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Abstract 

In this paper, the authors discuss a user study examining the role of sonification in 
electroencephalography (EEG) data presentation. Conventionally, EEG data are presented using 
visualisation techniques and incorporate multivariate, time-critical information. As the number of EEG 
channels increase, or when screen real-estate is reduced, visually-presented data can become cluttered 
and occluded. Our user study examined how accurately users could match visualised EEG data to sonic 
equivalents, and at what playback rate this was most effective. Accuracy and timing data were recorded, 
as well as task load index (TLX) questionnaires. Results show that faster playback rates of sonified 
EEG data yield more accurate results. However, matching accuracy of sonified EEG data in the form 
presented in this study was not sufficient to replace visualized EEG. Although presently sonified 
electroencephalograms are not a complete replacement, sonification has the potential to effectively 
represent aspects of EEG data when visualisation alone becomes challenging for the user. The authors 
therefore propose a multimodal approach to EEG data presentation aimed at reducing visual clutter and 
reducing the cognitive load experienced by users when presented with too many dynamic variables on 
screen.  

 
1 Introduction 
 
Electroencephalography (EEG) is a non-invasive 
method for monitoring electrical activity in the brain. 
Visualisation techniques are the most common ways of 
presenting EEG data to users who need to interpret the 
multivariate information being produced. However, in 
certain scenarios, such as when a large number of 
channels are being observed or other viewing options 
are simultaneously displayed, limited screen real estate 
means that visualised data can become cluttered or 
occluded [1]. In addition, the observer can only track a 
finite number of information channels using a single 
sensory modality [2].   
 The authors propose employing a multimodal 
approach to EEG data by representing some of the 
sensor output in the auditory domain using sonification 
techniques. This approach has the potential to reduce 
visual clutter and mitigate the cognitive load 
experienced by users when presented with too many 
dynamic data variables on screen.    
 Sonification is the use of non-speech sound for 
communicating and representing a wide range of 
dynamic multidimensional data. Additionally, it is 

frequently employed to inform computer users about 
real-time processes, notifications, system status, and 
system events. Sonification can be used to replace or 
augment information that is typically visualised, such as 
graphs or attributes of a dataset, as well as to relay alerts 
or progress information to the user. Popular sonification 
techniques include Auditory Icons, Earcons, Spearcons, 
Hybrids, and Audification.  

Auditory icons mimic the sounds of real-world 
objects and activities that correspond to processes, data, 
and events in a computer system. Therefore, auditory 
icons rely on prerequisite experience and exposure to 
everyday sound sources, and attempt to initiate an 
instinctive link with the computer data or action that 
they represent. A simple example of an auditory icon is 
the action of deleting a file, resulting in a sound 
comparable to that of a crumpled piece of paper thrown 
into a trash can.      
 In cases where the function or object being 
represented has no intuitive real-world sonic basis, the 
use of Earcons may be more suitable. Earcons are 
abstract by design, incorporating musical tones and 
motifs to represent objects, events or functionality. 
Unlike auditory icons, there is no concrete relationship 
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between the sound and the process. Hence, there is 
learning involved before an abstract sound becomes 
associated with a computer process, event or 
functionality. Earcons can be used to relay more 
complex information compared to auditory icons, since 
all of its parameters can be tightly controlled, such as 
dynamic pitch, loudness, and spectral content.  

Spearcons (speech-based earcons) are created 
by using text-to-speech whereby the utterance is time 
compressed and is no longer recognisable as speech [3]. 
Hybrids are a combination of all of these sonic icons. In 
certain contexts, it is theorised that combining the 
strengths of various sonic icon types will compensate 
for the disadvantages that any one type may possess.  

A more direct mapping of sound to data is 
called Audification. Dombois and Eckel define 
Audification as: “a technique of making sense of data 
by interpreting any kind of one-dimensional signal (or 
of a two-dimensional signal-like data set) as amplitude 
over time and playing it back on a loudspeaker for the 
purpose of listening” [4].     
 The authors believe that sonifying portions of 
EEG data will benefit users who are attempting to 
interpret real-time anomalies when presented with a 
large number of EEG channels on screen. However, 
careful consideration to how the sonification is designed 
is key so as not to elicit negative crossmodal interaction 
between auditory and visual streams when presented 
congruently [5]. Therefore, the design of the sonified 
stream needs to consider visual perception principles 
from the ground up, and at every stage of the 
sonification design process. In this study, the authors 
have implemented a simple direct audification of the 
EEG data stream, aimed at testing one characteristic - 
the effect of playback rate on the ability to match the 
sonified stream to the correct EEG visualisation.  
 
