An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics

Dr. Christian Asseburg
Centre for Health Economics
University of York, UK
ca505@york.ac.uk

Part 1
Bayesian Statistics: An Introduction
Talk overview

• Foundations of Bayesian statistics
• Comparison between Frequentist and Bayesian approaches
• Calculations and computer implementations
• Example from health economics
• Questions and discussion
History of Bayesian Statistics

The reverend Thomas Bayes (1702-1761) proved a special case of what is now known as *Bayes’ Theorem*.

Pierre-Simon Laplace (1749-1827) proved a more general version of *Bayes’ Theorem* and used it for various applications.

The relevance of *Bayes’ Theorem* to statistics, however, was not appreciated until the 20th century.

The *Frequentist paradigm* has been the mainstay of probability theory during the 19th and 20th century, with important contributions by e.g. Jerzy Neyman, Egon Pearson, John Venn, R.A. Fisher, and Richard von Mises.

Frequentist tools such as hypothesis testing and confidence intervals have allowed many advances in statistics. *Bayesian* equivalents exist, but they often require more computations – it was during the last two decades of increasing availability of computing resources that Bayesian statistics gained ground.
Bayes' Theorem can be derived easily from the expression of the joint probability of two events A and B:

Let \(p(A) \) denote the probability that event A will occur, let \(p(B) \) denote the probability that event B will occur, and let \(p(A,B) \) denote the probability that both of the events occur.

Then

\[
p(A,B) = p(A) \cdot p(B|A) = p(B) \cdot p(A|B)
\]

Bayes' Theorem states simply that

\[
p(B|A) = \frac{p(B) \cdot p(A|B)}{p(A)}
\]
Of course, *Bayes’ Theorem* as a way to relate the conditional probabilities of two events is valid both in Frequentist as well as in Bayesian statistics.

However, in Bayesian statistics it is also applied to unknown parameters x directly:

\[
p(B|A) = \frac{p(B) \cdot p(A|B)}{p(A)}
\]

\[
p(x|data) = \frac{p(x) \cdot p(data|x)}{p(data)}
\]
Priors and Posteriors (2)

Unknown parameter(s): x

Data (known): $data$

Probability of $data$ given x: $p(data|x)$

“Prior” probability of x: $p(x)$

“Posterior” probability of x: $p(x|data)$

$$p(x|data) = \frac{p(x) \cdot p(data|x)}{p(data)}$$
Priors and Posteriors (2)

Unknown parameter(s): \(x \)

Data (known): \(data \)

Probability of \(data \) given \(x \): \(p(data|x) \)

"Prior" probability of \(x \): \(p(x) \)

"Posterior" probability of \(x \): \(p(x|data) \)

\[
p(x|data) = \frac{p(x) \cdot p(data|x)}{p(data)}
\]

"Likelihood"
Priors and Posteriors (2)

Unknown parameter(s): x

Data (known): $data$

Probability of $data$ given x: $p(data|x)$

“Prior” probability of x: $p(x)$

“Posterior” probability of x: $p(x|data)$

$$p(x|data) = \frac{p(x) \cdot p(data|x)}{p(data)}$$

The denominator is a constant and can usually be ignored.
Bayes' Theorem is thus used to combine data with a prior belief on an unknown quantity, resulting in a posterior belief on the unknown quantity.

This approach has been compared to the task of learning in humans, where experience supports a constant updating of a person's belief system.

“Prior” probability of x: $p(x)$

“Posterior” probability of x: $p(x|\text{data})$

$$p(x|\text{data}) = \frac{p(x) \cdot p(\text{data}|x)}{p(\text{data})}$$
Definition of “Probability”

Frequentist

Bayesian
Definition of “Probability”

Frequentist

The “probability” of an event A occurring (or of a quantity taking a value in a given interval) is a frequency. Imagine many (hypothetical or actual) circumstances in which the data have been observed. The proportion of circumstances in which event A occurs (out of all circumstances) is the “probability” of A. This probability is objective.

Bayesian
Definition of “Probability”

Frequentist

The “probability” of an event A occurring (or of a quantity taking a value in a given interval) is a **frequency**. Imagine many (hypothetical or actual) circumstances in which the data have been observed. The proportion of circumstances in which event A occurs (out of all circumstances) is the “probability” of A. This probability is **objective**.

Bayesian

The “probability” of an event A occurring (or of a quantity taking a value in a given interval) is a **degree of belief**. The degree of belief in A may change when we are confronted with new data. The “probability” of A is a numerical representation of this degree of belief. If you and I (and everyone else) agree on the belief in event A, we define an **objective** probability, otherwise we define a **subjective** probability.
What is fixed, what is random? (1)

Frequentist

Bayesian
What is fixed, what is random? (1)

Frequentist

There is a fixed, but unknown value for each parameter. The data are an instance of many possible data that could have been collected. A Frequentist statistician evaluates how likely the given data are according to different hypothetical values for the unknown quantities. Thus, statements about the probability of observing the data given different hypothetical parameter values are summarised in a confidence interval.

