Previous: The formation of NO2 by electrical discharges and the effect of water Up: Abstract Top: Home Page

Conclusions and References


Conclusions

The results reported here support the conclusion of Hill et al. [1979, 1980] that NOx formation by electrical discharges occurs via the Zel'dovich mechanism in the hot channel region as it cools by mixing with surrounding air. Therefore we would tend to support the calculation of Borucki and Chameides [1984] for the yield of NOx molecules per unit energy for lightning discharges of (9±2)×1016 NO molecules per joule, which was based on a cooling rate for the gases in the hot channel of ca. 400 s-1 measured by Picone et al. [1981] and their estimate that producing 1 cm3 of air at 3000 K required 1 joule of energy (equivalent to assuming that approximately 40% of the discharge energy was used to heat the gases in the hot channel to 3000 K).

The variation with spark gap, pressure and electrode size of the yield of NOx per unit energy stored on the capacitor highlights the problems of loss of energy from the hot channel gases to the electrodes. This is a potential problem for all experimental determinations of P, but is exacerbated by using smaller spark gaps, therefore we would place more reliance on the measurements of P for the larger discharges of Chameides et al. [1977] (1 m gap, P = (8±4)×1016 molecules/J) and Levine et al. [1981] (ca. 12 cm gap, P = (5±2)×1016 molecules/J). Any future experimental work on the determination of P should directly address the problem of the fraction of electrical energy that actually heats the discharge gases to ca. 3000 K.

References

Borucki W. J. and W. L. Chameides, Lightning: estimates of the rates of energy dissipation and nitrogen fixation, Reviews of Geophysics and Space Physics, 22, 363-372, 1984.

Chameides W. L., D. H. Stedman, R. R. Dickerson, D. W. Rusch and R. J. Cicerone, NOx production by lightning, J. Atmos. Sci., 34, 143-149, 1977.

Chameides. W. L., Effect of variable energy input on nitrogen fixation in instantaneous linear discharges, Nature, 277, 123-124, 1979.

Chorlton F., Textbook of Fluid Dynamics, pp271, Van Nostrand, London, 1967.

Dawson G. A., Nitrogen fixation by lightning, J. Atmos. Sci., 37, 174-178, 1980.

Drapcho D. L., D. Sisterson and R. Kumar, Nitrogen fixation by lightning activity in a thunderstorm, Atmos. Environ., 17, 729-734, 1983.

Franzblau E. and C. J. Popp, Nitrogen oxides produced from lightning, J. Geophys. Res. 94, 11089-11104, 1989.

Goldenbaum G. C. and R. R. Dickerson, Nitric oxide production by lightning discharges, J. Geophys. Res., 98, 18333-18338, 1993.

Griffing G. W., Ozone and oxides of nitrogen production during thunderstorms, J. Geophys. Res., 82, 943-950, 1977.

Hill R. D., Channel heating in return-stroke lightning, J. Geophys. Res., 76, 637-645, 1971.

Hill R. D., On the production of nitric oxide by lightning, Geophys. Res. Lett., 6, 945-947, 1979.

Hill R. D., R. G. Rinker and H. Dale Wilson, Atmospheric nitrogen fixation by lightning, J. Atmos. Sci., 37, 179-192, 1980.

Liaw Y. P., D. L. Sisterson and N. L. Miller, Comparison of field, laboratory, and theoretical estimates of global nitrogen fixation by lightning, J. Geophys. Res., 95, 22489-22494, 1990.

Levine J. S., R. E. Hughes, W. L. Chameides and W. E. Howell, N2O and CO production by electrical discharge: atmospheric implications, Geophys. Res. Lett., 6, 557-559, 1979.

Levine J. S., R. S. Rogowski, G. L. Gregory, W. E. Howell and J. Fishman, Simultaneous measurements of NOx, NO and O3 production in a laboratory discharge: atmospheric implications, Geophys. Res. Lett., 8, 357-360, 1981.

Levine J. S., T. R. Augustsson, I. C. Anderson and J. M. Hoell, Tropospheric sources of NOx: lightning and biology, Atmos. Environ., 18, 1797-1804, 1984.

Lin S. C., Cylindrical shock waves produced by instantaneous energy release, J. App. Phys., 25, 54-57, 1954.

Lutz A. E., R. J. Kee and J. A. Miller, SENKIN: a fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, Sandia National Laboratories, Livermore, California, 94551, USA, 1988.

Noxon J. F., Atmospheric nitrogen fixation by lightning, Geophys. Res. Lett., 3, 463-465, 1976.

Peyrous R. and R-M Lapeyre, Gaseous products created by electrical discharges in the atmosphere and condensation nuclei resulting from gaseous phase reactions, Atmos. Environ., 16, 959-968, 1982.

Picone J. M., J. P. Boris, J. R. Greig, M. Raleigh and R. F. Fernsler, Convective cooling of lightning channels, J. Atmos. Sci., 38, 2056-2062, 1981.

Plooster M. N., Numerical simulation of spark discharges in air, Phy. Fluids, 14, 2111-2123, 1971.

Roth W., P. G. Guest, G. von Elbe and B. Lewis, Heat generation by electrical sparks and rate of heat loss to the spark electrodes, J. Chem Phys., 19, 1530-1535, 1951.

Tuck A. F., Production of nitrogen oxides by lightning discharges, Quart. J. R. Met. Soc., 102, 749-755, 1976.

Zel'dovich Ya. B., P. Ya. Sadovnikov and D. A. Frank-Kamenetskii, The Oxidation of Nitrogen by Combustion, Izdat. Akad. Nauk SSSR, Moscow, 1947.

Zel'dovich Ya. B. and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, volume I, pp374-378, Academic Press, London, 1966.


Previous: The formation of NO2 by electrical discharges and the effect of water Up: Abstract Top: Home Page