all the data are used 
up, the final swarm of 
particles is a sample from 
the posterior distribution.

Because of its sequential 
structure, SIS is often used 
with time-series data.

p ∣data∝ p ⋅p data1∣⋅p data2∣⋅...
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Difficulties with SIS
The main problem with SIS is particle depletion: At each resampling 
step, the number of different particles is reduced, and no new particles 
are created. Because the number of particles is finite, eventually there 
are many identical particles.

Different solutions have been suggested, usually based on randomly 
generating new particles at each step that are slightly different from the 
existing particles but not too different to break the ergodic properties of 
the sampler. Other methods are being explored – this is an area of 
active research.
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Comparison MCMC and SIS
MCMC SIS

Sampling Chain generates All samples are generated
samples one by one at once

Data Required from the start Can be added sequentially

Computational 10,000's of iterations 10,000's of particles
cost

Challenges Convergence and Particle depletion
mixing

Uses Very versatile “Live” time-series
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Implementations
For MCMC, many ready-made implementations exist. A good place to 
start is the package OpenBUGS (ongoing development of WinBUGS), 
which implements the Gibbs and other samplers. With a familiar 
Windows interface and a very general symbolic language to specify 
models, OpenBUGS can solve most classes of Bayesian models.

R offers several add-on packages with MCMC capabilities, as well as an 
interface to OpenBUGS, called BRugs.

In terms of speed and efficiency, it may be best to hand-code the MCMC 
sampler directly in Fortran, C or another suitable language.

For SIS, I am not aware of any ready-made packages, but there are 
ongoing developments.
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Hands-on Example
Here I demonstrate the use of OpenBUGS. I've made up this example – 
but the basic approach carries through to real applications in health 
economics.

8 RCTs have been carried out to investigate the effectiveness of 
treatments A and B (observing the number of symptom-free patients 
after 1 year). Treatment A costs SEK 10,000, whereas treatment B costs 
SEK 14,000. QALY values are given by a probability distribution.

The trial data is summarised as follows:
nA 120 15 84 398 80 40 97 121
rA 65 9 39 202 45 17 48 63
nB 120 16 45 402 77 20 100 115
rB 81 15 29 270 52 12 68 80

QALY symptom-free: Beta(9,1)  QALY with symptoms: Beta(5,5)
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Statistical model
An evidence synthesis model is required to combine the information 
from the 8 RCTs.

Let's choose a random-baselines, random-effects model. We model 
trial outcomes on the log-odds probability scale, with the treatment 
effect being additive on the log-odds scale.

Letting i denote a trial, we have:

Probability with treatment A (baseline):

Log-odds treatment effect:

Probability with treatment B:

logit  pi
A=i

t i
logit  pi

B=it i
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Statistical model (2)
Random-baselines, random-effects model on the log-odds scale

Probability with treatment A (baseline):

Log-odds treatment effect:

Probability with treatment B:

We need to relate the trial-specific parameters μi and ti to their 
underlying values Μ and T. On the log-odds scale, these are usually 
assumed to be normally distributed.

Random baseline:

Random treatment effect:

logit  pi
A=i

t i
logit  pi

B=it i

i ~ Norm M ,M
2 

t i ~ Norm T ,T
2 
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Statistical model (3)
Next, the model requires a sampling distribution: Given a set of values 
for the unknown parameters, how likely is an observed datum?

The model yields a probability and we have binomial data, so the only 
sensible choice is

By now we have 20 unknown parameters (8 ti, 8 μi, M, σM, T and σT). 

So far we have made arbitrary choices in model design – we could just 
as well have chosen a fixed-effects model (with fewer parameters) or 
designed something more complicated.

ri
A~ Binom  pi

A , ni
A ri

B~ Binom  pi
B , ni

B
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Statistical model (4)
Now, because this is a Bayesian model, we need priors for the unknown 
parameters M, σM, T and σT.

If we already know something about the parameters we could add this 
knowledge as prior information.

For example, there may be further information on the baseline 
probability of  symptom-free days – we could express this through the 
prior on M, if we consider the information relevant.

