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SUMMARY

The methodology relating to the statistical analysis of individual patient-level
cost-effectiveness data collected alongside randomised controlled trials (RCTs) has
evolved dramatically in the last ten years. This body of techniques has been
developed and applied mainly in the context of the randomised clinical trial design.
There are, however, many situations in which a trial is neither the most suitable nor
the most efficient vehicle for the evaluation. This paper provides a tutorial-like
discussion of the ways in which propensity score methods could be used to assist in
the analysis of observational individual patient-level cost-effectiveness data. As a
motivating example, we assessed the cost-effectiveness of CABG versus PTCA — one
year post procedure - in a cohort of individuals who received the intervention within
365 days of their index admission for AMI. The data used for this paper were
obtained from the Ontario Myocardial Infarction Database (OMID), linking these
with data from the Canadian Institute for Health Information (CIHI), the Ontario
Health Insurance Plan (OHIP), the Ontario Drug Benefit (ODB) program, and
Ontario Registered Persons Database (RPDB). We discuss three ways in which
propensity score can be used to control for confounding in the estimation of average
cost-effectiveness, and provide syntax codes for both propensity score matching and
cost-effectiveness modelling.
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1 Introduction

The methodology relating to the statistical analysis of individual patient-level
cost-effectiveness data collected alongside randomised controlled trials (RCTs) has
evolved dramatically in the last ten years. Major contributions have focused on the
appropriate way for estimating sampling uncertainty around the incremental cost-
effectiveness ratio (ICER) [1-10] and the consequent paradigm shift towards the net
benefits formulation [11, 12], the development of the cost-effectiveness acceptability
curve (CEAC) as a vehicle to represent decision uncertainty [5, 13-15], the use of a
regression-based framework for cost-effectiveness analysis (CEA) [11, 16-18], and the
application of Bayesian concepts to model cost-effectiveness data [19-30].

This body of techniques has been developed and applied in healthcare economic
evaluation mainly in the context of experimental study design (i.e. the RCT). In this
setting, randomisation of the units of interest (e.g. patients) ensures the balance (on
average) of measured (and unmeasured) characteristics between treatment arms,
hence protecting against bias in the estimation of the average treatment effect (e.g.
log-odds ratio, differential mean cost).

There are, however, many situations in which a RCT is neither the most suitable nor
the most efficient vehicle for the evaluation. Ethical considerations may prevent
randomisation, providing a strong argument for exploring existing non-randomised
data before setting up a new clinical trial. Similarly, financial reasons may suggest
that funding trials in certain disease areas, or for which an amount of (randomised
and non-randomised) evidence already exists, may not be an efficient use of
Research and Development (R&D) resources. Furthermore, RCTs are often
characterised by a follow-up duration which is too short to allow an accurate
evaluation of the long-term costs and effects of a given health technology. Again,
funding trials with very long follow up periods may require too large a sample size
to accommodate inevitable attrition rates. Even if such long-term follow up studies
were funded, there is always the risk that by the time the study results become
available they may no longer be relevant (e.g. change in clinical practice, different
relevant comparators, etc). Another instance in which a RCT may not be the most
efficient way to produce clinical and economic evidence is when, although trial
evidence exists, this relates to a different study population, hence limiting the
external validity of the available evidence to the context or jurisdictions in which
decisions are to be made.

In all these circumstances the analysis of observational data (e.g. surveys, registries,
administrative records, and census data) [31] offers a potential solution to reconcile
the need for an efficient use of limited healthcare R&D resources [32, 33] and timely
generation of relevant evidence for decision-making.



Evidence derived from observational studies has been traditionally considered
prone to bias. Here, patients” allocation (i.e. selection) to a given treatment is not
under the control of the investigators, with the consequent potential risk that the
average treatment effect could be confounded with subject characteristics (i.e. treated
subjects may differ systematically from untreated subjects). Statistical methods
developed in both medical statistics and economics during the last twenty years
provide a powerful set of tools for the analysis of non-experimental effectiveness
and cost-effectiveness data.

The use of propensity score methodology in healthcare research [34-51] is rapidly
gaining popularity [52], although examples of its application in cost-effectiveness
analysis are still limited [43, 53-57]. The objective of this paper is to illustrate
different ways in which propensity score methods can be used to analyse
observational individual patient-level cost-effectiveness data with an aim to estimate
average measures of cost-effectiveness. The methods are illustrated using data from
the Canadian province of Ontario, comparing the cost-effectiveness of Percutaneous
Transluminal Coronary Angioplasty (PTCA) versus Coronary Artery Bypass
Grafting surgery (CABG) in post-Acute Myocardial Infarction (AMI) patients.

