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lockdown exits amid pandemics. This paper examines different uncertainties affecting stay-
at-home and essential workers concerning COVID-19 exposure. Using an epidemiological 
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1. Introduction 

The global health and economic challenges instigated by the COVID-19 pandemic have been 

unparalleled. Lockdowns, demanding people to stay home and avoid outdoor activities, 

became a key strategy in many countries to contain the virus spread (Giordano, et al., 2020; 

Greenstone & Nigam, 2020). However, these lockdowns entail significant economic and 

social costs (Fink, et al., 2022; McCoy, et al., 2021; Singh, et al., 2020; Thunström, et al., 

2020; Meyerowitz-Katz, et al., 2021; Kugler, et al., 2023; Adams-Prassl, et al., 2020), 

needing a delicate equilibrium between virus control and maintaining socio-economic 

stability (Rowthorn & Maciejowski, 2020; Baqaee, et al., 2020; Broughel & Kotrous, 2021; 

Acemoglu, et al., 2020; Thunström, et al., 2020). Government decisions regarding lockdown 

exit are complicated by future uncertainties about the virus spread and the irreversible nature 

of some politically-motivated decisions (Pindyck, 1988; Dixit, 1989a; Dixit, 1989b; Dixit & 

Pindyck, 1994). As such, it could be beneficial to delay lockdown exit, allowing time to 

gather more information about the disease progression and the efficacy of potential 

mitigation strategies (Oraby, et al., 2021; Misra, et al., 2022; D'angelo, et al., 2021). 

Real options theory, often applied in evaluating healthcare decisions, suggests that 

under uncertain conditions, delaying the decision until more information becomes available 

has an economic value (Palmer & Smith, 2011; Claxton, 1999; Meyer & Rees, 2012; de 

Mello-Sampayo, 2014; de Mello-Sampayo, 2015; de Mello-Sampayo, 2022; Zivin & 

Neideill, 2009; Smith, 2007). Viewing lockdown exit as an option with potential to reduce 

ongoing and future pandemic damages, the real options framework can guide the optimal 

timing for lockdown exit lockdown. Davies and Grimes (2022) demonstrate the importance 

of considering option values in policy decisions. Locking down early created the option to 
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eliminate COVID-19, which may not have been available without an early decision. Delaying 

lockdown would have preserved the option to enter later, but this option was less valuable 

due to the (potentially large) health losses accrued in the interim and the government’s 

aversion to such losses. This paper contributes to the literature by applying the real option 

theory to an epidemiological model of disease spread, demonstrating that the higher the 

uncertainty in the future progress of infection and the larger the share of the population under 

lockdown, the longer the optimal lockdown exit should take. 

Epidemiological models have proven extremely useful in guiding decision-making 

during the COVID-19 pandemic. These models posit that infection rates depend on 

interactions between susceptible and infectious populations. This paper uses a variation of 

the Susceptible, Infected, and Recovered (SIR) epidemiological model (Avery, et al., 2020; 

Blackwood & Childs, 2018), the SEIR model (Hethcote, 2000; Li & Muldowney, 1995), 

which includes an additional compartment for infected but non-contagious individuals (E). 

The SEIR model has been instrumental in decision-making related to COVID-19 (He, et al., 

2020; Wood, et al., 2021; Al-Raeei, et al., 2021; Mwalili, et al., s.d.; Reno, et al., 2020; Ng 

& Gui, 2020), estimating the effectiveness of control strategies like quarantine and 

hospitalization (He, et al., 2020), and simulating and predicting virus spread in different 

countries (Al-Raeei, et al., 2021). 

In 2020, when the COVID-19 pandemic was first declared, there was a lack of specific 

knowledge and literature about the virus. However, the SEIR model has been used in many 

epidemics before, and the lack of specific knowledge about COVID-19 at the time did not 

render the model useless. Rather, researchers had to make assumptions and estimations based 

on the available data to construct the model and interpret its results. In this way, the SEIR 

model and similar models provided a valuable tool for decision-makers in the early stages of 
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the pandemic, allowing them to evaluate different intervention strategies and predict the 

potential impact of the virus on populations (Wood, et al., 2021). 

However, there can be a wide range of uncertainty in the estimates produced by 

epidemiologic models due to factors such as model assumptions, data quality, and 

stochasticity in the disease transmission process (Gugole, et al., 2021; Duarte, et al., 2023). 

Sensitivity analysis and uncertainty quantification techniques can be used to evaluate model 

uncertainty and identify the most sensitive parameters (Gugole, et al., 2021). Risk-based cost-

benefit analysis and quantitative risk assessment can further support decision-making by 

assessing the potential risks and benefits of different interventions and providing transparent 

and objective information (Fischhoff, 2015; Wang, et al., 2021; Rocha-Melogno, et al., 2023; 

Yasutaka, et al., 2022; Robinson, et al., 2021; Fu, et al., 2023; Kanga, et al., 2021). Effective 

risk communication is crucial during a pandemic to provide timely and accurate information 

to the public and ensure the success of public health interventions (Varghese, et al., 2021; 

Abrams & Greenhawt, 2020). Overall, integrating epidemiological models, uncertainty 

analysis, real option theory, risk assessment, and risk communication can enhance decision-

making in managing the COVID-19 pandemic and exiting lockdown. 

This manuscript began to be written in 2021 when there were not many stochastic 

models for COVID-19 available in the literature. The objective was to introduce stochasticity 

into these models, thereby presenting a more authentic portrayal of the variations inherent in 

the disease transmission process (Romiti & Talerico, 2021). The growing importance of 

uncertainties within the context of the pandemic has progressively surfaced in research 

related to the COVID-19 outbreak. Previous works addressing the impact of uncertainty on 

the spread of disease have explored individual behaviors and the externalities of individual 

decision-making regarding treatments, vaccinations, and social distancing (Avery, et al., 
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2020; Stock, 2020; Jia & Chen, 2021). Olivares and Staffetti (2021) consider mitigation 

measures entails a degree of uncertainty and quantify the effects of the uncertainty about the 

application of social distance actions and testing of susceptible individuals on the disease 

transmission. 