Bayesian

What is fixed, what is random? (1)

Frequentist

There is a fixed, but unknown value for each parameter. The data are an instance of many possible data that could have been collected. A Frequentist statistician evaluates how likely the given data are according to different hypothetical values for the unknown quantities. Thus, statements about the probability of observing the data given different hypothetical parameter values are summarised in a confidence interval.

Bayesian

The value for each parameter is unknown. The data are known, they have been observed. A Bayesian statistician evaluates how likely different values for the underlying quantities are, given the observed data. Thus, statements can be made about the probability of the unknown quantity taking a value in a certain credibility interval.
What is fixed, what is random? (2)

F R E Q U E N T I S T

A 95% confidence interval for a quantity x:

B A Y E S I A N
What is fixed, what is random? (2)

FREQUENTIST

A 95% confidence interval for a quantity x:

“If new data are collected many times and confidence intervals are calculated, then 95% of these confidence intervals contain the true value of x.”

BAYESIAN
What is fixed, what is random? (2)

FREQUENTIST

A 95% confidence interval for a quantity x:

“If new data are collected many times and confidence intervals are calculated, then 95% of these confidence intervals contain the true value of x.”

BAYESIAN

A 95% credibility interval for a quantity x:

“The probability that the value of x lies between 2.5 and 4.7 is 95%, given the observed data and the prior belief.”
Hypothesis testing

Frequentist
Given two hypotheses, H_0 and H_1, ...

Bayesian
Given two hypotheses, H_0 and H_1, calculate the probability of observing the data (or more extreme data) if H_0 is true. If this probability is low (p-value), reject H_0.

Frequentist

Given two hypotheses, H_0 and H_1, ...

Bayesian

Given two hypotheses, H_0 and H_1, ...
Hypothesis testing

Frequentist

Given two hypotheses, H_0 and H_1, calculate the probability of observing the data (or more extreme data) if H_0 is true. If this probability is low (p-value), reject H_0.

Bayesian

Given two hypotheses, H_0 and H_1, calculate the probability of each of them, given the data and the priors. Favour the hypothesis that has the higher probability.
Hypothesis testing

Frequentist

Given two hypotheses, H_0 and H_1, calculate the probability of observing the data (or more extreme data) if H_0 is true. If this probability is low (p-value), reject H_0.

Because a hypothesis is either true or false (this is just not known) and only the likelihood of observing the data is calculated, a Frequentist cannot assign a probability to each hypothesis.

Bayesian

Given two hypotheses, H_0 and H_1, calculate the probability of each of them, given the data and the priors. Favour the hypothesis that has the higher probability.

The probability of each of the hypotheses being true can be calculated. Relative statements (e.g. “H_0 is twice as likely as H_1”) can be made.
A Simple Example (1)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability z that this wheel gives a red number?
A Simple Example (1)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability \(z \) that this wheel gives a red number?

Frequentist

The probability of observing 25 red and 15 black numbers can be described by a Binomial distribution with 25 successes out of 40.

The sample proportion of success is 25/40, or 0.625. Using the central limit theorem, an approximate confidence interval for a proportion can be found. The sampling distribution is summarised by its mean (0.625) and standard deviation (0.0765), and these are used to obtain a 95% confidence interval for the mean of a normal distribution. After correcting for the discrete nature of the data, the confidence interval for \(z \) is found: [0.46, 0.79].
A Simple Example (2)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability z that this wheel gives a red number?

The probability of observing 25 red and 15 black numbers can be described by a Binomial distribution with 25 successes out of 40.

The prior probability for z is assumed to be Beta(1,1).

Bayes' Theorem is used to calculate the posterior probability of z. (See next slide)

The 95% credibility interval for z is [0.47, 0.76].
A Simple Example (3)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability z that this wheel gives a red number?

Bayes' theorem

$$p(z|data) \propto p(z) \cdot p(data|z)$$

(The denominator of Bayes' Theorem, $p(data)$, is a constant and can usually be ignored.)

$$p(data|z) = \text{Binomial (25 out of 40 with prob. } z)$$

$$p(z) = \text{Beta}(1, 1)$$
A Simple Example (4)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability \(z \) that this wheel gives a red number?

Bayes' theorem

\[
p(z|data) \propto p(z) \cdot p(data|z)
\]

\[
p(z|data) \propto \frac{1}{B(1, 1)} z^{1-1} (1-z)^{1-1} \cdot \frac{40!}{25! (40-25)!} z^{25} (1-z)^{40-25}
\]

\[
p(z|data) \propto z^{25} (1-z)^{15}
\]

So \(p(z|data) = \text{Beta}(26,16) \), and the credibility interval can be calculated easily by looking up the cumulative probabilities.
In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability \(z \) that this wheel gives a red number?

In this simple example, when the prior is from a particular family (Beta) and the likelihood of the data is also from a particular family (Binomial), the posterior likelihood also belongs to a particular family of distributions (Beta). The Beta prior and Binomial likelihood distribution are called conjugate.