2 Related Work 
 
Medicine is increasingly incorporating sound and 
acoustic technology as a means for diagnostics and drug 
delivery. In 1816, French physician Hyacinth Laennec, 
initiated the use of sound in medicine.  He developed 
the technique of auscultation through a stethoscope, 
facilitating the diagnosis of thorax and cardiac diseases 
by means of observing specific audible signs of 
irregularities [6]. This was an early demonstration of 
how sound was effective in revealing anatomical 
abnormalities that were visually inaccessible. The 
concept of converting data to sound in the field of 
neurophysiology was investigated and developed as 
early as 1883 by N. E. Wedenskii, as he derived features 
of excitation from properties of the sound produced by 
action potentials of nerve cells. These he observed when 
recording electrodes were connected directly to a 
speaker membrane [7].  

The first EEG recording of the human brain 
was made by the German psychiatrist Hans Berger in 
1924. In 1929, Berger revealed the generation of a 
noticeable rhythmic structure in electrical brain activity, 
particularly in the absence of visual stimuli [8]. In 
addition, technicians used chart recorders to listen to the 
rhythm of a pen scratching on paper in attempt to 
discover inconsistency in the rhythms and to recognise 
prominent spike-wave activity in long-term monitoring 
[7]. 
 In 2007, Hermann, Baier and Stephani [9] 
proposed a multivariate Event-Based Sonification 
technique (EBS) whereby they used pitch and spatial 
location to provide cues about the location of specific 
events in brain activity. The EEG data is scanned for 
characteristics that were defined as events, which would 
later be used to trigger sound synthesis events. For 
diseases such as epilepsy, narcolepsy, Alzheimer’s and 
other conditions of which symptoms are observable 
through brain activity, Hermann argued that this 
technique provided an efficient method of revealing 
changes in rhythmic characteristics, allowing observers 
to recognise subtle differences between normal and 
abnormal rhythms. 

Sonification research in general offers further 
practical value to disparate disciplines requiring 
alternative or complementary modes of relaying 
complex information streams to users. In particular, 
developments in the fields of auditory perception and 
auditory cognition are key to the effectiveness of these 
sonification techniques, and this has led to further 
maturation of auditory displays [10][11][12]. More 
recently, interactive sonification has become a more 
active research topic, allowing users to actively 
interpret, engage, and manipulate data using sound [13].     
3 Methodology 
 
Participants were tasked with matching sonified EEG 
data streams with visualised equivalents on screen. A 
simple audification process was applied to the EEG data 
streams aimed at assessing the effect of different 
auditory playback rates on matching accuracy and 
reaction times.  

EEG source material was utilised from a 
previous study carried out by members of the Interactive 
Systems Research Group, LIT. These data, which were 
captured using a Neuroelectrics® Enobio® device, was 
saved in ASCII plain text format comprising data of 8 
EEG channels, LSL marker data, and a UNIX 
timestamp. 30 seconds worth of EEG data was extracted 
from this dataset for use in this study (see figure 1).  
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Figure 1: An example of the EEG data acquired from a 
previous study – 8 channels, 30 seconds in length. 

The ASCII file was formatted and indexed using 
Microsoft® Excel® in preparation for use with the 
‘coll’ object in the Max™ 7 programming environment. 
The ‘coll’ object “allows for the storage, organization, 
editing, and retrieval of different messages” [14], and 
was loaded with the EEG data. Each channel of the data 
was separated using the ‘unpack’ object in order to 
allow for the individual playback of EEG channels. For 
the purpose of audification, the datasets were scaled 
accordingly from 0 to 127 allowing for the generation of 
a MIDI note on/note off message using the Acoustic 
Grand Piano patch. 

The Max™ patch was designed so that 
participants’ response times and accuracy levels could 
be recorded within the programme for later analysis. To 
achieve this, a system of basic start/stop interaction was 
employed using the ‘key’ and ‘select’ objects in Max™  
7. When participants triggered the required input to 
begin (in this case, the spacebar), the sonified stream 
was initiated, simultaneously triggering a ‘clocker’ 
object to begin counting. When the participant decided 
to stop the playback, the ‘clocker’ was also triggered to 
stop counting. This timing data was captured and saved 
using the ‘coll’ object for later analysis in Microsoft® 
Excel®. 