Although the impact of uncertainty in disease spread on the optimal timing of 

mitigation measures has been previously studied, this paper fills a gap in the literature where 

an artificial separation between traditional epidemiological models and those used within the 

real options framework has typically existed. This paper derives a real option model from a 

SEIR framework to analyze the probability and timing of lockdown exit. In the context of 

the pandemic, the decision to exit lockdown is uncertain because it depends on the 

progression of the virus and the effectiveness of control measures. We motivate our analysis 

by assuming that lockdown is required because there is no perfect vaccine, and the scale of 

infection is too large for an effective testing and tracing (Cleevely, et al., 2020). During 

lockdown, the government mandates the use of masks in closed spaces, crowded outdoor 

areas, and public transportation, especially for workers unable to stay at home due to the 

nature of their jobs, such as healthcare workers and refuse collectors. Uncertainty in disease 

spread is incorporated by assuming there is variability in the exposed population, driven by 

external forces. For example, fluctuations in temperature and climate have been shown to 

modify the infection rate (Chen, et al., 2021). The uncertainty affecting the exposed 

population to COVID-19 is characterized differently for those under stay-at-home orders 

versus those who are not. Our approach is general, but for illustration we focus on the optimal 

timing of exiting lockdown using data for Portugal from March 3, 2020, to July 12, 2021. As 

such, this study helps to clarify the often-contradictory research in the field of public health 

mitigation measures. 
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The vaccination in Portugal began to be administered free of charge in January 2021 in 

health centers, homes, and occupational health services, and the vaccine is taken in two 

dosages. The plan defined priority groups and the respective stages of vaccination. In mid-

2021 only the elderly population (>65 years old) took the first dose, and the rest of population 

began taking the dosage (Portuguese Government, 2020). Though, there were a considerable 

part of the population not vaccinated in July 2021, there are limitations for not taking into 

consideration the COVID-19 vaccination. The extent of protective immunity is uncertain, 

which limits our accuracy and ability to provide reliable predictions about the pandemic 

(Holmdahl & Buckee, 2020). Marinov and Marinova (2022) show that considering 

vaccination is central in making accurate predictions. A SIRV model which considers 

individuals as Susceptible, Infected, Removed, and Vaccinated was employed to study the 

dynamics of the COVID-19 pandemic and the effect of vaccination in controlling the spread 

of the disease. 

A review of several exit strategies, including phase-wise exit, hard exit, and constant 

cyclic patterns of lockdown, concluded that phase-wise exit is the optimal exit strategy 

(Misra, et al., 2022). Studies suggest that adopting a multi-pronged strategy consisting of 

different approaches may be effective in exiting lockdowns (Oraby, et al., 2021; Misra, et al., 

2022; D'angelo, et al., 2021; Freiberger, et al., 2022). Well-timed lockdowns can split the 

peak of hospitalizations into two smaller distant peaks while extending the overall pandemic 

duration (Oraby, et al., 2021). In this paper, the end of lockdown means that commercial and 

social life is permitted, schools are re-opened, the work-at-home ends, while using masks 

continue to be required. The principal objective of this paper is to know the timing to exit 

lockdown so as to avoid another wave of the disease. The decision when to exit the lockdown 

is a dynamic optimization problem because it involves finding the best solution over time. In 
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the context of pandemic, the aim is to minimize harm, such as a resurgence of the cases, 

while maximizing the beneficial effects of lifting the lockdown, such as societal normalcy. 

This paper’s main value-added resides in the concrete application of the dynamic stochastic 

model to a problem in public health decision-making, i.e. to governments waiting to exit the 

lockdown without causing a resurgence of cases. 

Our findings indicate that uncertainty concerning potential infected population tends to 

postpone the decisions to end lockdowns. Additionally, when a substantial proportion of 

individuals comply with stay-at-home directives (thereby reducing the number of people 

using solely masks), and when mitigation measures are effectively curbing disease 

transmission, less decisions to end lockdowns are observed. This can be attributed to the 

inherent challenge in reversing lockdown lifting decisions. Furthermore, the transition from 

lockdown to a situation where the public is allowed to live with fewer restrictions, limited to 

mask-wearing in enclosed spaces and public transportation, is expected to occur sooner and 

become more probable as the population staying at home and just using masks behave 

similarly, consequently reducing the associated uncertainty regarding the decisions to end 

lockdowns. 

The rest of the paper is organized as follows. In Methods we introduce the deterministic 

SEIR model and derive the dynamic stochastic model to examine when decision-makers 

should exit lockdown under uncertainty. In Results the simulations of the timing and 

probability of lockdown exit are analyzed. Then we discuss the results and present the 

Conclusion. 

2. Methods 



8 
 

In this section we develop an epidemiological-based real option model to illustrate the role 

that uncertainty can play in determining the decision regarding when to exit the lockdown 

without provoking a resurgence of the disease. 

2.1 Epidemiological Model 

An appropriate model for a COVID-19 pandemic where there is a considerable post-infection 

incubation period in which the exposed person is not yet contagious, is the Susceptible-

Exposed-Infected-Removed (SEIR) model (Hethcote, 2000; Li & Muldowney, 1995; Avery, 

et al., 2020; Avery, et al., 2020; Blackwood & Childs, 2018). Ignoring births and deaths from 

non-COVID-19 causes, the population at the start of the epidemic is normalized to 1, and at 

each time t, the population is compartmentalized based on their infection status: susceptible 

(S) to infection; exposed (E), i.e., likely to be infected when exposed to the virus, but not yet 

contagious; infected (I) and contagious; and removed (R), who have recovered or died from 

the disease (See Fig. 1). The interaction between the susceptible and infected is permitted 

through the productive contact 𝑆𝐼. Defining 𝛽 as the rate of susceptible to become infected, 

the increase in the number of infected individuals is given by the product of the per capita 

rate at which a susceptible contracts infection times the number of susceptible individuals, 

i.e. 𝛽𝐼𝑆. The progression rate from exposed (latent) to infected is given by 𝛿 and the removal 

rate is 𝛾. Variables and parameters used in the deterministic SEIR model are shown in Table 

I. 
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Figure 1. Standard SEIR model of disease propagation. Susceptible (S); Exposed (E); Infected (I); 
and Removed (R). β transmission coefficient; 1/δ is the mean incubation period; γ is the removal 
rate; θ is mitigation measure. 

 

Initially, under certain common assumptions (Jones, 2007), i.e. individuals who are infected 

remain infectious until they recover or die, infected individuals who recover acquire complete 

immunity, and ignoring uncertainty, the SEIR model translates in a system of four differential 

equations to relate the rates at which the population moves from one stage to another, where 

the time unit is one day: 

ௗௌ

ௗ௧
 =  −𝛽𝐼𝑆, (1) 

ௗா

ௗ௧
 =  𝛽𝐼𝑆 − 𝛿𝐸ఏ, (2) 

ௗூ

ௗ௧
 = 𝛿𝐸ఏ − 𝛾𝐼, (3) 

ௗோ

ௗ௧
 = 𝛾𝐼, (4) 

where 𝛽 gives the transmission coefficient of the infected cases to the susceptible; 1/δ is the 

mean incubation period; 𝛾 is the rate at which infected individuals cease to be infectious or 

die; and 𝜃 is the degree of the social distancing measure taken by the government. 

The exponential surge of the pandemic raises awareness of individuals who have 

greater potential for disease transmission, i.e. “COVID-19 super-spreaders”, who infect 

several individuals during community gatherings or indoor sports events. The gathering 

creates the opportunity for increased pathogen spreading. With the rapid spread of the disease 

COVID-19, epidemiologists have applied various levels of social distancing to “flatten the 

S E I R β γ δ θ 
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curve” of the infected population. The notion of flattening the curve by social distancing is 

no more than reducing opportunities for a pathogen to spread. Social distancing or mitigation 

measures (𝜃) range from careful handwashing, use of masks, and in the extreme, the 

government implements the lockdown on economic and social life. 