This is a special case – usually the Bayesian posterior distributions cannot be calculated analytically, and numerical methods are required to approximate the posterior distribution.
A Simple Example (6)

In roulette, a spin of the wheel results in a red or a black number (or 0). In one hour, the roulette wheel resulted in 25 red and 15 black numbers. What is the probability \(z \) that this wheel gives a red number?

BAYESIAN

Different choices of prior distributions lead to different posterior distributions and thus to different credibility intervals.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Data</th>
<th>Posterior</th>
<th>95% credibility interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta(1,1)</td>
<td>25 out of 40</td>
<td>Beta(26,16)</td>
<td>[0.47, 0.76]</td>
</tr>
<tr>
<td>Beta(50,50)</td>
<td>25 out of 40</td>
<td>Beta(75,65)</td>
<td>[0.45, 0.62]</td>
</tr>
<tr>
<td>Beta(26,16)</td>
<td>25 out of 40</td>
<td>Beta(51,31)</td>
<td>[0.52, 0.72]</td>
</tr>
</tbody>
</table>
Different choices of prior distributions lead to different posterior distributions and thus to different credibility intervals.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Data</th>
<th>Posterior</th>
<th>95% credibility interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta(1,1)</td>
<td>25 out of 40</td>
<td>Beta(26,16)</td>
<td>[0.47, 0.76]</td>
</tr>
</tbody>
</table>
Different choices of prior distributions lead to different posterior distributions and thus to different credibility intervals.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Data</th>
<th>Posterior</th>
<th>95% credibility interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta(1,1)</td>
<td>25 out of 40</td>
<td>Beta(26,16)</td>
<td>[0.47, 0.76]</td>
</tr>
<tr>
<td>Beta(50,50)</td>
<td>25 out of 40</td>
<td>Beta(75,65)</td>
<td>[0.45, 0.62]</td>
</tr>
</tbody>
</table>
A Simple Example (7)

Different choices of prior distributions lead to different posterior distributions and thus to different credibility intervals.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Data</th>
<th>Posterior</th>
<th>95% credibility interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta(1,1)</td>
<td>25 out of 40</td>
<td>Beta(26,16)</td>
<td>[0.47, 0.76]</td>
</tr>
<tr>
<td>Beta(50,50)</td>
<td>25 out of 40</td>
<td>Beta(75,65)</td>
<td>[0.45, 0.62]</td>
</tr>
<tr>
<td>Beta(26,16)</td>
<td>25 out of 40</td>
<td>Beta(51,31)</td>
<td>[0.52, 0.72]</td>
</tr>
</tbody>
</table>
Priors - again...

Different choices of prior distributions lead to different posterior distributions and thus to different credibility intervals.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Data</th>
<th>Posterior</th>
<th>95% credibility interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta(1,1)</td>
<td>25 out of 40</td>
<td>Beta(26,16)</td>
<td>[0.47, 0.76]</td>
</tr>
<tr>
<td>Beta(50,50)</td>
<td>25 out of 40</td>
<td>Beta(75,65)</td>
<td>[0.45, 0.62]</td>
</tr>
<tr>
<td>Beta(26,16)</td>
<td>25 out of 40</td>
<td>Beta(51,31)</td>
<td>[0.52, 0.72]</td>
</tr>
</tbody>
</table>

So how does one choose the “right” prior?
Controversy regarding priors

There is no “right” prior.

- A good prior choice may be obvious, for example when earlier studies on a model quantity can be used.

- The influence of the prior on the model output can be minimised by choosing an “uninformative” prior or a “reference prior”.

- If different stakeholders are involved, whose prior opinions on a model quantity differ, each of them may propose a prior. The model can then be run in turn for each prior. Afterwards, it may be possible to reconcile the different posterior opinions.

In general, if the prior choice makes a difference to the model's output, then more data should be collected. A good modelling application should either have an informative prior or be robust to prior choice.
Model Selection

In Bayesian statistics, it is relatively straightforward to evaluate different explanations for a data-set (nested models or totally different models). The models are all evaluated simultaneously, together with additional parameters m_i for the probabilities of each of the models.

The posteriors for the parameters m_i summarise how well each of the competing models fits the data. Depending on the model application, one most suitable model may be found, or predictions can be made from all models simultaneously, using the posterior values for m_i as weights (model averaging).

In Frequentist statistics, it is relatively easy to evaluate nested models – but the evaluation of other competing models is not straightforward.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Frequentist</th>
<th>Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>Frequency</td>
<td>Belief</td>
</tr>
<tr>
<td>Statements</td>
<td>Probability of observing data</td>
<td>Probability of model quantity</td>
</tr>
<tr>
<td>Objectivity</td>
<td>Result depends only on data</td>
<td>Result depends on prior and data – subjective</td>
</tr>
<tr>
<td>Computation</td>
<td>Often feasible</td>
<td>Often complicated</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Some applications require normal or other simplifying assumptions</td>
<td>no intrinsic limitations</td>
</tr>
<tr>
<td>Model selection</td>
<td>Sometimes possible</td>
<td>Straightforward</td>
</tr>
</tbody>
</table>
Good Bayesian text book that starts with a comparison of Bayesian and Frequentist methods:

Calculating Bayesian Posteriors

Models that can be solved **analytically** (such as the simple example before) are rare and require **conjugacy**. Most multi-dimensional models do not fall in this class.