The manuscript is structured as follows. In the next section we review the general
principles of propensity score methodology and cost-effectiveness analysis, showing
how to integrate the two in a coherent framework. In section 3 we introduce the
motivating example. The results are presented next, followed by the discussion and
conclusion section.

2 Methods

2.1 Propensity score methods

While the analysis of RCT data relies on the fact that randomisation ensures (on
average) estimated treatment effects are unbiased, the same estimates derived from
observational data may be prone to bias in that patients’ characteristics could be
confounded with treatment allocation.

Traditionally, researchers have tried to address the issue of confounding using
multivariate matching methods, regression adjustment or stratification. These
approaches though have limitations. Multivariate matching is impractical and often
impossible when there is a large number of covariates. Regression adjustment
requires the joint distribution of the covariates to be approximately the same
between treatment groups. Stratification has limitations in that as the number of
covariates increases the number of subclasses increases exponentially, making it
difficult to create strata that contain both treated and untreated subjects.



An alternative approach is to use propensity score methodology. The propensity score
for an individual is the probability of being assigned to either treatment or control,
given the value of a set of observed covariates [37, 58]. It has been shown under the
assumption that there are no unobserved factors which might give rise to selection
bias (ignorable treatment assignment assumption), conditioning on the propensity score
ensures allocation to either the control or the intervention therapy for a given
individual is independent of the treatment outcome [37]. In other words,
conditioning on the propensity score allows unbiased estimation of average
treatment effect [58].

More formally, the propensity score for subject i is defined as
Pr(T =1|X, =) (1)

where T =1 if the subject receives the intervention and 0 if he or she receives the
control. It is assumed that, conditional on a set of explanatory variables X , the T

are independent. This probability can be easily estimated using either a logit or a
probit regression. In this paper we use the former.

Once estimated, it is necessary to predict the individual-level propensity to be
assigned to either the control or the intervention therapy. This facilitates the creation
of a quasi-randomised experiment, in that two individuals-one receiving the
treatment, the other the control —having very similar propensity scores, can be
thought of as having been randomised.

Using the relationship between odds and probabilities, the predicted propensity
score (Z ) for individual i is obtained as

exp(a, + ) a,X,) .
Z= SN ey @)
l+exp(a, + .6, X,) | 1+exp[~(& + ) a,X,)]

where the a's coefficients are those obtained from the logit model in (1).



Let us assume, for the sake of argument, that the analysis is concerned with a single
continuous outcome measure (e.g. total cost). The predicted propensity score at
individual level can now be used in three different ways [37].

First, it can be included as a covariate in a regression model developed to estimate
the average treatment effect (regression adjustment), as illustrated in (3),

Y =8+BT+BZ 3)

where Yi is the i individual outcome, and the coefficients £,,5,, and f, represent,
respectively, the adjusted mean outcome in the control group, the adjusted mean
differential outcome, and the change in mean outcome associated with a marginal
change in the propensity score.

Alternatively, the propensity score can be used to stratify patients into subgroups
(usually defined by the quintiles of the propensity score distribution) within which
to estimate average treatment effect (stratification or subclassification on the propensity
score),

Y =B+ BT+ 5.0+ BT 0, @

7=2 7=2

where O, is a dummy variable taking value 1 if the i subject belongs to quintile g,
and 0 otherwise. The coefficients £, and S in (4) can be interpreted as the mean
outcome in the control and the differential outcome in the reference group (usually
the 1+t quintile) respectively.  Similarly, £, and B, are the mean outcome in the
control group and the treatment-by-quintile interaction term in the quintiles 2 to 5,
essentially indicating the outcomes over and above those reported by the reference
group. The differential outcome in the g% quintile is then (8 +5,).

Finally, Z, can be used to create propensity score matched pairs (in case of 1-to-1
matching) of treated and untreated subjects with similar propensity scores
(propensity score matching). The latter approach is similar to traditional matching,
and it is usually employed when the number of controls is larger than the numbers
of treated patients. The objective here is to select, for each treated individual, a



‘match’ from the control group in order to create a quasi-experimental comparison.
There are various algorithms that can be employed to carry out matching on the
propensity score, and reviews of these have been published elsewhere.[59] In this
paper we apply nearest neighbour 1-to-1 matching within a caliper of 0.25 standard
deviations of the propensity score [60].