At the optimum, the government uses social distancing or mitigation measures to stop 

the infected population from increasing, i.e. 
ௗூ

ௗ௧
 = 0, Equation (3) is now given by: 

𝐼௧  =  
ఋா೟

ഇ

ఊ
, (5) 

where the parameter that captures the flattening effect of the curve due to the social distancing 

measures is assumed to be 𝜃, 0 < 𝜃 ≤ 1. If 𝜃 is one, there are no mitigation measures, 

whereas if it is close to zero, the population has to stay at home. 

Table I. Deterministic SEIR Model - Variables and Parameters 

Notation  Definition 

𝑆௧ Share of population susceptible to infection at time t. 

𝐸௧ Share of population exposed, likely to be infected when exposed to the 
virus, but not yet contagious at time t. 

𝐼௧ Share of population infected and contagious at time t. 

𝑅௧ The share of population recovered and the share of population who have 
died from the disease at time t. 

𝛽 The transmission coefficient of the infected cases to the susceptible. 

𝛿 The rate at which latent individuals become symptomatic. 

𝛾 The removal rate at which infected individuals cease to be infectious or 
die. 

𝜃 The degree of the social distancing measure taken by the government, 
when 𝜃 is one, there are no mitigation measures, whereas if it is close to 
zero, the population has to stay at home. 

 

2.2 Uncertainty in the Spread of the Disease 
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There is uncertainty in the future levels of infection due to environmental and demographic noise 

associated with the transmission process for infection. The decision-maker is faced with the following 

choice: should mitigation measures be stopped immediately or should the decision-maker wait to 

learn more about the progression of the epidemic? Waiting allows the decision-maker to determine 

whether the level of infection gets worse or better over time.  

Traditional net-present-value (NPV) analysis would advocate stopping mitigation measures 

providing the benefit is greater than the cost. However, due to uncertainty in disease dynamics 

combined with the irreversibility of the decisions, there is value in delaying treatment so as to learn 

more about the progress of the disease (Dixit & Pindyck, 1994). That is, there is a value associated 

with the option to remove mitigation measures.  

To include uncertainty into the decision-making approach, we assume that the level of 

exposed, E, can be described by a stochastic process1. Traditionally, the geometric Brownian motion 

which assumes that the mean level of infection grows exponentially has been used to characterized 

stochastic processes (Dangerfield, et al., 2018). While such an assumption is a good approximation 

in the early stages of the epidemic, it does not capture the slowdown in the rate of infection as the 

level of infection becomes large due to the limited number of susceptible individuals. Thus, we 

assume the exposed population follows a Driftless stochastic process, i.e. our best guess of the 

exposed population for tomorrow is what we have at the present. 

 Suppose that the government applies the lockdown (L) as the social distancing 

measure (𝜃), i.e. a mandate for citizens to stay-at-home (h), and for citizens who because of 

the nature of their work (e.g. nurses, doctors, refuse collectors) cannot stay at home, the 

government mandates the use of masks (m) in closed spaces, outside crowded spaces, and in 

public transportation. Since the factors that affect the exposed population behave differently 

                                                 
1 Stochastic process, also known as a random process accounts for certain levels of unpredictability or 
randomness. 
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between stay-at-home to not-stay-at-home citizens, we must characterize exposed citizens 

who stay at home and those using masks differently. As our best guess of the exposed 

population at time t+1 (𝐸௧ାଵ) is what we have at time t (𝐸௧), we assume that E follows a 

Driftless stochastic process (also called Martingale2) by which: 

𝑑𝐸௛  =  𝜎௛𝐸௛𝑑𝑧௛, (6) 

𝑑𝐸௠  =  𝜎௠𝐸௠𝑑𝑧௠, (7) 

where the subscripts h and m denote stay-at-home and use-of-masks social distancing 

measures, respectively. The increment of the Wiener process3 is dz = εt√ dt and εt →N(0,1), 

E(εt,εs) = 0 for s≠ t. 

Equations (6) and (7) imply that the current value of the random shock4 is known, but 

the future values are log-normally distributed with a variance growing linearly with the time 

horizon. Exposed population’s variability, 𝜎, can be interpreted as the uncertainty affecting 

the Exposed population, with 𝜎௛ , 𝜎௠ ≥ 0, 𝐸(𝑑𝑧௛ , 𝑑𝑧௠) = 𝜌𝑑𝑡 and 𝜌 is the correlation 

coefficient between the random shocks affecting Exposed citizens subject to stay-at-home 

measure and use-of-masks. 

The exposed population under lockdown becomes an average of both exposed at home 

and using masks weighted by the share of population assigned to each group: 

𝐸௅ =  𝐸௛
థ

𝐸௠
ట , (8) 

where 𝐸௅ denotes the exposed population under lockdown, 𝜙 and 𝜓 are the shares of 

population of stay-at-home and not-stay-at-home, respectively, with 𝜙 + 𝜓 = 1. 

                                                 
2 Martingale process: the fluctuations in exposed population are a sequence of random variables for which, 
at a particular time, the conditional expectation of the next value in the sequence is equal to the present 
value, regardless of all prior values. 
3 Wiener process is a stochastic process. The initial value of all Wiener processes is 0; past values of these 
processes do not influence any future changes in their value (this is what makes the processes stochastic). 
4 The random shock exposes individuals to a random change. 
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Now, assume that the government is searching for a way to exit the lockdown without 

provoking a resurgence of the disease. For that we analyze the timing and probability of 

exiting the lockdown under uncertainty. Variables and parameters used in the model derived 

from the epidemiological model accounting for the uncertainty in the progression of the virus 

are shown in Table II and Fig. A1 in Appendix A.II. 

Table II. Epidemiological-Based Real Option Model - Variables and Parameters 

Notation  Definition 

𝐸௧ Share of population exposed, likely to be infected when exposed to the 
virus, but not yet contagious at time t. 

𝐼௧ Share of population infected and contagious at time t. 

𝛿 The rate at which latent individuals become symptomatic. 

𝛾 The rate at which infected individuals cease to be infectious or die. 

𝜃 The degree of the social distancing measure taken by the government. 

𝑚 The social distancing measure is using masks in closed spaces, outside 
crowded spaces, and in public transportation. 

ℎ The social distancing measure is to stay at home. 

𝐿 The social distancing measure is the lockdown, i.e. stay at home and if 
not possible, use masks. 

𝐸௛ The Exposed population to Covid-19 that stays at home or in lockdown. 
𝐸௛ follows a Driftless stochastic process. 

𝐸௠ The Exposed population that uses facial masks in closed spaces, outside 
crowded spaces, and in public transportation. 𝐸௠ follows a Driftless 
stochastic process. 

𝐸௅ The Exposed population under lockdown, i.e. average of both exposed at 
home and using masks weighted by the share of population assigned to 
each social distancing measure. 𝐸௅ follows a geometric Brownian 
motion. 

𝐼௅ The Infected population to Covid-19 that is in lockdown. 