The problem is that, for each possible set of parameter values, Bayes' Theorem gives the posterior probability, but if the parametric form of the distribution cannot be recognised, there is no obvious method for calculating e.g. its mean value, or for sampling from it.

Therefore, a Bayesian model usually requires **numerical methods** for calculating the posteriors of interest. Any algorithm that generates samples from a distribution that is defined by its probability density function could be used.

\[p(\Theta|data) \propto p(\Theta) \cdot p(data|\Theta) \]
Calculating Bayesian Posteriors

\[p(\Theta|\text{data}) \propto p(\Theta) \cdot p(\text{data}|\Theta) \]

The most commonly used algorithms for sampling from the Bayesian posterior fall in two groups:

- **Metropolis-Hastings**: some algorithms in this class are Markov chain Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

 These algorithms work well when the posterior model space can be written as a product, such that factors correspond to subspaces.

- **Sequential Importance Sampling**.

 Very suitable for posteriors that can be written as products, such that factors correspond to individual data.
Calculating Bayesian Posteriors

\[p(\Theta|data) \propto p(\Theta) \cdot p(data|\Theta) \]

The most commonly used algorithms for sampling from the Bayesian posterior fall in two groups:

- **Metropolis-Hastings**: some algorithms in this class are Markov chain Monte Carlo (MCMC), e.g. Gibbs sampling or Reversible Jump.

\[p(\Theta|data) \propto p(\Theta_a) \cdot p(data|\Theta_a) \cdot p(\Theta_b) \cdot p(data|\Theta_b) \]

- **Sequential Importance Sampling**.

\[p(\Theta|data) \propto p(\Theta) \cdot p(data_1|\Theta) \cdot p(data_2|\Theta) \cdot \ldots \]
Markov chain Monte Carlo (1)

MCMC generates samples from the posterior space \mathbf{M} by defining a chain $\mathbf{C} = \{x_1, x_2, x_3, \ldots\}$ in \mathbf{M}.

At each step i in the chain, candidate values x^* are generated randomly for each of the parameters. (The proposal distribution may depend on the current values, x_i.)

The posterior probabilities are calculated for both x_i and x^*. Depending on the likelihood of x^* relative to x_i, an acceptance probability is calculated, and the chain either moves to x^* ($x_{i+1} = x^*$) or stays at its current value ($x_{i+1} = x_i$).

Ergodic theory ensures that, in the limit, the distribution of the values of \mathbf{C} converges to the posterior distribution of interest. The beginning of the chain is discarded because the initial values dominate it ("burn-in").
Markov chain Monte Carlo (2)

Illustration:
At step i in the MCMC, the chain may jump to the candidate value θ^* or stay at the current value θ_i. This depends on the posterior probabilities for these two points in parameter space.
Markov chain Monte Carlo (2)

Illustration:
At step i in the MCMC, the chain may jump to the candidate value θ^* or stay at the current value θ_i. This depends on the posterior probabilities for these two points in parameter space.

In the long run, the distribution of points in the chain approximates the posterior distribution.
Markov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model with several unknown parameters), parameters can be grouped together (block sampling). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and parameters in the other blocks retain their current value). The candidate values for that block are either accepted or rejected. Then the same is done for the next parameter block, etc.

Example
1. Suggest a candidate for a. (In this example, a^* is accepted.)
2.
3.
Markov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model with several unknown parameters), parameters can be grouped together (*block sampling*). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and parameters in the other blocks retain their current value). The candidate values for that block are either accepted or rejected. Then the same is done for the next parameter block, etc.

Example

1. Suggest a candidate for \(a\).
 (In this example, \(a^*\) is accepted.)
2. Suggest a candidate for \(b\).
 (In this example, \(b^*\) is accepted.)
3.
Markov chain Monte Carlo (3)

To sample from a multi-dimensional posterior (e.g. the posterior of a model with several unknown parameters), parameters can be grouped together (*block sampling*). Blocks are chosen such that calculations can be simplified.

At each iteration, a new candidate is suggested for one block (and parameters in the other blocks retain their current value). The candidate values for that block are either accepted or rejected. Then the same is done for the next parameter block, etc.

Example

1. Suggest a candidate for a. (In this example, a^* is accepted.)
2. Suggest a candidate for b. (In this example, b^* is accepted.)
3. The chain moves to $[a^*, b^*]$.

Gibbs sampling

Gibbs sampling is a special case of MCMC. Here, the posterior parameter space is divided into blocks of parameters, such that for each block, the conditional posterior probabilities are known.

Then, at each step i in the chain, candidate values x^* are generated randomly from the conditional posterior probability for each parameter block, given the current values of the other parameters in the model.

Because x^* is a draw from the conditional posterior probability, the calculation of the MCMC acceptance probability always gives 1. Thus, the chain always moves to x^* ($x_{i+1}=x^*$). The sampler thus converges more quickly.
Difficulties with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always work well, and some care is needed when checking for convergence to the posterior distribution of interest.