2.2 Cost-effectiveness analysis of individual patient-level RCT data

Let us denote C ; and Ey the cost and effect of individual 7 (=1,....,7 ;) in treatment

arm j (where j=1 control and j=2 intervention). Using the notation of Nixon and
Thompson [27], a general formulation of the cost-effectiveness model for individual
patient-level data can be written as follows

Cy. ~ Dz'sf(qﬁ@.,Gq)
. 5
Ey. ~ Dist(¢,, o ()

e

which assume that costs and effects follow a certain probability distribution (Dist)
with parameters ¢ and O representing a measure of location and spread,
respectively. Since costs and effects at an individual level are expected to be jointly
distributed, model (5) needs to be parameterised in such a way as to reflect the
correlation between these two outcomes.

In the simplest scenario, costs and effects can be assumed to follow a bivariate
normal distribution, in which case ¢ ’s and o ’s represent, respectively, the marginal
means and standard deviations. The correlation between costs and effects in each
treatment group can be preserved by modelling their mean as follows [27],

¢C”v = ;uc_/- +ﬁ/ (E/ _¢F{i/')

D, = My (©)

which essentially assumes that, in each trial arm, the mean cost is linearly related to
the departure of the individual level health outcome (E,) from its mean.

Since costs and effects at individual patient-level are often characterised by non-
Normal distributions, the factorisation approach used in (5) and (6) is particularly
helpful in that it allows selection of a wider range of possible distributions outside
bivariate Normality. An alternative formulation of (5) to accommodate the typical



right skewed nature of cost data [21, 26] could employ a Gamma distribution for
instance.  Similarly, in the case of binary health outcomes (e.g. survival or cure
status during the period of interest) such an event could be modelled using a
Bernoulli process. This situation is illustrated in (7)

Cy‘ - F(UQ,P@)
- - )
E, ~ Bernoulli( p;)

where the Gamma is specified in terms of its shape (7,) and rate ( p,), a formulation

that allows expression of the rate parameter as the ratio between the shape and the
mean of the Gamma.

As in (6) the correlation between costs and effects at patient level is captured using a
factorisation approach, conditioning the logit of the binary outcome on costs as
illustrated in (8)

¢Cy = Hg
Py = Mg / ¢(y
logif(py) =Hy + ﬂ/‘ '(Cg' - ¢Cy> (8)

p, =1+ e )"

where p; is estimated using the anti-logit transformation.

Regardless of the model used, the parameters of interest in CEA are the differential
mean costs (AC =y, —u. ) and effects (AE =y, —u, ). Once estimated these

quantities need to be related to each other giving rise to one of the following
scenarios:

a) the intervention is both more effective (that is, generates larger health
benefits), or at least as effective as, the control and is less costly;

b) The control is less effective than the intervention and more (or at least as)
costly.

c) The control is both less (more) effective and less (more) costly compared with
the intervention.



In CEA if the results indicate either scenarios (a) or (b) above, then one approach is
clearly most cost effective, that is, it dominates the other. However, if the results
indicate scenario (c), then a “decision rule’ is required to assess which is the most cost
effective treatment. The decision rule typically requires the calculation of the
incremental cost-effectiveness ratio (ICER), defined as (AC /AE). The ICER
represents the additional cost that the decision maker is (on average) expected to pay
to achieve an additional unit of health benefit in this population. A treatment
strategy is considered to be cost-effective if the decision maker’s willingness to pay
for an additional unit of health outcome (i.e. 1) is at least equal (or greater) to the
ICER. The mean estimates of AC and AE together with their joint distribution can
also be reported onto a cost-effectiveness plane,[61] or combined to obtain the
incremental net benefit (INB) statistics [11] (a reformulation of the ICER), as follows

INB(A)= A-AE—-AC 9)

which states that, at a given level of A, an intervention can be considered
cost-effective if INB(41)>0.

2.3 Integrating the propensity score in the cost-effectiveness analysis framework

The first way in which we can use the propensity score in cost-effectiveness analysis
of observational data is through simple regression adjustment by including the
individual-level predicted propensity score in the equations defining the mean costs
and effects. In the case of the bivariate normal model these equations can be re-
written as follows,

¢(:y = lucj +ﬂ/. '(E;/ _¢h!7)+7c/ (ZA;/ _¢z". )

A i (10)
¢Ej/ :/uE/ +]/Ej (Zy —¢2!7)

where Z, is the propensity score for individual i receiving treatment strategy j, and
¢zy is the mean of the distribution of the propensity score in treatment strategy j. By

extension, equation (8) can be re-expressed as follows



¢Q'/ =Hg~+ 7@'(2;‘/ - ¢Zj/)

Py =g / ¢(iy

/ng.f(p;'/) = ¢E/ + ﬂ/ : (C;‘/' - ¢cg/) + 7@'<Zy - ¢z;'/)
py=(+e )

(11)