𝐼௠ The Infected population that uses facial masks in closed spaces, outside 
crowded spaces, and in public transportation. 

𝑖 =
𝐼௅ 

𝐼௠
 

The relative infected population, i.e. population infected that is in 
lockdown relative to infected population that just uses masks. 
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𝑖∗ Threshold at which the value from exiting lockdown immediately is 
maximal, that is, the value at which one should end lockdown 
immediately. 

𝐸෨௛ 

𝐸෨௠

 
Critical value of the ratio of the exposed population defines the line that 
divides the (𝐸௛,𝐸௠) space into two regions: one in which it is optimal to 
exercise the change of social distancing measures option and the other in 
which it is not. 

𝜙 Share of population that stays at home. 

𝜓 Share of population that do not stay at home and just uses masks. 

𝜎௛  Uncertainty affecting exposed population who to stay-at-home. 

𝜎௠ Uncertainty affecting exposed population who use-of-masks. 

𝜌 The correlation between the random shocks affecting Exposed citizens 
who stay-at-home and use-of-masks. 

𝜇 Risk free discount rate. Rate to adjust future outcomes of healthcare 
interventions to present value, i.e. rate at which time is discounted. 

 

2.3 The Lockdown Exit Decision 

Under uncertainty the decision to adopt different mitigation measures is based on expected 

present discounted value of the infected population so that, when comparing two strategies 

to mitigate the spread of the disease, the optimal strategy is simply the one with the lowest 

expected present discounted value. See Appendix A.I.1 for the derivation of the expected 

infected population under each policy. The optimal choice regarding the social distancing 

measures depends exclusively on the relative value of the infection attained before and after 

the change of social distancing measures has been undertaken, that is, on the ratio 𝑖 = 𝐼௅/𝐼௠, 

where 𝐼௅ is the infected population to COVID-19 that is in lockdown, 𝐼௠ is the infected 

population that uses facial masks in closed spaces, outside crowded spaces, and in public 

transportation. Using standard methods from dynamic programming, the value of the option 

to exit lockdown, 𝑓(𝑖), gives the threshold at which the value from exiting lockdown 

immediately is optimum, 𝑖∗, that is, the value at which one should end lockdown immediately 



15 
 

(see Appendix A.I.2 ). It represents the boundary between the continuation region, in which 

it is optimal not to exercise the option, and the region in which the lockdown ends. 

Proposition 1: The government will end the lockdown when the expected infected population 

just using masks is lower than that attained when in lockdown. 

Proof: See Appendix A.I.3 . 

Equation A11 in Appendix I, states that 𝑖∗ > 1, meaning that the government will engage in 

relaxing the social distancing measures if 𝐼௠ < 𝐼௅ , i.e. the expected infected population when 

just using masks is lower than that attained when in lockdown. For values lower than 𝑖∗ it is 

optimal not to end the lockdown. Conversely, the government should stop the lockdown. It 

follows 𝑖∗ defines one region in which it is optimal to exercise the decision stop lockdown 

and the other in which it is not. This threshold value can easily be converted to a critical value 

in terms of exposed population. 

Proposition 2: The government will end the lockdown when the expected Exposed population 

staying at home is higher than that attained when just using masks. 

Proof: See Appendix A.I.4 . 

The decision-maker will choose to relax the social distancing measures only if the 

Exposed population associated with staying at home exceeds that of a situation of only using 

masks, i.e. 

ா೓ 

ா೘
 ≤

ா෨೓ 

ா෨೘
= ቊ

ఓି
ഇ

మ
൫థ(ఏథିଵ)ఙ೓

మାట(ఏటିଵ)ఙ೘
మ ାଶఏఘథటఙ೓ఙ೘൯

ఓି
ഇ(ഇషభ)

మ
ఙ೓

మ
× 𝑖∗ቋ

భ

ഇഗ

, (9) 
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where  𝜇 is the discount rate to adjust future outcomes of healthcare interventions to present 

value5; 𝐸௛ denotes the exposed population that must stay at home; and 𝐸௠ denotes the 

Exposed when subject to the use-of-masks measure. For values of the ratio 
ா೓ 

ா೘
 lower than 

ா෨೓ 

ா෨೘
 

it is optimal not to relax the social distancing measures. Conversely, if the value of the ratio 

is greater than the critical value, the government should stop the lockdown. It follows that 

Equation (9) defines the line that divides the (𝐸௛,𝐸௠) space into two regions: one in which it 

is optimal to exercise the change of social distancing measures option and the other in which 

it is not. 

From the comparative statics shown in Appendix A.I.5 of Equation (9) if the 

uncertainty (𝜎ଶ) affecting exposed population is high, the decision-maker tends to prefer the 

lockdown, i.e. stay-at-home and use-of-masks. The more correlated (𝜌) are the shocks 

affecting the exposed at home and using masks, the less the change of the policy option is 

worth. The reason is that the more correlated the shocks are, the more closely both Exposed 

processes move and so the lower the uncertainty that results from the switch from a situation 

in which both measures are applied to the population that only has to use masks. With regard 

to the discount rate (𝜇), a higher time preference increases the decision-maker’s opportunity 

cost of not immediately stopping the stay-at-home measure. When more population is staying 

at home (high 𝜙), the change of policy option is worth more. The lower the value of the 

mitigation policy (𝜃), i.e. the closer we are to full lockdown, the more the option is worth. 

This is because a change of policy always has some degree of irreversibility, if population 

                                                 
5  Discounting seeks to consider the impact of time on how outcomes are valued. Typically, individuals prefer 
to consume a product or service now rather than delay that same consumption until sometime in the future. 
This reflects a positive rate of time preference, or discount rate. 
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starts using just masks (not staying at home) raises the society’s overall risk of exposure. The 

reduced form of Equation (9) can be written as follows:  

Exit Lockdown = 𝑓 ൬𝜎ଶ 𝜌 𝜇 𝜙 𝜃
− + + − −

൰. 

Thus, the model presented gives clear indications regarding the exit of lockdown decision 

under uncertainty. It predicts that the higher the uncertainty (𝜎ଶ) affecting the exposed 

population, the later the exit of lockdown is made, the higher the correlation (𝜌) between the 

exposed population staying at home and using masks, the less valuable the option of exiting 

lockdown will be, and so the more exits of lockdown will be observed. With regard to the 

discount rate (𝜇), a higher time preference increases the decision-maker’s opportunity cost 

of not immediately stopping the stay-at-home measure. Conversely, the higher the share of 

population staying at home (the lower the share of population just using masks) and the 

higher the effect of the mitigation measure (low 𝜃), the less exits of lockdown one would 

expect to observe. This is because change of policy always includes some degree of 

irreversibility such that an increase in the share of population using just masks (not staying 

at home) raises the society’s overall risk of exposure. 