The most common problems are:

- **Bad “mixing”:** The chain does not move well because the candidate acceptance rate is too low.

 Cause: The candidate generator often suggests candidates that are too unlikely compared to the current value.
Difficulties with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always work well, and some care is needed when checking for convergence to the posterior distribution of interest.

The most common problems are:

- **Bad “mixing”**

- **Trends in the chain**: The exploration of posterior model space is slow and the chain seems to have a direction. **Cause**: The candidate generator suggests candidates too close to the current values.
Difficulties with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always work well, and some care is needed when checking for convergence to the posterior distribution of interest.

The most common problems are:

- **Bad “mixing”**

- **Trends in the chain**

- **Poor coverage of posterior probability**
 The chain seems to mix well, but it is stuck at a local maximum of posterior probability. The samples thus do not exhaust the posterior model space.
 Cause: Inappropriate candidate generator.
Difficulties with MCMC

Unfortunately, the Markov chain Monte Carlo algorithms do not always work well, and some care is needed when checking for convergence to the posterior distribution of interest.

The most common problems are:

- **Bad “mixing”**
- **Trends in the chain**
- **Poor coverage of posterior probability**

Because of these difficulties, generating samples from a Bayesian posterior requires a lot of attention to detail and can often not be fully automated. Diagnostic criteria exist to aid in detecting convergence and good mixing of the MCMC sampler.
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a particle filter) can also be applied to more general problems.

In SIS, the posterior distribution of interest is approximated by a “swarm” of particles, where each particle is one possible realisation of the model. For example, in a model with two parameter values, a and b, a particle could be the pair (a=4.5, b=-2).

The posterior density function is split into factors, and at each step in the algorithm, all particles are resampled based on weights. These weights are derived from the factors that make up the pdf. For example, the first step might weight the particle sample according to the Bayesian prior. The second step might weight the updated set of particles according to the factor that corresponds to the first datum. The next resampling may take into account the next datum, etc, until the data are used up.
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a particle filter) can also be applied to more general problems.

\[p(\Theta|\text{data}) \propto p(\Theta) \cdot p(\text{data}_1|\Theta) \cdot p(\text{data}_2|\Theta) \cdot \ldots \]

- a=2.5
- a=3.1
- a=-1
- a=4
- a=2.7
- a=1.7
- ...

Prior
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a particle filter) can also be applied to more general problems.

\[p(\Theta|\text{data}) \propto p(\Theta) \cdot p(\text{data}_1|\Theta) \cdot p(\text{data}_2|\Theta) \cdot ... \]

Weights due to the first datum:

- a=2.5 1.5
- a=3.1 0.1
- a=-1 5.5
- a=4 0.0
- a=2.7 1.3
- a=1.7 3.4
- ...

2007-03-12, Linköping
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a particle filter) can also be applied to more general problems.

\[p(\Theta|data) \propto p(\Theta) \cdot p(data_1|\Theta) \cdot p(data_2|\Theta) \cdot ... \]

Weighted resampling...

- a=2.5 1.5 a=-1
- a=3.1 0.1 a=-1
- a=-1 5.5 a=-1
- a=4 0.0 a=-1
- a=2.7 1.3 a=1.7
- a=1.7 3.4 a=1.7
- ...

2007-03-12, Linköping
Dr Christian Asseburg
University of York, UK ca505@york.ac.uk
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a **particle filter**) can also be applied to more general problems.

\[
p(\Theta|\text{data}) \propto p(\Theta) \cdot p(\text{data}_1|\Theta) \cdot p(\text{data}_2|\Theta) \cdots
\]

again, calculate weights and resample...

- \(a=2.5\) 1.5 \(a=-1\) 2.5 \(a=-1\)
- \(a=3.1\) 0.1 \(a=-1\) 2.5 \(a=-1\)
- \(a=-1\) 5.5 \(a=-1\) 2.5 \(a=-1\)
- \(a=4\) 0.0 \(a=-1\) 2.5 \(a=-1\)
- \(a=2.7\) 1.3 \(a=1.7\) 0.1 \(a=-1\)
- \(a=1.7\) 3.4 \(a=1.7\) 0.1 \(a=1.7\)
- ...
Sequential Importance Sampling

This algorithm is very suitable for data that can be obtained sequentially, for example to monitor an industrial process. SIS (usually implemented as a particle filter) can also be applied to more general problems.

\[p(\Theta|data) \propto p(\Theta) \cdot p(data_1|\Theta) \cdot p(data_2|\Theta) \cdot ... \]

When all the data are used up, the final swarm of particles is a sample from the posterior distribution.

Because of its sequential structure, SIS is often used with time-series data.

- a=2.5 1.5 a=-1 2.5 a=-1
- a=3.1 0.1 a=-1 2.5 a=-1
- a=-1 5.5 a=-1 2.5 a=-1
- a=4 0.0 a=-1 2.5 a=-1
- a=2.7 1.3 a=1.7 0.1 a=-1
- a=1.7 3.4 a=1.7 0.1 a=1.7
- ...