An alternative analytical strategy is to carry out the CEA within each propensity
score quintile, either through the regression framework illustrated in section 2.2 or
equivalently by running five separate analyses (one for each quintile), and
subsequently combine the outputs to obtain an overall measure of cost-etfectiveness.
In the latter case, (6) and (8) can be re-expressed as,

¢(:/-/ = /JC/ +ﬂ/‘ .(Ez'/ _¢1i1/)+7/cq .OQM

12
¢Eg:yE/+}/E’/.°QW -
and
¢cy" = ﬂq 7. C/quz'/q
pc;'/ = 776/ /¢Ci/
(13)

/ogz'z‘(pﬁ) = ¢Ej + ﬂ/- : (Cy - ¢Cy )+ foj'qgﬁq

P
py =(1+e Y

The final, and perhaps most straightforward way to use propensity score methods in
cost-effectiveness modelling, is by applying the models described in section 2.2 to
the propensity score matched cohort.

3 Motivating example

The methods presented in section 2 were applied to the analysis of administrative
data from the Ontario Myocardial Infarction Database (OMID). The OMID was
created by researchers at the Institute for Clinical Evaluative Sciences in Ontario
(Canada), with support from the Medical Research Council of Canada, to study
population-based quality and patterns of care, readmissions, drug use and short-
and long-term mortality for Ontario citizens who had an acute myocardial infarction
between fiscal 1992/1993 and 2006/2007. The OMID links all of Ontario’s major
healthcare administrative data bases.[62] More specifically, patients’” demographics



and clinical information, hospital-based services (procedures and diagnoses), in-
hospital outcomes, length of hospital stay and healthcare resources intensity
weights, were obtained from the Canadian Institute for Health Information (CIHI)
data base. Physicians’ fees relating to consults or assessments in private offices,
acute care, and long-term care facilities; technical and professional components of
diagnostic and therapeutic procedures; surgical procedures; and laboratory services
were derived from the Ontario Health Insurance Plan (OHIP) data base. Drug costs
for all adults aged 65+ in Ontario were extracted from the data base of the Ontario
Drug Benefit (ODB) program. Finally, demographics and survival status were
extracted from the Ontario Registered Persons Database (RPDB), developed, and
maintained by the Ontario Ministry of Health and Long Term Care. Costs data
were converted into comparable figures using the resource intensity weights
provided by the CIHI and, where relevant, up-rated to 2005 figures using the
Canadian price index for healthcare services and technologies [63].

The cohort used in this paper consists of patients who had either PTCA or CABG
within 365 days of an index admission for AMI. The dates of the hospitalizations for
AMI were between 1%t April 1994 and 31st March 2004. We excluded patients who
had a first PTCA or CABG prior to the index hospitalization or following the
observation period, cases who had both PTCA and CABG, and observations with
multiple of repeated procedures.

Propensity score matching was carried out in STATA 9.0 [64] using the user written
ado file psmatch2.ado [65], whereas the cost-effectiveness models described in
section 2.3 were developed and estimated in the freely available software WinBUGS
1.4.2 [66]. Finally, the user written collection of ado files wb were used to call
WinBUGS from within STATA and to examine the resulting Markov chain Monte
Carlo (McMC) simulations. The latter were obtained running 3 parallel chains for
10,000 iterations following a burn-in of 5,000 iterations. Convergence of each
individual chain was assessed using the Gelman-Rubin convergence criteria [67], as
implemented in WinBUGS. The STATA syntax codes used for the propensity score
matching procedure and for creating the propensity score matched cohort, as well as
the WinBUGS implementation of the cost-effectiveness analysis of the propensity
score matched cohort data are reported in the appendix.

4 Results
4.1 Baseline characteristics of the cohort

Administrative data used in this motivating example included the following
variables that were potential confounders of the treatment effect: age, gender,
cardiogenic shock, acute and chronic renal failure, diabetes with complications,
congestive heart failure, cerebrovascular disease, malignancies, pulmonary oedema,
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cardiac dysrhythmia, the Charlson co-morbidity index, and household median
income. With the exception of household median income, and the Charlson co-
morbidity index, the remaining variables comprise the Ontario AMI mortality
prediction model, which uses administrative data to predict mortality within 30 days
from admission for an AMI [68]. Table 1 reports the baseline characteristics of the
study cohort by treatment group.  Continuous and dichotomous variables were
compared between treatment groups using t-tests (or Wilcoxon rank sum tests) and
chi-squared tests, respectively.