Five different playback rates were presented to 
participants: 2ms; 25ms; 50ms; 75ms; and 100ms. They 
were required to observe a static screenshot of 8 
channels of EEG data (see figure 1) while listening to a 
sonified representation of one of the 8 channels. They 
were then tasked with accurately identifying what 
channel they were hearing. Each participant performed 
15 identification tasks, where the order of the 8 channels 
was randomised. Each playback rate was presented 3 
times over the course of the 15 identification tasks in 
random order. 

31 participants volunteered to take part in the 
study. However, 3 participants were eliminated prior to 
analysis due to technical issues during the task process.  
 
 
 

4 Experimental Results 
 
A quartile function was implemented for each playback 
rate to identify any potential outliers. A number of 
outliers were identified in 4 of the 5 categories, which 
were then discounted from any further analysis (see 
table 1).   
 

PLAYBACK 
RATE 

NUMBER OF OUTLIERS 

2ms 0 
25ms 4 
50ms 4 
75ms 4 
100ms 4 

Table 1: The 2ms playback comprised 0 outliers, while 
all other playback rates each comprised 4, which were 
discounted from further analysis. 

After initial analysis of the individual means for each 
playback rate, it became apparent that the 2ms playback 
category had more consistent clustering in terms of 
participant reaction times. The four remaining 
categories (25ms, 50ms, 75ms and 100ms) had less 
defined clustering in comparison. Figures 2 to 6 below 
show scatter plots of the individual means for each 
playback category.   
 

 
Figure 2: Scatter plot showing the individual means of 
each participant’s reaction time in the 2ms playback 
category. Reaction times compared to the other 
playback rates are more consistent. 
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Figure 3: Scatter plot showing the individual means of 
each participant’s reaction time in the 25ms playback 
category. Reaction times compared to the 2ms playback 
rate is less consistent, and follows a similar pattern as 
the 50ms, 75ms, and 100ms playback categories. 

 
Figure 4: Scatter plot showing the individual means of 
each participant’s reaction time in the 50ms playback 
category. 

 

Figure 5: Scatter plot showing the individual means of 
each participant’s reaction time in the 75ms playback 
category. 
 

 

Figure 6: Scatter plot showing the individual means of 
each participant’s reaction time in the 100ms playback 
category. 

Although the 2ms playback category shows a trend 
towards more consistent reaction times amongst 
individual means, the overall means for the playback 
category indicates no statistically significant difference 
in reaction times between playback categories. Table 2 
shows the overall means and standard deviation for each 
playback category, and although the 2ms category 
indicates faster reactions times, error bars do overlap 
between each (see figure 7). 
 

Table 2: Overall reaction time means, standard 
deviations, and percentage of correct responses for each 
playback category. From these data, participants 
presented the fastest reaction times, the most consistent 
reactions times, and the most accurate response rates 
for the 2ms playback category. 

 2ms 25ms 50ms 75ms 100ms 
Mean 
(in ms) 

22783 
 

28492 
 

29900 
 

24611 
 

28010 
 

SD  
(in ms) 

10273 
 

28492 
 

20458 
 

13649 
 

16830 
 

CV 0.451 
 

0.658 
 

0.684 
 

0.555 
 

0.601 
 

CI 
(95%) 

3805 
 

7501 
 

8185 
 

5461 
 

6733 
 

Correct 
(%) 

23.6 
 

17.9 
 

12.4 
 

15.1 
 

5.5 
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Figure 7: Overall mean and standard deviation for each 
playback category. Although the 2ms category provided 
the most consistent and fastest reaction times, error 
bars overlap between all playback categories, indicating 
that there is no statistically significant difference 
between any of the playback categories in terms of 
reaction times. 
 
In relation to matching accuracy, error bars overlapped 
between each playback category (see figure 8). This was 
not the case, however, when comparing the 2ms and 
100ms extremes. It is clear that the 2ms playback 
category outperforms the 100ms category in terms of 
matching accuracy, despite the fact that the 100ms 
playback rate offered participants more time to match 
the sonified and the visualised EEG data. Overall, the 
2ms playback category was the most accurate, with c. 
24% correct matches, followed by the 25ms category 
with c. 18% correct matches (see Table 2). All other 
playback categories performed more poorly with the 
100ms playback category having a matching accuracy 
of only c. 6%. The trend seems to indicate that faster 
playback rates allow participants to gain an important 
auditory overview that is perhaps more akin with the 
visual snapshot of the EEG timeline on screen. 
However, further investigation is needed despite this 
trend, as only the 2ms and 100ms playback categories 
offered a statistically distinct difference in matching 
accuracy results.  
 