2007-03-12, Linköping

Dr Christian Asseburg
University of York, UK
ca505@york.ac.uk
Difficulties with SIS

The main problem with SIS is particle depletion: At each resampling step, the number of different particles is reduced, and no new particles are created. Because the number of particles is finite, eventually there are many identical particles.

Different solutions have been suggested, usually based on randomly generating new particles at each step that are slightly different from the existing particles but not too different to break the ergodic properties of the sampler. Other methods are being explored – this is an area of active research.
Comparison MCMC and SIS

<table>
<thead>
<tr>
<th></th>
<th>MCMC</th>
<th>SIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>Chain generates samples one by one</td>
<td>All samples are generated at once</td>
</tr>
<tr>
<td>Data</td>
<td>Required from the start</td>
<td>Can be added sequentially</td>
</tr>
<tr>
<td>Computational cost</td>
<td>10,000's of iterations</td>
<td>10,000's of particles</td>
</tr>
<tr>
<td>Challenges</td>
<td>Convergence and mixing</td>
<td>Particle depletion</td>
</tr>
<tr>
<td>Uses</td>
<td>Very versatile</td>
<td>“Live” time-series</td>
</tr>
</tbody>
</table>
Implementations

For **MCMC**, many ready-made implementations exist. A good place to start is the package **OpenBUGS** (ongoing development of **WinBUGS**), which implements the Gibbs and other samplers. With a familiar Windows interface and a very general symbolic language to specify models, **OpenBUGS** can solve most classes of Bayesian models.

R offers several add-on packages with MCMC capabilities, as well as an interface to **OpenBUGS**, called **Bugs**.

In terms of speed and efficiency, it may be best to hand-code the MCMC sampler directly in **Fortran**, **C** or another suitable language.

For SIS, I am not aware of any ready-made packages, but there are ongoing developments.
Hands-on Example

Here I demonstrate the use of OpenBUGS. I've made up this example – but the basic approach carries through to real applications in health economics.

8 RCTs have been carried out to investigate the effectiveness of treatments A and B (observing the number of symptom-free patients after 1 year). Treatment A costs SEK 10,000, whereas treatment B costs SEK 14,000. QALY values are given by a probability distribution.

The trial data is summarised as follows:

<table>
<thead>
<tr>
<th></th>
<th>(n^A)</th>
<th>(r^A)</th>
<th>(n^B)</th>
<th>(r^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
<td>65</td>
<td>120</td>
<td>81</td>
</tr>
<tr>
<td>(r^A)</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>(n^A)</td>
<td>84</td>
<td>39</td>
<td>45</td>
<td>29</td>
</tr>
<tr>
<td>(r^A)</td>
<td>398</td>
<td>202</td>
<td>402</td>
<td>270</td>
</tr>
<tr>
<td>(n^B)</td>
<td>80</td>
<td>45</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td>(r^B)</td>
<td>40</td>
<td>17</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>(n^B)</td>
<td>97</td>
<td>48</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>(r^B)</td>
<td>121</td>
<td>63</td>
<td>115</td>
<td>80</td>
</tr>
</tbody>
</table>

QALY symptom-free: Beta(9,1) QALY with symptoms: Beta(5,5)
Statistical model

An *evidence synthesis* model is required to combine the information from the 8 RCTs.

Let's choose a *random-baselines, random-effects* model. We model trial outcomes on the *log-odds probability scale*, with the treatment effect being additive on the log-odds scale.

Letting i denote a trial, we have:

- Probability with treatment A (baseline): $\text{logit}(p_i^A) = \mu_i$
- Log-odds treatment effect: t_i
- Probability with treatment B: $\text{logit}(p_i^B) = \mu_i + t_i$
Statistical model (2)

Random-baselines, random-effects model on the log-odds scale

Probability with treatment A (baseline): \[\text{logit} \left(p_i^A \right) = \mu_i \]

Log-odds treatment effect: \[t_i \]

Probability with treatment B: \[\text{logit} \left(p_i^B \right) = \mu_i + t_i \]

We need to relate the trial-specific parameters \(\mu_i \) and \(t_i \) to their underlying values \(M \) and \(T \). On the log-odds scale, these are usually assumed to be normally distributed.

Random baseline: \[\mu_i \sim \text{Norm} \left(M, \sigma_M^2 \right) \]

Random treatment effect: \[t_i \sim \text{Norm} \left(T, \sigma_T^2 \right) \]
Statistical model (3)

Next, the model requires a sampling distribution: Given a set of values for the unknown parameters, how likely is an observed datum?

The model yields a probability and we have binomial data, so the only sensible choice is

\[r_i^A \sim \text{Binom}(p_i^A, n_i^A) \quad r_i^B \sim \text{Binom}(p_i^B, n_i^B) \]

By now we have 20 unknown parameters (8 \(t_i \), 8 \(\mu_i \), \(M \), \(\sigma_M \), \(T \) and \(\sigma_T \)).

So far we have made **arbitrary choices in model design** – we could just as well have chosen a fixed-effects model (with fewer parameters) or designed something more complicated.
Now, because this is a Bayesian model, we need priors for the unknown parameters M, σ_M, T and σ_T.