<<Table 1 here>>

Most of the baseline covariates of the two groups display a statistically significant
imbalance. Compared to the PTCA group, individuals undergoing CABG were
approximately 3 years older (p < 0.001), tended to be male (p < 0.001), and would be
less likely to present with cardiogenic shock (p = 0.001), but more likely to have some
form of diabetes related complications (p < 0.001), congestive heart failure (p<0.001),
and cerebrovascular disease (p<0.001). Furthermore, individuals in the CABG group
also presented with a higher frequency of pulmonary oedema (p<0.001), cardiac
dysrhythmia (p=0.01), and co-morbidities (p<0.001).

Figure 1 shows the distribution of the predicted propensity score between CABG
and PTCA group in the study cohort. While there is good overlap between the
distributions of the propensity score in the two treatment groups, it can be seen that
for values of the propensity score higher than 0.5 the number of individuals who
underwent CABG in the cohort is larger than those who underwent PTCA. An
opposite trend can be seen for values of the propensity score lower than 0.4.

<<Figure 1 here>>

4.2 Application of the propensity score methodology to the study cohort

Table 2 reports the standardised differences between treatment groups for the
unmatched cohort, the propensity score matched cohort, and within each quintile of
the propensity score. Standardized differences that exceed 10% are frequently taken
to denote meaningful imbalance in a baseline variable between treatment arms [35,
69, 70]

<<Table 2 here>>

While the unmatched initial cohort shows some serious imbalance in at least four of
the covariates of interest (i.e. age, gender, congestive heart failure, Charlson score),
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the matched cohort displays good balancing of the same covariates between the two
treatment strategies (see Figure 2 for visual inspection).

<<Figure 2 here>>

Table 3 reports the summary statistics of the propensity score matched cohort.

<<Table 3 here>>

Returning to the information reported in Table 2, one can observe that the within
propensity score quintile distribution of these baseline covariates is also well
balanced, although some borderline values close to +10% difference are observed for
one or two of the variables in the first (e.g. diabetes with complications) and fifth
(e.g. age) quintile. This is also reflected in Figure 3, which shows the box-plots by
treatment group and quintile of the propensity score.

<<Figure 3 here>>

4.3 Integrating propensity score and cost-effectiveness methodology for the analysis of the
study cohort data

Costs and survival status at one year post-procedure in the two groups were
analysed using the methods presented in section 2.3. Table 4 reports the mean
differential costs and odds ratio, together with their 95% credibility intervals (CrI).
For comparative purposes the results of the unadjusted analysis are also reported.

All four analytical strategies lead to the same conclusion (i.e. PTCA dominates CABG,
in other words PTCA costs less and produces a higher probability of survival at one
year post procedure compared to CABG). The estimated differential costs and
odds ratios obtained using the propensity score through either regression
adjustment, matching or sub-classification are considerably different than those
obtained from the unadjusted analysis. More specifically, the differential costs
obtained from the analyses using the propensity score are approximately 26% lower
than those estimated in the unadjusted analysis, while their estimated odds ratios
are closer to one than that obtained from the unadjusted analysis. Furthermore, two
of the analytical strategies using propensity score —regression adjustment and
matching — suggest a non-statistically significant survival advantage of PTCA versus
CABG in our cohort.
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The differential costs estimates obtained using propensity score through either
regression adjustment or matching are very similar in terms of point estimates, with
the propensity score matching analysis giving wider credibility intervals.
Interestingly, the same two methods give slightly different odds ratio estimates.

<<Table 4 here>>

5 Discussion

Healthcare economic evaluation of individual patient-level data has been typically
carried out using information collected as part of randomised clinical trials. There
are, however, a number of cases in which it is unfeasible to adopt a trial design and
recourse to the analysis of non-randomised experimental data becomes the only way
forward to address a particular research question. Issues of bias in this type of data
have been traditionally dealt with using multivariate regression adjustment,
multivariate matching, or stratification, each of which suffers from some form of
limitation (e.g. unfeasibility or impracticability). The use of propensity score offers
a potential solution for the analysis of observational data, by conditioning the
probability of treatment allocation on a set of baseline covariates. In this sense,
propensity score methodology conveys all the information contained by the set of
covariates included in the prediction model into a single variable, which can then be
used (i) as a covariate in a regression model, (ii) to created matched pairs of
individuals with the same propensity score (and hence the same distribution of
covariates), and (iii) to create strata of equal size (usually defined by the quintiles of
the distribution of the propensity score) within which the estimation of the average
treatment effect can be carried out.

This paper offered a tutorial-like discussion of ways in which cost-effectiveness
analysis and propensity score methodology to analyse observational healthcare data
can be integrated. Using administrative data from the Ontario Myocardial
Infarction Database (OMID), and linking these with data from the Canadian Institute
for Health Information (CIHI), the Ontario Health Insurance Plan (OHIP), the
Ontario Drug Benefit (ODB) program, and Ontario Registered Persons Database
(RPDB), we assessed the cost-effectiveness of CABG versus PTCA —one year post
procedure - in a cohort of individuals who received the intervention within 365 days
of their index admission for AMI.