2.4 The Probability and Expected Time of Lockdown Exit 

It is important for the decision-maker to know the expected time that will elapse until the 

decision of stopping the stay-at-home measure becomes optimal. Using standard properties 

of the Brownian motion and the lognormal distribution, (see Dixit (1993) and Øksendal 

(2003)) closed-form solutions for the probability 𝑄(
ா೓ 

ா೘
) and expected time 𝑇(

ா೓ 

ா೘
) for the 

process 
ா೓ 

ா೘
 to hit the barrier 

ா෨೓ 

ா෨೘
 from any point inside the continuation region are given by: 
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𝑄(
ா೓ 

ா೘
)  =

⎩
⎨

⎧
1 if 𝜎௠

ଶ ≥ 𝜎௛
ଶ

𝑒

൦
ቀ഑೘

మ ష഑೓
మ ቁቈ೗೙ቆ

ಶ෩೓ 
ಶ෩೘

 ቇష೗೙൬
ಶ೓ 
ಶ೘

൰቉

഑೓
మ శ഑೘

మ షమഐ഑೓഑೘
൪

if 𝜎௠
ଶ < 𝜎௛

ଶ

 (10) 

𝑇(
ா೓ 

ா೘
)  = ቐ

∞ if 𝜎௠
ଶ ≤ 𝜎௛

ଶ

௟௡൬
ಶ෩೓ 
ಶ෩೘

 ൰ି௟௡ቀ
ಶ೓ 
ಶ೘

ቁ

(ఙ೘
మ ିఙ೓

మ)/ଶ
if 𝜎௠

ଶ > 𝜎௛
ଶ
 (11) 

where (𝜎௠
ଶ − 𝜎௛

ଶ)/2 and 𝜎௛
ଶ + 𝜎௠

ଶ − 2𝜌𝜎௛𝜎௠ are the drift and variance parameters of the 

process 
ா೓ 

ா೘
, respectively. Equations (10) and (11) indicate that the probability and expected 

time until stopping the stay-at-home measure to become optimal depend on the relative 

variability of exposed population associated with stay-at home and using-masks. The lower 

is the uncertainty affecting exposed population staying at home relative to the population 

using masks, the higher is the probability that exiting lockdown will never become optimal. 

3. Results 

Simulation of the exposed and infected population from deterministic SEIR model described 

by Equations 2 and 3, for the Portuguese case, used data from different sources. The National 

Epidemiological Surveillance System (BI SINAVE) gathered retrospective data on 

707,795.0 confirmed cases of SARS-CoV-2 / COVID-19 infection data between March 3, 

2020 until July 12, 2021 (497 days). The data contain the information on symptoms and signs 

collected at the time of notification: Asymptomatic or Symptomatic. Regarding the health 

level of the confirmed cases, the data also indicated if the patient had comorbidities and died. 

The average age was approximately 51 years old for all patients. A summary of the dataset 

is shown in Table III. The mortality rate of the population is around 2% of the total. There 

were around 70% asymptomatic cases and 30% of symptomatic cases. From these data, we 

use the mortality rate that will be added to the rate that individuals cease to be infectious 
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which is around 0,09 (Teles, 2020; Spinner, et al., 2020), to calculate the removal rate, i.e. 

𝛾~0,11. From the literature on COVID-19, we used the rate at which latent individuals 

become symptomatic (𝛿) approximately 0,19 (Lauer, et al., 2020). The transmission 

coefficient of the infected cases to the susceptible (𝛽) used was approximately 0,20 

(Ferguson, et al., 2020; Chae, et al., 2020). Fig. 2 shows the effect on social distance measures 

in exposed and infected populations, Equations (2) and (3), respectively. When there are no 

social distancing measures (𝜃 = 1), the exposed and infected populations are represented by 

solid line curves. Assuming that the government imposes the use of facial masks, the exposed 

and infected populations are represented by dashed line curves. However, if the government 

increases the social distance measures, e.g. bans large public gatherings, the curves are now 

represented by the dotted line. In effect, under social distance measures the area under the 

curves in the model is spread over time (see Fig. 2), i.e flattened. 

Table III. Descripted Statistics 

Avg. Age SE 
Nr. Infected 

Cases 
Nr. Deaths 

(%) 
Sym/Asym (%) 

50.78 6.83 707,795 15,232 (2.2) 
Symptomatic 218,715 (30.9) 

Asymptomatic 489,080 (69.1) 

 

 

Figure 2. The Flattening Effect of Social Distancing on the Exposed and Infected under 
the deterministic model. When there are no social distancing measures (θ=1), the exposed 
and infected populations are represented by solid line curves. When the use of facial masks 
is imposed, the exposed and infected populations are represented by dashed line curves. If 
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the government increases the social distance measures, the curves are now represented by the 
dotted line. 

 

Fig. 2 shows that with no mitigation measures, there would be approximately 12% of the 

Portuguese population infected by September 2020. If the face masks had been imposed from 

the beginning of the pandemic, the peak of the infection would be around 9% of the 

population in October 2020. Finally, the lockdown would lower the peak of the infected 

population to approximately 4% in March 2021.  

Now, introducing uncertainty in the future path of the infected population, the values 

of the parameters considered in the benchmark case, as well as the ranges used in the 

simulations of the critical ratio as given by Equation 9, were also drawn from various sources. 

Table IV presents the range and the base value of each parameter according and its sources.  

Table IV. Parameter values used in numerical simulations 

Model 

parameter 

Description Base case (range) Source 

𝛽 The transmission coefficient of the 
infected cases to the susceptible 

0.20 ([0.1, 0.8]) (Ferguson, 
et al., 2020; 

Chae, et 
al., 2020) 

𝛿 The rate at which latent individuals 
become symptomatic 

0.19 ([0.1, 0.8]) (Lauer, et 
al., 2020) 

𝛾 The removal rate at which infected 
individuals cease to be infectious or die. 

0.11 ([0.05, 0.5]) (Teles, 
2020; 

Spinner, et 
al., 2020) 

a) 
𝜃 The degree of the social distancing 

measure taken by the government, when 𝜃 
is one, there are no mitigation measures, 
whereas if it is close to zero, the 
population has to stay at home. 

0.3 ([0.01, 0.9]) b) 

𝜓 Share of population that do not stay at 
home and just uses masks. During the 

0.25 ([0.1, 0.9]) (Bureau of 
Labor 
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coronavirus pandemic, about 1 in 4 
employed people did not telework. 

Statistics, 
2020) 

𝜙 Share of population that stays at home, 
𝜙 = 1 − 𝜓. 

0.75 ([0.1, 0.9]) (Bureau of 
Labor 

Statistics, 
2020) 

𝜎௛ Uncertainty affecting exposed population 
who to stay-at-home on a scale of 0–1, 
with 0 representing no uncertainty and 1 
representing high uncertainty. 

0.3 ([0.1, 0.8]) c) 

𝜎௠ Uncertainty affecting exposed population 
who use-of-masks on a scale of 0–1, with 
0 representing no uncertainty and 1 
representing high uncertainty. 

0.5 ([0.1, 0.8]) c) 

𝜌 The correlation between the random 
shocks affecting exposed population who 
stay-at-home and use-of-masks. 

0.5 ([-1, 1]) d) 

𝜇 Risk free discount rate. Rate at which time 
is discounted. 