Otherwise, we choose “sensible” priors that have little information, 
along the lines of: M and T lie in the real line, and we know little about 
it, so let's pick a Normal prior with mean 0 and large variance.
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Statistical model (5)
Model equations:

Sampling
distribution:

Priors: (log-odds probabilities)

(log-odds standard deviations)

logit  pi
A=i logit  pi

B=it i
i ~ Norm M ,M

2  t i ~ Norm T ,T
2 

ri
A~ Binom  pi

A , ni
A ri

B~ Binom  pi
B , ni

B

M ~ Norm 0,10000
T ~ Norm 0,10000

M ~ Unif 0,2
T ~ Unif 0,2
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Statistical model (6)
Model equations:

Sampling
distribution:

The model equations and the sampling distribution are common to
the Frequentist and the Bayesian approaches. If you already have a
Frequentist model, then you (should) already have specified these.

logit  pi
A=i logit  pi

B=it i
i ~ Norm M ,M

2  t i ~ Norm T ,T
2 

ri
A~ Binom  pi

A , ni
A ri

B~ Binom  pi
B , ni

B
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Statistical model (7)
Priors do not occur in the Frequentist setting, so you probably have to 
make them up.
In this example, the priors are meant to be uninformative, i.e. they are 
supposed to add no information to the result. It is good practice to test 
this by changing the priors a little bit and observing the impact on the 
results of your model.

Priors: (log-odds probabilities)

(log-odds standard deviation)

M ~ Norm 0,10000
T ~ Norm 0,10000

M ~ Unif 0,2
T ~ Unif 0,2
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model {
for (i in 1:N) {

logit(pA[i])<-mu[i]
logit(pB[i])<-mu[i]+t[i]
rA[i]~dbin(pA[i],nA[i])
rB[i]~dbin(pB[i],nB[i])
mu[i]~dnorm(M,precM)
t[i] ~dnorm(T,precT)

}
M~dnorm(0,0.0001)
T~dnorm(0,0.0001)
precM<-1/pow(sigmaM,2)
precT<-1/pow(sigmaT,2)
sigmaM~dunif(0,2)
sigmaT~dunif(0,2)

}

OpenBUGS
Let us fit this Bayesian model using OpenBUGS.

The OpenBUGS syntax is relatively straightforward and similar to R.

logit  pi
A=i

logit  pi
B=it i

i ~ Norm M ,M
2 

t i ~ Norm T ,T
2 

ri
A~ Binom  pi

A , ni
A

ri
B~ Binom  pi

B , ni
B
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model {
for (i in 1:N) {

logit(pA[i])<-mu[i]
logit(pB[i])<-mu[i]+t[i]
rA[i]~dbin(pA[i],nA[i])
rB[i]~dbin(pB[i],nB[i])
mu[i]~dnorm(M,precM)
t[i] ~dnorm(T,precT)

}
M~dnorm(0,0.0001)
T~dnorm(0,0.0001)
precM<-1/pow(sigmaM,2)
precT<-1/pow(sigmaT,2)
sigmaM~dunif(0,2)
sigmaT~dunif(0,2)

}

OpenBUGS (2)
The data are specified in a separate section so that they can be entered 
or changed easily.

#data
list(N=8,
nA=c(120,15,84,398, 80,40, 97,121),
rA=c( 65, 9,39,202, 45,17, 48, 63),
nB=c(120,16,45,402, 77,20,100,115),
rB=c( 81,15,29,270, 52,12, 68, 80))
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OpenBUGS (3)
The OpenBUGS window can look like this.
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OpenBUGS (4)
In this example, OpenBUGS explores the model's posterior reasonably well.

The three colours denote 
three chains that are run in 
parallel.

Note that there is no 
evidence that initial values 
are influencing the chains. 

Also, each chain appears to 
“wiggle” quite well and the 
three chains overlap, 
indicating that they are 
exploring the same posterior 
space (as they should).
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OpenBUGS (5)
Here's a screenshot from another model, in which the sampler did not 
converge (just to give you an idea of what to look for...).

Poor mixing: Three chains (which should all explore 
the same parameter space) are far from each other, 
and trends are evident.
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Model convergence
WinBUGS and OpenBUGS provide a few formal diagnostics to check for 
convergence and performance of the sampler, for example the Brooks-
Gelman-Rubin diagram and plots of within-chain autocorrelation. 
High “MC_error” can also indicate convergence problems.

To avoid convergence problems, bear in mind the following.

1. It is difficult to fit many unknown parameters to little data.

2. If you can exploit conjugate distributions, do so.

3. Sometimes you can get around convergence problems by re-writing 
your model equations without changing the underlying model.

4. If high within-chain autocorrelation is the only problem, you can thin 
the posterior samples and only keep every nth draw.
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Example continued
When you are satisfied with the posterior sampling, you can generate 
any desired summary statistic for your posterior.

For example, here's an overview of the posterior means and credibility 
intervals.

In this example, the treatment effect T is positive (on the log-odds 
scale), i.e. the treatment B has a higher probability of symptom-free.
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Example continued
When you are satisfied with the posterior sampling, you can generate 
any desired summary statistic for your posterior.