It was found that, regardless of which propensity score methodology was used to
adjust for the risk of confounding, at one year from procedure PTCA was both
cheaper and associated with better survival rate than CABG. However, a note of
caution is in order here. A very short time horizon was selected for the analysis (i.e.
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one year) and it could be argued that for reimbursement decisions one should be
evaluating these interventions over the entire lifetime of patients [71]. For instance,
PTCA is typically associated with a higher re-intervention rate during the first year
post procedure; however, for simplicity we omitted the sub-group of patients who
had a repeat procedure from our analysis. Similarly, if one were to assess the long-
term cost-effectiveness of CABG versus PTCA it would be paramount to control for
the changing nature of PTCA. The introduction of new devices (e.g. stents) and the
use of drugs (e.g. glycoprotein IIB/IIIA inhibitors) alongside PTCA are all variables
that should be accounted for.

On a related note, in this paper we have used routinely collected administrative data
to illustrate the use of propensity score methods in cost-effectiveness analysis. It is
important to acknowledge that administrative data are not typically collected for
research purposes. Austin et al [34] compared accuracy of treatment effect estimates
obtained using administrative versus clinical data and found that measures of
treatment effect obtained using administrative data were larger than those obtained
from clinical data. Furthermore, propensity scores developed using administrative
data did not necessarily balance patients characteristics contained in the clinical data,
since the latter are usually characterised by richer information.

The reader should be reminded at this point that propensity score methodology has
no pretence to be able to control for unobserved confounders. As argued by Rubin
[72], the propensity score is not in the same class as any of the “selection models’ [73],
which instead attempt to model the probability of treatment assignment either
directly through the observed outcome, or indirectly through instrumental variables
[74] methods. Head to head comparisons of the various methods have been
extensively carried out and are outside the scope of this paper, but what emerged
from these studies — unsurprisingly - is that the appropriate method in any given
circumstance depends on a combination of the data available and the parameter of
interest [75].
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Appendices

A.1. STATA code for the propensity score matching and creation of the study propensity score
matched cohort. This code requires STATA8.2 or higher. You will need to install the
STATA ado file psmatch2.ado

R T o S o o R S S R S S S R R S R R R AR SR SR SR R S R S R S

* ESTIMATION OF THE PROPENSITY SCORE *

FAEAIEIAAAAAAAAAAIAAAXAAAAAAAAAAAAAAAAdAhAhdx

logit <treatment group> <varlist>, robust
predict double varname

AEAEAAAAAAXAAAXAXAAXAXAAAXAXAAAXAAAXAAAAXAAAAAAAAAAAAAAAAXAAAdx

* PLOTTING THE PROPENSITY SCORE BY TREATMENT GROUP *

R R e e R AR R R R S R S e R R AR AR R AR R R AR AR R R R R R R R R R AR R R R R R SRk

psgraph, treated(varname) pscore(varname) bin(50)

AEAEAAAAIAAAAAAXAXAAAXAAAAXAAAXAAAAXAAAXAAAAAAAAAAAAAXAAAAA LA AAdAhhx

* NEIREST NEIGHBOUR CALIPER MATCHING WITHOUT REPLACEMENT *
*random ordering the observations

set seed 123456

gen u=uniform(Q)

sort u

R R R R R e R R R AR R AR R R R S

* PROPENSITY SCORE MATCHING *

R e e T e R R R e e e e e R e R e R e e

*carry out propensity score matching

psmatch2 varname, pscore(varname) outcome(varname) caliper(<caliper>) logit
noreplacement descending

*testing that balancing has been achieved

pstest <varlist>

*plotting the propensity score by treatment group

psgraph, treated(varname) pscore(varname) bin(50)

R R S o S S S R S R S R R R AR R R R R R R R R o

* CREATING THE PS MATCHED SAMPLE *
R A S R e e e R S S e S R R A R R o
sort _id

g match=_id[_n1]

g costmatch=cost[_n1]

g survmatch=surv[ _nl]

g treatnew=_id if nn==1

g costtreat=cost if nn==1

g survtreat=surv if _nn==1

drop if treat==.

keep costmatch survmatch survtreat costtreat

stack costmatch survmatch costtreat survtreat , into(cost surv) clear
rename _stack arm

g group=arm

label define arm 1 PTCA 2 CABG
label values arm arm
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A.2. WEINBUGS code for the analysis of propensity score matched cost-effectiveness data