0.03 ([0.02, 0.05]) (O’Mahony 
& Paulden, 

2014) 
a) includes the mortality rate derived from our dataset; b) Data on the degree of the social distancing measure 
taken by the government are not available, the benchmark value and the range of variation for both volatilities 
were picked arbitrarily. c) Since the data on the volatility of the exposed population who stay at home or not 
are not available, the benchmark value and the range of variation for both volatilities were picked arbitrarily. d) 
Since the data on the correlation are not available, the benchmark value and the range of variation for both 
volatilities were picked arbitrarily.  
 



22 
 

 

Figure 3. Value of the option to exit lockdown as a function of the relative infected 
population. The standard NPV, i.e. there is no uncertainty, is shown as a black line. Dash 
line is for the case when 𝜎௠ = 0.8 and 𝜎௛ = 0.1, and the threshold * = 1.39. Dotted line is 

the case when 𝜎௠ = 0.1 and 𝜎௛ = 0.8, and the threshold ∆ = 1.29. Dash-dotted line is for the 
case when 𝜎௠ = 0.5 and 𝜎௛ = 0.4, and the threshold ○ = 1.21. The other parameter values 
are given in Table IV. 
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Fig. 3 shows the value of the option, 𝑓(𝑖), to exit lockdown as a function of the relative 

infected population, 𝑖 = 𝐼௅/ 𝐼௠, for different levels of uncertainty (see Table IV for the 

variables and parameters used in the model). Providing the value of the option is greater than 

the NPV of immediate exit, there is value in retaining the option to exit, and so it is beneficial 

to wait. When the value of the option and the NPV is the same, there is no additional gain in 

waiting and so exit should be applied immediately. The value of exit at which 𝑓(𝑖) first equals 

the NPV, the threshold value of treatment, 𝑖∗, is the boundary between the waiting region and 

the immediate exit region and is also shown for each uncertainty level in Fig. 3. The highest 

thresholds are obtained when the uncertainty affecting infected under lockdown is very 

different than that affecting infected population just using masks. The lowest threshold 

appears when the uncertainty affecting infected in lockdown is closer to that affecting 

infected population just using masks.  
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Figure 4. The critical value in terms of relative exposed population 
𝑬෩𝒉 

𝑬෩𝒎
. Plots showing 

the region in which exit should be applied immediately (above the line) and where exit 
should be delayed (below the line) for each of the variable in the model. Other parameter 
values are given in Table IV. 
 
The implications for decision makers of the model results can be seen in plots of the critical 

value in terms of relative exposed population. Fig. 4 shows simulations of critical value, 
ா෨೓ 

ா෨೘
, 

with respect to the model’s variables (see Table IV for the variables and parameters used in 

the model) and it corroborates the comparative statics presented in Appendix A.I.5. The plots 

suggest that the higher the uncertainty (𝜎) affecting the exposed population, the later the exit 

of lockdown is made, therefore, when uncertainty is large, the higher the attainable threshold 

at which to exit lockdown. The higher the correlation (𝜌) between the exposed population 

staying at home and using masks, the less valuable the option of exiting lockdown will be, 

and so the more exits of lockdown will be observed. The higher the discount rate (𝜇), the 

more the decision to stop the stay-at-home measure is worth. Conversely, the higher the share 

of population staying at home (𝜙) and the higher the effect of the mitigation measure (low 

𝜃), the more exits of lockdown one would expect to observe.  

Fig. (5) and Fig. (6) illustrate respectively the impact of 𝜎௠ and 
ா೓ 

ா೘
 on the expected 

probability and on the expected time of changing the mitigation measures, as given by 

Equations (10) and (11). The parameters of the model are calibrated with the values described 

in Table IV. 
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Figure 5. Expected Probability of Exiting Lockdown for Values of Uncertainty, 𝜎௛, 

and Critical Values 
ா೓ 

ா೘
. Other parameter values are given in Table IV. 

  

Fig. 5 illustrates the impact of 𝜎௛ and 
ா೓ 

ா೘
 on the probability of optimal policy change. When 

𝜎௠
ଶ < 𝜎௛

ଶ, the probability that 
ா෨೓ 

ா෨೘
 will be hit in the future is decreasing in both 𝜎௛ and 

ா೓ 

ா೘
. For 

relative low levels of 
ா೓ 

ா೘
, i.e. 𝐸௛ ~𝐸௠., the two processes behave similarly, the probability of 

optimal policy change rises as 𝜎௛
ଶ converges to 𝜎௠

ଶ , that is, as the drift of 
ா೓ 

ா೘
 converges to 

zero6. 

 
 

                                                 
6 For the limiting case where 𝜎௠

ଶ = 𝜎௛
ଶ, even though the probability that the government will change the social 

distancing measures in the future is 1, the expected time for it to occur is infinite. The intuition behind this 
result is that if the drift of 𝐸௛ /𝐸௠ is zero, long diversions away from the barrier 𝐸෨௛ 𝐸෨௠⁄  might occur. Then, 
the probabilities for successfully longer hitting times not falling sufficiently quickly, and the expectation, which 
is the average of the possible hitting times weighted by their respective probabilities, diverges (Dixit, 1993). 
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Figure 6. Expected Time of Exiting Lockdown for Values of Uncertainty, 𝜎௛, and 

Critical Values  
ா೓ 

ா೘
. Other parameter values are given in Table IV. 

 

 

Fig. 6 simulates the effect of changes in 𝜎௛ and 
ா೓ 

ா೘
 on the expected time for optimal 

policy change. It shows that the lower is 𝜎௛ and the lower is 
ா೓ 

ா೘
, the sooner the policy change 

is expected to occur. 

In summary, the lower the uncertainty affecting the exposed population being at home, 

the more likely policy change is to become optimal and the sooner it is expected to occur. 

Moreover, exiting lockdown becomes likelier and is expected sooner, the closer the two 

processes are, i.e. 𝐸௛ ~𝐸௠, and so the lower the uncertainty that results from the switch from 

a situation in which social distancing measures of staying at home and using masks to one in 

which the population can live freely and just use masks in closed spaces and public 

transportation. 
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4. Discussion 

Simulations presented in this paper and their underlying theory may clarify the timing and 

probability of governments’ decisions to exit lockdown under uncertainty. When using the 

deterministic epidemiologic model, Fig. 2 shows lockdown is implemented in order to 

smooth the spread of the disease. Governments began planning to exit the lockdown but were 

always afraid of a new surge of infection, continuing to implement it after the flattening effect 

was accomplished (Rowthorn & Maciejowski, 2020). This paper extends the existing 

literature by applying the real option theory, a framework for decision-making under 

uncertainty, to an epidemiological model of disease spread. By incorporating uncertainty into 

the analysis, the study aims to determine the optimal timing for exiting lockdown. The real 

option approach allows for the evaluation of the economic value of deferring the decision to 

exit lockdown until more information becomes available (Fig. 3).  