MC_error is another 
indication for how well the 
sampler performed.

The sampling error should 
be much smaller than the 
estimated posterior standard 
deviation.
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Example continued
When you are satisfied with the posterior sampling, you can generate 
any desired summary statistic for your posterior.

The 95% credibility interval for the treatment efficacy parameter 
T is [0.481, 0.9601], i.e. treatment B has a very significant effect 
on the probability of symptom-freeness after 1 year.
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Example continued
But what is the probability P that treatment B is the cost-effective choice 
at a willingness-to-pay (WTP) of λ=SEK 50,000?

This probability P can be calculated from the model parameters as 
follows.

Let's assume that the underlying baseline and treatment effect would 
apply to the target population, i.e. in the target population

   and . We calculate the net benefit of 
the treatments (NB), using the costs C and utilities U.

The probability P is given by

logit  pB=MTlogit  pA=M

NBA=[ pA⋅U free1− pA⋅U symptoms]⋅−C
A

NBB=[ pB⋅U free1− pB⋅U symptoms]⋅−C
B

P=Pr NBBNB A
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Example continued
But what is the probability P that treatment B is the cost-effective choice 
at a willingness-to-pay (WTP) of λ=SEK 50,000?

We can calculate this directly in WinBUGS, adding a few more lines of 
code.

model {
...
logit(PA)<-M
logit(PB)<-M+T
Uf~dbeta(9,1)
Us~dbeta(5,5)
NBA<-(PA*Uf+(1-PA)*Us)*WTP-CA
NBB<-(PB*Uf+(1-PB)*Us)*WTP-CB
P<-step(NBB-NBA)

}

Numerically, we simply look at all 
the draws from the posterior and 
check which of them fulfill the 
condition. This proportion is the 
posterior probability P. There is no 
need for any further tests.
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Example continued
But what is the probability P that treatment B is the cost-effective choice 
at a willingness-to-pay (WTP) of λ=SEK 50,000?

Here's the posterior summary for our new quantities.

There is a lot of overlap between the net benefits for treatment A 
(95%-CI [SEK 16240, 33200]) and B (95%-CI [SEK 15580, 31090]).

Accordingly, the probability that treatment B is cost-effective is 
estimated at 0.3498.
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Example continued
But what is the probability P that treatment B is the cost-effective choice 
at a willingness-to-pay (WTP) of λ=SEK 50,000?

Here's the posterior summary for our new quantities.

In this example, I defined the probability P by checking a condition, 
rather than as a stochastic variable with its own prior and probability 
density. This is why the confidence intervals for P do not mean 
anything.



  

Bayesian Statistics: An Introduction Slide 82

Dr Christian Asseburg
   University of York, UK ca505@york.ac.uk2007-03-12, Linköping

Example continued
OpenBUGS can also produce graphical output for all quantities
of interest.

For example, here are the posterior densities for the net benefits NBA 
and NBB.

They both show quite wide distributions and their support on the x-axes 
overlaps substantially.

NBA sample: 30000

NBA
0.0 1.0E+4 2.0E+4 3.0E+4

P
(N

B
A

)
0.
07
.5
E-
5 NBB sample: 30000

NBB
-1.0E+4 0.0 1.0E+4 3.0E+4

P
(N

B
B

)
0.
01
.0
E-
4



  

Bayesian Statistics: An Introduction Slide 83

Dr Christian Asseburg
   University of York, UK ca505@york.ac.uk2007-03-12, Linköping

Bayesian decision theory
With a probabilistic net benefit function, Bayesian decision theory can be 
applied to optimise management decisions.

Bayesian models can thus directly feed in to management processes.

In a Frequentist model, it is not generally possible to find a probability 
distribution for an unknown parameter – because a Frequentist 
calculates the likelihood of observing the data and uses this to make 
inferences on the model parameters.

Frequentist models do not offer an obvious way for calculating quantities 
that are derived from individual parameter values (such as the 
probability P or a net benefit) – this makes them less amenable to 
management processes.
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Summary
Frequentist modelling centres on the likelihood function, i.e. how likely 
are the data given a particular model.

Bayesian modelling centres on the probabilities of models and model 
parameters, by combining the likelihood of the data with prior 
probabilities of the unknown parameters.

Both can be used equally well to fit models and to make inferences on 
model parameters.

However, only Bayesian statistics is capable of assigning probabilities 
to model quantities. This makes it possible to calculate derived 
quantities and their uncertainties.

Numerical methods for fitting Bayesian models require some care and 
experience.


