Skip to content Accessibility statement

Physicists provide new insights into coral skeleton formation

Posted on 29 October 2013

An international team of scientists, led by physicists from the University of York, has shed important new light on coral skeleton formation.

Their investigations, carried out at the nanoscale, provide valuable new information for scientists and environmentalists working to protect and conserve coral from the threats of acidification and rising seawater temperatures.

As corals grow, they produce limestone – calcium carbonate – skeletons which build up over time into vast reefs. The skeleton’s role is to help the coral’s upper living biofilm to move towards the light and nutrients.

Understanding the calcification mechanism by which these skeletons are formed is becoming increasingly important due to the potential impact of climate change on this process.

The scientists looked at the smallest building blocks that can be identified – a microstructure called spherulites – by making a thin cross-section less than 100 nanometres in thickness of a skeleton crystal. They then used Transmission Electron Microscopy (TEM) to analyse the crystals in minute detail.

The TEM micrographs revealed three distinct regions: randomly orientated granular, porous nanocrystals; partly oriented nanocrystals which were also granular and porous; and densely packed aligned large needle-like crystals.

These different regions could be directly correlated to times of the day – at sunset, granular and porous crystals are formed, but as night falls, the calcification process slows down and there is a switch to long aligned needles.

Corresponding author Renée van de Locht, a final-year PhD student with the Department of Physics at the University of York, says, “Coral plays a vital role in a variety of eco-systems and supports around 25 per cent of all marine species. In addition, it protects coastlines from wave erosion and plays a key role in the fisheries and tourism industries. However, the fundamental principles of coral’s skeleton formation are still not fully understood.

Although we knew there was a difference between day and night crystals, we’ve actually been able to see the evolution from granular crystals to aligned needles and to find out much more information about the phase, orientation and size of the aragonite crystals

Dr Roland Kröger

“It has been suspected for some time that the contrast bands seen in crystals in optical images were daily bands. Through our research we have been able to show what the crystals actually contain and the differences between day and night crystals.”

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) and the University of York, and concentrated on three species of tropical, reef-building coral – Porites lobata, Siderastrea siderea, Montastrea annularis.

The experimental work was carried out at the University of York’s Department of Physics and the York JEOL Nanocentre, as well as the Centre for Microscopy, Characterisation and Analysis (CMCA) at the University of Western Australia.  

Lead investigator Dr Roland Kröger says, “Although we knew there was a difference between day and night crystals, we’ve actually been able to see the evolution from granular crystals to aligned needles and to find out much more information about the phase, orientation and size of the aragonite crystals.”

The York researchers are now turning their attention to looking directly at the effects of acidification. Their latest research is looking at five-day old coral larvae and compares a population from a normal seawater environment with another in an acidic environment.

The aim is to investigate the nanoscale impacts of the different environments at an early growth stage to assess how these could affect the whole colony and the bigger reef.

The coral research at York is also part of a much larger project looking at the hard and soft matter interface called the MIB – Interface between Materials and Biology – project. Nature has created materials that combine mineral (hard) and organic (soft) components in a way that provides properties that are extremely well suited to function – for example in bone, egg or mollusc shells. The collaborative project aims to develop a working understanding of how this control is worked out in natural systems, so that the same techniques can be used to develop new materials with specially tailored properties. 

Notes to editors:

  • Gallery of images for the media to download
  • The first phase of the research was reported in the Journal of Structural Biology earlier this year: ‘Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites’ by Renée van de Locht, Andreas Verch, Martin Saunders, Delphine Dissard, Tim Rixen, Aurélie Moya and Roland Kröger.
  • The research was funded by EPSRC (Grant no. EP/I001514/1) and an International Seedcorn award from the University of York.
  • More information on the MIB – Interface between Materials and Biology - project.
  • The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.
  • Further information on the Department of Physics at the University of York
  • Further information on the York JEOL Nanocentre at the University of York 

Contact details

Caron Lett
Press Officer

Keep up to date

 Subscribe to news feeds

 Follow us on Twitter