# Model costs as a Gamma and survival status at one year as a Bernoulli.
# Adapted from Nixon and Thompson (Health Economics 2005, 14(12):1217-29

model {
for(i in 1:N) {

cost[i]~dgamma(shape.c[arm[i]],rate.c[arm[i],i])
rate._c[arm[i], i]<-shape.c[arm[i]]/phi.c[arm[i],i]
phi.c[arm[i],i]<-mu.c[arm[i]]

surv[i]~dbern(pi.alive[arm[i],i])
logit(pi.alive[arm[i],i])<-mu.e[arm[i]]+beta.e[arm[i]]*(cost[arm[i],i]-mu.c[arm[i]])
}

# node transformations

for (J in 1:2) {p-e[Jl<-exp(mu.e[jJ]) }

# prior distributions
for g in 1:2) {

shape.c[j]~dunif(shape.c.low[j],shape.c.up[j])
mu.cj]~dunif(mu.c.low[j1,mu.c.uplil)
mu.e[j]~-dunif(mu.e.low[j],.mu.e.upil)
beta.e[j]~dunif(beta.e.low[j].,beta.e.up[jl)

}

# ce[1]=cl, ce[2]=c2, ce[3]=el, ce[4]=e2
ce[1]<-mu.c[1]
ce[2]<-mu.c[2]
ce[3]<-mu.e[1]
ce[4]<-mu.e[2]

dc<-ce[2]-ce[1] #differential cost

de<-ce[4]-ce[3] #differential log-odds ratio
dp<-p-e[2]-p-e[1] #differential probability of survival
}
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A.3. Calling WinBUGS from within STATA to run the model in A.2 and import the output for

analysis. You will need to run the package winbugsfromstata.pkg from the web at:
http:/7/www2 . le.ac.uk/departments/health-sciences/extranet/BGE/genetic-
epidemiology/gedownload/winbugsfromstata/

R R R R R R R R R AR R R AR R AR AR SR R R R R R AR R R

* write the data into WinBUGS format *

FAEAIEIAAAAAAAAAAXAAAXAAAAIAAAXAAIAAAAAAAdAhAhhx

quietly wbarray arm cost surv, format(%9.0qg) ///
saving(filename)

R S kR S S S R S S SR R R R A

* run the WinBUGS script *

R R e R e R e R R AR AR R e o

wbrun, script(filename) ///
w(*'c:/Program Files/WinBUGS14/WinBUGS14')

FEAIAIAAAIAAAAAAXAAAAAAAXAAAAXAAAAAAALAAAAAdhiix

* read WInBUGS coda output into STATA *

R R R R e R R R AR R AR AR R R AR R AR AR R R R R AR AR R AR R R R R

wbcoda, root(filename) clear

AEIAAAIAAAXAAAAAAALAAAXAAAALAAAXAAAALAAAAAdhXhix

* calculate the descriptive statistics *

R R R e R R R R R AR AR R AR R RAE AR AR R R R R AR R R R R

wbstats dc de

EARAE A S S S R S S S e R L S R A S R A S S A R A R

* Plot the Kernel density of the parameters of interest *

AR R R R R S R R R AR R AR R SRR R R S R R R RAE R R AR R R R AR AR R R R R AR AR R R R R

wbdensity dc
wbdensity de

R R S e A R R AR R R R R R R R AR R R R R R R AR R R R R R AR R R R R R AR R R R R

* Plot the McMC traces of the parameters of interest *

EEAEEAEXEAAXTAXAXAEAXAXAXAEAAXXAAXAAXXAAXAAAXAAAXAAAXAAAXAAAXAAAXAAAXAAX%

wbtrace de dc , gopt(scheme(s2mono)) cgopt(row(2) scheme(s2mono))

R R R e e S R R R AR R R AR R AR AR R R R o R R R AR R R R R R R A R AR AR R S e e

* Autocorrelation plots for the parameters of interest *
AEAEAAAAAAAAAAXAAAXAXAAAXAAAAAAAAAAXAXAAXAXAAAXAAAXAXAAAAAAXAAAXAAAA XXX
gen num=_n

tsset order

ac dc , lag(200)

ac de , lag(200)
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Table 1 Baseline characteristics of the study cohort

Variable PTCA CABG p-values
(N=24,088) (N=19,835)
Age 60+12 63+10 <0.001
Female 28% 23% <0.001
Cardiogenic shock 1% 0.7% 0.001
Acute renal failure 0.6% 0.7% 0.639
Chronic renal failure 1.5% 1.6% 0.394
Diabetes with complications 1.4% 2.5% <0.001
Congestive heart failure 7.8% 14% <0.001
Cerebrovascular disease 1% 2% <0.001
Malignancies 0.8% 0.9% 0.204
Pulmonary Oedema 0.4% 0.9% <0.001
Cardiac dysrhythmia 9.7% 10% 0.010
Charlson score 0.3+0.7 0.5+0.8 <0.001
Household median income (CAN$) 210964265 20894+3972 <0.001