 

 
Figure 8: Accuracy for each playback condition. Error 
bars indicate a statistical difference between the 2ms 
rate and the 100ms only.  
 
Each participant was asked to complete a NASA Task 
Load Index (TLX) questionnaire after they finished all 
study tasks. Across all participants, overall mental 
demand during tasks was high (85%), as were several 
other indicators with the exception of physical demand 
(17.1%) (see figure 9). Temporal demand had an overall 
mean of 59.3%, performance 63.2%, and frustration 
53.6%. Participants considered that the effort required 
to perform the matching tasks was medium-high, with 
an overall mean of 72.5%. This indicates that the 
sonification design used in the study impacted 
negatively on the participant's cognitive load. However, 
the TLX questionnaire was given to participants after all 
tasks were completed, and not after each playback 
category. Therefore, the 2ms playback category, which 
had more favourable results in terms of accuracy and 
reaction times, can't yet be discounted in this regard 
until a more discrete TLX approach is employed in an 
upcoming study. 
 

 
Figure 9: Results of a NASA TLX questionnaire after 
full study completion. Overall means reveal that 
participants considered mental demand and effort to be 
high. The TLX questionnaire results represent all 
playback categories accumulatively, and do not 
represent discrete playback categories. Further studies 
will implement TLX questionnaires that will focus on 
each playback category individually.  
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5 Conclusion 
 
Conventional presentation of EEG data relies primarily 
on the visual domain. In circumstances where a large 
number of channels are presented on screen, visual 
clutter has the potential to impact negatively on the 
user’s ability to track and recognise significant EEG 
anomalies in real-time. Therefore, relaying some of 
these data using the auditory domain may alleviate some 
of this cognitive overload. However, the auditory 
perceptual system is complex and very specific 
perceptual thresholds need to be established and tested 
before EEG data streams can be effectively presented 
this way. In this paper, the authors tested a simple 
audification mapping comprising 30 seconds of EEG 
data, presented to participants using five different 
playback rates – 2ms, 25ms, 50ms, 75ms, and 100ms. 
Participants were tasked with matching the sonified 
EEG stream with the correct visualised EEG graph. 

In terms of reaction times, the 2ms playback 
rate provided the fastest response times once the file 
playback was complete. In addition, the 2ms playback 
rate had the most consistent reaction times across all 
participants, displaying a tighter cluster compared to the 
other playback rates. The 2ms playback rate also 
provided the best performance in terms of matching 
accuracy. This suggests that a rapid auditory 
presentation of EEG streams is similar to a user’s quick 
visual overview of the EEG graph on screen. This 
perceptual “previewing” or “overviewing”, where 
patterns in the information are quickly identified, is an 
important perceptual mechanism that allows the user to 
contextualise before more detailed processing of the 
information occurs [15]. In auditory terms, the notion of 
an “auditory glance” is recognised as being beneficial to 
users prior to them receiving more detailed information 
using the auditory domain [16] [17]. However, despite 
this trend showing advantages of presenting EEG 
streams using the fastest playback rate, statistical 
analysis did not show a significant difference compared 
to the other playback rates in terms of reaction times. 
Only matching accuracy between the 2ms and 100ms 
playback rates showed a statistically significant 
difference. Therefore, further evaluation is needed with 
perhaps the introduction of a faster playback rate and a 
more developed audification process. 

The NASA TLX questionnaire provided some 
interesting feedback on the overall perception of mental 
load and effort experienced by the participants. The data 
showed that the matching task required pronounced 
mental concentration and effort by participants. 
However, this questionnaire was taken after all playback 
rates had been presented to participants, and is therefore 
not representative of each playback rate taken on its 
own merit. A follow-on study will evaluate each 
playback rate discretely in this regard to properly 

determine if there are differences in mental load and 
effort across individual playback rates. Biometric 
evaluation will also play a role in the follow-on study in 
order to gain a more comprehensive view of participant 
cognitive load while performing the matching tasks. 

While the audification of EEG data streams in 
the form presented in this study does not accurately 
translate to visualised equivalents, the authors will 
evaluate faster playback rates with a more 
comprehensive audification design to determine if 
reaction time, reaction time consistency, and accuracy 
can be improved.  
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