- If we already know something about the parameters we could add this knowledge as prior information.

For example, there may be further information on the baseline probability of symptom-free days – we could express this through the prior on M, if we consider the information relevant.

- Otherwise, we choose “sensible” priors that have little information, along the lines of: M and T lie in the real line, and we know little about it, so let's pick a Normal prior with mean 0 and large variance.
Statistical model (5)

Model equations:

\[
\text{logit}(p_i^A) = \mu_i \quad \text{logit}(p_i^B) = \mu_i + t_i
\]

\[
\mu_i \sim \text{Norm}(M, \sigma_M^2) \quad t_i \sim \text{Norm}(T, \sigma_T^2)
\]

Sampling distribution:

\[
r_i^A \sim \text{Binom}(p_i^A, n_i^A) \quad r_i^B \sim \text{Binom}(p_i^B, n_i^B)
\]

Priors:

\[
M \sim \text{Norm}(0, 10000) \quad (\text{log-odds probabilities})
\]

\[
T \sim \text{Norm}(0, 10000)
\]

\[
\sigma_M \sim \text{Unif}(0, 2) \quad (\text{log-odds standard deviations})
\]

\[
\sigma_T \sim \text{Unif}(0, 2)
\]
The model equations and the sampling distribution are common to the Frequentist and the Bayesian approaches. If you already have a Frequentist model, then you (should) already have specified these.
Statistical model (7)

Priors do not occur in the Frequentist setting, so you probably have to make them up.
In this example, the priors are meant to be uninformative, i.e. they are supposed to add no information to the result. It is good practice to test this by changing the priors a little bit and observing the impact on the results of your model.

Priors: $M \sim \text{Norm}(0,10000)$ (log-odds probabilities)

$T \sim \text{Norm}(0,10000)$

$\sigma_M \sim \text{Unif}(0,2)$ (log-odds standard deviation)

$\sigma_T \sim \text{Unif}(0,2)$
Let us fit this Bayesian model using OpenBUGS.

The OpenBUGS syntax is relatively straightforward and similar to R.

```
model {
  for (i in 1:N) {
    logit(pA[i])<-mu[i]
    logit(pB[i])<-mu[i]+t[i]
    rA[i]~dbin(pA[i],nA[i])
    rB[i]~dbin(pB[i],nB[i])
    mu[i]~dnorm(M,precM)
    t[i]~dnorm(T,precT)
  }
  M~dnorm(0,0.0001)
  T~dnorm(0,0.0001)
  precM<-1/pow(sigmaM,2)
  precT<-1/pow(sigmaT,2)
  sigmaM~dunif(0,2)
  sigmaT~dunif(0,2)
}
```
OpenBUGS (2)

The data are specified in a separate section so that they can be entered or changed easily.

```r
model {
  for (i in 1:N) {
    logit(pA[i]) <- mu[i]
    logit(pB[i]) <- mu[i] + t[i]
    rA[i] ~ dbin(pA[i], nA[i])
    rB[i] ~ dbin(pB[i], nB[i])
    mu[i] ~ dnorm(M, precM)
    t[i] ~ dnorm(T, precT)
  }
  M ~ dnorm(0, 0.0001)
  T ~ dnorm(0, 0.0001)
  precM <- 1 / pow(sigmaM, 2)
  precT <- 1 / pow(sigmaT, 2)
  sigmaM ~ dunif(0, 2)
  sigmaT ~ dunif(0, 2)
}
```

#data
```
list(N=8,
  nA=c(120, 15, 84, 398, 80, 40, 97, 121),
  rA=c(65, 9, 39, 202, 45, 17, 48, 63),
  nB=c(120, 16, 45, 402, 77, 20, 100, 115),
  rB=c(81, 15, 29, 270, 52, 12, 68, 80))
```
OpenBUGS (3)

The OpenBUGS window can look like this.
OpenBUGS (4)

In this example, OpenBUGS explores the model's posterior reasonably well.

The three colours denote three chains that are run in parallel.

Note that there is no evidence that initial values are influencing the chains.

Also, each chain appears to “wiggle” quite well and the three chains overlap, indicating that they are exploring the same posterior space (as they should).
OpenBUGS (5)

Here's a screenshot from another model, in which the sampler did not converge (just to give you an idea of what to look for...).

Poor mixing: Three chains (which should all explore the same parameter space) are far from each other, and trends are evident.
Model convergence

WinBUGS and OpenBUGS provide a few formal diagnostics to check for convergence and performance of the sampler, for example the *Brooks-Gelman-Rubin diagram* and plots of *within-chain autocorrelation*. High “*MC_error*” can also indicate convergence problems.

To avoid convergence problems, bear in mind the following.

1. It is difficult to fit many unknown parameters to little data.
2. If you can exploit conjugate distributions, do so.
3. Sometimes you can get around convergence problems by re-writing your model equations without changing the underlying model.
4. If high within-chain autocorrelation is the only problem, you can *thin* the posterior samples and only keep every nth draw.
Example continued

When you are satisfied with the posterior sampling, you can generate any desired summary statistic for your posterior.