Values are Mean + SD for continuous variables and proportion for the binary variables
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Table 2 Standardised differences
Variable Unadjusted Matched Quintile
cohort
1st 2nd 3rd 4th 5th

Age 26.7 0.3 2.7 1.3 3.7 -0.3 -9.8
Female -11.3 1.0 32 2.0 2.4 -1.0 -1.9
Cardiogenic shock -3.3 -0.2 -1.7 0.9 2.0 -1.6 -1.8
Acute renal failure 0.4 0.7 59 34 -2.5 1.6 -2.7
Chronic renal failure 0.8 0.5 6.6 5.1 -1.2 -0.3 -4.5
Diabetes with complications 7.3 0.8 8.1 7.0 1.6 0.0 -3.2
Congestive heart failure 20.4 1.1 4.4 -0.7 0.2 2.8 1.7
Cerebrovascular disease 7.0 0.6 -2.0 14 29 -3.3 2.0
Malignancies 1.2 0.5 1.6 -3.6 0.0 0.7 2.6
Pulmonary Oedema 6.0 0.8 1.3 -0.7 22 -5.5 4.3
Cardiac dysrhythmia 2.5 1.9 3.3 3.9 1.6 4.0 2.7
Charlson score 29.5 1.7 6.3 3.7 3.2 3.0 -1.1
Household median income (CAN$) -4.9 0.7 -0.5 14 -2.8 24 35

Note: Values are standardised % differences. For continuous variables these are obtained as
100 ) (p/rwfrwﬂ/ - Pmmw/ )
o (A=p)+p.(1=p) /2

100- (%

treatment

- X )
control

and for proportions are obtained as
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Table 3 Comparison of treated and untreated in matched sample

Variable PTCA CABG

(N=15,943) (N=15,943)
Age 62+12 62+10
Female 24% 24%
Cardiogenic shock 0.7% 0.7%
Acute renal failure 0.6% 0.6%
Chronic renal failure 1.6% 1.6%
Diabetes with complications 1.7% 1.8%
Congestive heart failure 9.3% 9.7%
Cerebrovascular disease 1.3% 1.4%
Malignancies 0.8% 0.9%
Pulmonary Oedema 0.5% 0.5%
Cardiac dysrhythmia 9.4% 9.9%
Charlson score 0.4+0.7 0.4+0.8
Household median income (CAN$) 20,924+4,265 20,953+3,972

Values are Mean + SD for continuous variables and proportion for the binary variables
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Table 4 Cost-effectiveness results (unmatched, matched, regression adjusted, sub-classification)

Cost difference * Odds Ratio*

(CANS) (Survival)
Unadjusted analysis 2243 (2072 — 2413) 743 (.678 - .814) PTCA dominates CABG
Regression adjusted 1679 (1505 — 1852) 920 (.837 - 1.011) PTCA dominates CABG
Propensity Score Matching 1667 (1143 — 2175) .838 (.597 - 1.144) PTCA dominates CABG
Sub-classification 1693 (1521 — 1864) .847 (.765 - .937) PTCA dominates CABG

* Difference in mean cost (CABG-PTCA) and 95% credibility intervals (CrI).
** Odds ratio of survival at after one year following CABG vs PTCA.

Values less than 1 indicate survival advantage in favour of PTCA;

values greater than 1 indicate survival advantage in favour of CABG.
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Figure 1: Distribution of the propensity score in the CABG and
PTCA patients (initial cohort)
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Figure 2: Comparison of propensity score between CABG and PTCA
group by quintile of the propensity score

HH
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Propensity score
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PTCA CABG PTCACABG PTCACABG PTCACABG PTCACABG
Ist Quintile  2nd Quintile  3rd quintile 4th Quintile  5th Quintile

Note: The shaded grey vertical box at the centre of each box represents the middle 50 per cent of the distribution of
the data within each quintile. The lower and upper ends of the box represent the 25 and 75% percentile of the
distribution, respectively. The solid horizontal lines through each shaded box denote the median of the distribution.
The vertical lines (i.e. ‘whiskers’) extend out to 1.5 x the interquartile range. The dots beyond the whiskers identify
extreme observations.
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Figure 3: Distribution of the propensity score in the CABG and PTCA
group after 1-to-1 matching based on individuals’ propensity
score
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