The implications for decision makers of the epidemiological-based real option model 

can be seen in policy plots (Fig. 4). The plots suggest that the higher the uncertainty (𝜎) 

affecting the exposed population, the later the exit of lockdown is made, therefore, when 

uncertainty is large, the higher the attainable threshold at which to exit lockdown. The more 

correlated (𝜌) are the shocks affecting the exposed at home and using masks, the less the 

change of the policy option is worth. The reason is that the more correlated the shocks are, 

the more closely both exposed processes move and so the lower the uncertainty that results 

from the switch from a situation in which both measures are applied to the population that 

only has to use masks. With regard to the discount rate (𝜇), a higher time preference increases 

the decision-maker’s opportunity cost of not immediately stopping the stay-at-home 

measure. When more population is staying at home (high 𝜙), the change of policy option is 
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worth more. The lower the value of the mitigation policy (𝜃), i.e. the closer we are to full 

lockdown, the more the option is worth. This is because a change of policy always has some 

degree of irreversibility, if population starts using just masks (not staying at home) raises the 

society’s overall risk of exposure. 

The uncertainty affecting exposed population discourages exiting the lockdown, as 

shown by Fig. 5. The stochastic model presented in this paper also illustrates that the more 

the change of policy option is worth, the greater is the impact of uncertainty on the delay to 

exit the lockdown (Fig. 6). Several key insights emerge. The existence of an option value 

means that a seemingly unpopular policy, such as the lockdown, may be the better choice 

when considering that decisions taken by governments may be irreversible for political 

reasons and in this case aggravated by the possibility of a resurgence of the virus. Optimal 

decision making requires a careful comparison of an unpopular social distancing measure 

today with a popular mitigation measure in the future. The intuition for these results is 

deepened when we recognize that one of the principal features driving our results is that the 

population exposed to the COVID-19 virus under different social distancing measures, such 

as the lockdown and just using face masks, have particular characteristics that make the 

change of policy uncertain. Exiting lockdown becomes likelier and is expected sooner, the 

more both populations (exposed in lockdown and exposed just using masks) behave similarly 

(Fig. 5), and so the lower is the uncertainty that results from the switch from a situation in 

which social distancing measures of staying at home and using masks to a situation in which 

the population can live freely and just use masks in closed spaces and public transportation. 

A corollary of our results is that low-risk exposed population staying at home may exit 

lockdown as soon as possible, which corroborates previous studies that suggest targeted 

lockdowns in different groups. Acemoglu et al. (2020) examine targeted lockdowns in 
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different groups: the young, the middle-aged, and the old and concluded that targeted policies 

can minimize both economic losses and deaths. As the costs of reversing the change of policy 

falls, it becomes more feasible to exit lockdown of the high-risk population. 

It is important to acknowledge the limitations of the model proposed here. One 

limitation concerns overlooking endogeneity of parameters and heterogeneity in the SEIR 

model. First, our epidemiological model assumes that social distancing is determined by 

government. However, as the disease spreads, people voluntary start social distancing 

(Farboodi, et al., 2021; Toxvaerd, 2020; Campos-Mercade, et al., 2021). Reluga (2010) 

develops a SIR model in which agents take a social distancing action that reduces their 

probability of infection. Goolsbee and Syverson (2021) study empirically the endogenous 

social distancing. Their results suggest that ignoring endogeneity could lead researchers to 

misinterpret the effects on disease dynamics of government policies. Our results may 

overestimate the effects of mitigation measures imposed by government when compared with 

a policy of no social distancing measures. 

Another limitation assuming a homogeneous population with uniform mixing, which 

may not be realistic in some contexts. The severity of symptoms, health outcomes, degree of 

infectiousness, and development of immunity vary among patients. These factors are subject 

to individual, spatial, and temporal heterogeneity. One of the striking features of COVID-19 

is that mortality rates vary with age (Ferguson, et al., 2006). Therefore, the social and 

economic impact of policies vary with age. Several studies suggest that age-dependent 

policies can provide substantial gains relative to uniform policies (Acemoglu, et al., 2020; 

Rampini, 2020; Favero, et al., 2020). Ellison (2020) take a broader view of heterogeneity and 

suggest that those who use public transportation or frequent bars will have many more 

contacts than others in their age group. In age and spatially structured models the spread of 
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diseases is less than in a homogeneous SIR-type model (Hébert-Dufresne, et al., 2020) and 

may lead to persistence of the disease (Britton, et al., 2020). 

Finally, it is assumed that everyone is susceptible to infection, but there could be some 

people already vaccinated during the period under analysis since a vaccine became available. 

Furthermore, the virus mutated between March 2020 and July 2021, making the vaccines less 

effective. Analysis of the SARS-CoV-2 genome show different variants of the virus during 

the pandemic. In the beginning of 2020, the results of the study of Korber et al. (2020) 

suggested that the COVID-19 variant most common was more infectious than the strain that 

was dominant in Wuhan. Another limitation of our results is that our data consider all 

COVID-19 variants, but not the connections among them. Data from contact tracing has 

information about the source of infection and the resulting infections. As more data become 

available, contact tracing will become difficult at the peak of the epidemic, and the quality 

of the resulting data will diminish. Additional data might lead to poorer estimates (Ferretti, 

et al., 2020). These limitations should be considered when interpreting the model results and 

using them to inform decision-making. 

Our model was developed in 2021, a pivotal year in the global fight against COVID-

19. The key strength of the model is its ability to generate robust insights from relatively 

sparse data. During 2021, there was a lack of consolidated information and comprehensive 

literature on COVID-19. Despite these challenges, our model is able to extrapolate useful 

patterns, guiding the public health response during a critical period. Moreover, the potential 

utility of this model extends beyond the immediate retrospective analysis of the COVID-19 

pandemic. While it has been specifically tailored to the unique circumstances of COVID-19, 

the model's core framework is sufficiently flexible to adapt to other viral outbreaks. It is not 
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merely a retrospective tool but a prospective one as well, designed to provide critical insights 

during the early and uncertain stages of future pandemics. 

Future work could examine the interaction of a real option-epidemiologically-based 

model with more complex models of costs. Economic uncertainty, which is potentially 

correlated with infectious risk could be included into the decision problem. Finally, the model 

presented here could be extended to incorporate individual and space heterogeneity, in order 

to better inform decision-makers. 

5. Conclusion 

Viewed from the perspective of real option theory, this paper sheds new light on some 

debates about the mitigation measures to control COVID-19 dissemination. The theoretical 

model corroborates previous studies arguing that in the presence of uncertainty the possibility 

of deferring the decision until some later time when better information may become available 

has an economic value (Fornaro, et al., 2021). Information about how the disease spreads, 

clear public health guidance, and vaccines, decreases the uncertainty regarding exposure and 

transmission of COVID-19 (Chalkiadakis, et al., 2021; Varghese, et al., 2021; Abrams & 

Greenhawt, 2020). 