For example, here's an overview of the posterior means and credibility intervals.

In this example, the treatment effect T is positive (on the log-odds scale), i.e. the treatment B has a higher probability of symptom-free.
Example continued

When you are satisfied with the posterior sampling, you can generate any desired summary statistic for your posterior.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>1%val2.5pc</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.04836</td>
<td>0.08293</td>
<td>0.002087</td>
<td>0.1076</td>
<td>0.04576</td>
</tr>
<tr>
<td>T</td>
<td>0.7127</td>
<td>0.1249</td>
<td>0.00317</td>
<td>0.481</td>
<td>0.7105</td>
</tr>
<tr>
<td>sigmaM</td>
<td>0.09838</td>
<td>0.09447</td>
<td>0.002391</td>
<td>0.004115</td>
<td>0.07186</td>
</tr>
<tr>
<td>sigmaT</td>
<td>0.135</td>
<td>0.1373</td>
<td>0.003368</td>
<td>0.005719</td>
<td>0.09574</td>
</tr>
</tbody>
</table>

MC_error is another indication for how well the sampler performed.

The sampling error should be much smaller than the estimated posterior standard deviation.
Example continued

When you are satisfied with the posterior sampling, you can generate any desired summary statistic for your posterior.

The 95% credibility interval for the treatment efficacy parameter T is $[0.481, 0.9601]$, i.e. treatment B has a very significant effect on the probability of symptom-freeness after 1 year.
Example continued

But what is the probability P that treatment B is the cost-effective choice at a willingness-to-pay (WTP) of $\lambda=$SEK 50,000?

This probability P can be calculated from the model parameters as follows.

Let's assume that the underlying baseline and treatment effect would apply to the target population, i.e. in the target population $\text{logit}(p_A^A) = M$ and $\text{logit}(p_B^B) = M + T$. We calculate the net benefit of the treatments (NB), using the costs C and utilities U.

$$NB^A = [p_A^A \cdot U_{\text{free}} + (1 - p_A^A) \cdot U_{\text{symptoms}}] \cdot \lambda - C^A$$

$$NB^B = [p_B^B \cdot U_{\text{free}} + (1 - p_B^B) \cdot U_{\text{symptoms}}] \cdot \lambda - C^B$$

The probability P is given by

$$P = \Pr(NB^B > NB^A)$$
Example continued

But what is the probability P that treatment B is the cost-effective choice at a willingness-to-pay (WTP) of $\lambda=\text{SEK} 50,000$?

We can calculate this directly in WinBUGS, adding a few more lines of code.

```r
model {
  ...
  logit(PA) <- M
  logit(PB) <- M + T
  Uf ~ dbeta(9, 1)
  Us ~ dbeta(5, 5)
  NBA <- (PA * Uf + (1 - PA) * Us) * WTP - CA
  NBB <- (PB * Uf + (1 - PB) * Us) * WTP - CB
  P <- step(NBB - NBA)
}
```

Numerically, we simply look at all the draws from the posterior and check which of them fulfill the condition. This proportion is the posterior probability P. There is no need for any further tests.
Example continued

But what is the probability P that treatment B is the cost-effective choice at a willingness-to-pay (WTP) of $\lambda=$SEK 50,000?

Here's the posterior summary for our new quantities.

There is a lot of overlap between the net benefits for treatment A (95%-CI [SEK 16240, 33200]) and B (95%-CI [SEK 15580, 31090]).

Accordingly, the probability that treatment B is cost-effective is estimated at 0.3498.
Example continued

But what is the probability P that treatment B is the cost-effective choice at a willingness-to-pay (WTP) of $\lambda=$SEK 50,000?

Here's the posterior summary for our new quantities.

In this example, I defined the probability P by checking a condition, rather than as a stochastic variable with its own prior and probability density. This is why the confidence intervals for P do not mean anything.
Example continued

OpenBUGS can also produce graphical output for all quantities of interest.

For example, here are the posterior densities for the net benefits NBA^A and NBA^B.

They both show quite wide distributions and their support on the x-axes overlaps substantially.
Bayesian decision theory

With a probabilistic net benefit function, Bayesian decision theory can be applied to optimise management decisions.

Bayesian models can thus directly feed in to management processes.

In a Frequentist model, it is not generally possible to find a probability distribution for an unknown parameter – because a Frequentist calculates the likelihood of observing the data and uses this to make inferences on the model parameters.

Frequentist models do not offer an obvious way for calculating quantities that are derived from individual parameter values (such as the probability P or a net benefit) – this makes them less amenable to management processes.
Summary

★ Frequentist modelling centres on the likelihood function, i.e. how likely are the data given a particular model.

★ Bayesian modelling centres on the probabilities of models and model parameters, by combining the likelihood of the data with prior probabilities of the unknown parameters.

★ Both can be used equally well to fit models and to make inferences on model parameters.

★ However, only Bayesian statistics is capable of assigning probabilities to model quantities. This makes it possible to calculate derived quantities and their uncertainties.

★ Numerical methods for fitting Bayesian models require some care and experience.