Our results indicate that uncertainty concerning potential infected population tends to 

postpone the decisions to end lockdowns. Furthermore, the exit from lockdown is expected 

to occur sooner and become more probable as the population staying at home and just using 

masks behave similarly, consequently reducing the associated uncertainty regarding the 

decisions to end lockdowns. Additionally, when a substantial proportion of individuals 

comply with stay-at-home directives, and when mitigation measures are effective, less 

decisions to end lockdowns are observed. This can be attributed to the inherent challenge in 

reversing decisions. As the costs of reversing the change of policy falls, it becomes more 
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feasible to exit lockdown. These results are critical given that they may help clarify current 

inconsistencies between recommendations and practical behaviors of policy and public 

health experts and the expressed set of preferences and expectations of these same decision-

makers. 

This work provides a valuable basis for the development of dynamic optimization 

model derived from epidemiological models and opens up avenues for future research. This 

work also presents the opportunity for interdisciplinary collaboration, bringing together 

experts in epidemiology, economics, and behavioral sciences. 
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Appendix I  
 
A.I.1 Infection Before and After the Decision 

We characterize exposed population who stay at home (𝐸௛) and those using masks (𝐸௠) 

differently, and the exposed population who is under lockdown (𝐸௅) is an average of both 

exposed weighted by the share of population assigned to each group (see Equations 6 to 8 in 

the main text). The infected population under lockdown is given by: 

𝐼௅௧
∗ =

ఋ(ாಽ)ഇ

ఊ
=

ఋቀா೓
ഝ

ா೘
ഗ

ቁ
ഇ

ఊ
. (A1) 

Using Ito’s lemma, it can be shown that the stochastic process followed by exposed under 

lockdown, 𝐸௅ is a geometric Brownian motion, as follows: 

𝑑𝐸௅(𝑡) =  𝜙𝜓 ቀ𝜌𝜎௛𝜎௠ − 
ఙ೓

మାఙ೘
మ

ଶ
 ቁ 𝐸௅𝑑𝑡 +  (𝜙𝜎௛𝑑𝑧௛ + 𝜓𝜎௠𝑑𝑧௠)𝐸௅. (A2) 

Assume the decision-maker will apply two social distancing measures for the rest of its life. 

As such, the decision-maker will calculate the expected present discount value (PDV) of each 

mitigation measure and select the one with the highest return, i.e. the lower infected 

population. Since the government can adjust the distancing measures according to the present 

realization and future expectations of exposed population (the state variable), it will do so in 

order to minimize the following intertemporal infected population function: 

𝐼௅௧ = Ε ൥∫ ൝ 
ఋቀா೓

ഝ
ா೘

ഗ
ቁ

ഇ

ఊ
ൡ

ஶ

௧
𝑒ିఓ(ఛି௧)𝑑𝜏൩, (A3) 

where 𝜇 is the time-discount rate. The expectation (Ε) must be taken since 𝐸௛ and 𝐸௠ (and 

therefore also 𝐼௅௧) are stochastic processes.  

 Bearing in mind that 𝐸௅(𝑡) follows a geometric Brownian motion, the properties of 

the lognormal distribution (see Aitchison and Brown (Aitchison & Brown, 1957)) can be 

used to transform Equation (A3) into: 
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𝐼௅  =  
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ഝ
ா೘

ഗ
ቁ

ഇ

ఊቂఓି
ഇ

మ
൫థ(ఏథିଵ)ఙ೓

మାట(ఏటିଵ)ఙ೘
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,  (A4) 

provided that 𝜇 −
ఏ

ଶ
(𝜙(𝜃𝜙 − 1)𝜎௛

ଶ + 𝜓(𝜃𝜓 − 1)𝜎௠
ଶ + 2𝜃𝜌𝜙𝜓𝜎௛𝜎௠) > 0, which will be 

assumed here. Intuitively, this condition forces intertemporal infected population under 

lockdown to be bounded by imposing the time preference (𝜇) to be higher than the rate at 

which 𝐸௅௧
ఏ  is expected to increase. 

If the decision-maker decides to apply only the social distancing measure of mask-

use, Equation (A3) is now given by: 

𝐼௠  =  
ఋா೘

ഇ

ఊቂఓି
ഇ(ഇషభ)

మ
ఙ೘

మ ቃ
,  (A5) 

provided that 𝜇 −
ఏ(ఏିଵ)

ଶ
𝜎௠

ଶ > 0, which will be assumed here.  

A.I.2 The Decision to Stop the Lockdown Problem 

The decision of whether or not to relax the social distancing measures, i.e. citizens only have 

to use the masks, constitutes an optimal stopping problem (Thijssen, 2013) for which the 

relevant Bellman equation is: 

𝐹(𝐼௅ , 𝐼௠, 𝑡∗) = 𝑀𝑎𝑥{𝐼௅ − 𝐼௛;   𝑙𝑖𝑚ௗ௧→଴
ଵ

ఓௗ௧
𝐸ா[𝑑𝐹(𝐼௅, 𝐼௠)]} , (A6) 

where 𝐹(𝐼௠, 𝐼௢ , 𝑡) is the value of the option to relax the social distancing measures, 𝐼௅ − 𝐼௛ 

accounts for the expected decision-maker’s value gain (i.e. decrease the infected population) 

that results from opting for not-staying-at-home measure (payoff of exercising the option to 

use only masks), and the second term in curly brackets yields the time-discounted expected 

increment in the value of the option that arises from keeping the option unexercised for an 

additional amount of time, dt. Here 𝑡∗ is the time in the future at which the decision is made. 

The range of values for which the second term in curly brackets is greater than the first 
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defines the continuation region, in which it is optimal not to exercise the option. In this region 

the Bellman equation is given by:  

𝜇𝐹(𝐼௠, 𝐼௅ , 𝑡) = lim
ௗ௧→଴

ଵ

ௗ௧
𝐸ா[𝑑𝐹(𝐼௅ , 𝐼௠)]. (A7) 

Applying Ito’s lemma to the right-hand side (RHS) of Equation (A7) yields the partial 

differential equation: 
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−

 𝜇𝐹 = 0. (A8) 

Since the optimal choice regarding the social distancing measures depends 

exclusively on the relative value of the infection attained before and after the change of social 

distancing measures has been undertaken, that is, on the ratio 𝑖 = 𝐼௅/ 𝐼௠, we can impose 

homogeneity of degree one of 𝐹(𝐼௅ , 𝐼௠, 𝑡) in (𝐼௅ , 𝐼௠), such that: 𝐹(𝐼௅, 𝐼௠, 𝑡) = 𝐼௠𝑓 ቀ
ூಽ

ூ೘
 ቁ =

𝐼௠𝑓(𝑖 ). 

Such transformation allows us to re-write Equation (A8) as a function of 𝑖: 

 ቂ
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 (A9) 

which turns out to be an ordinary differential equation. The corresponding boundary 

conditions become: 𝑓(𝑖∗) = 𝑖∗ − 1, 
ௗ௙(௜∗)

ௗ௜
= 1, and 

ௗ௙(௜∗)

ௗ௜
=

ଵି௙(௜∗)

௜∗
.  The first condition is 

called the value matching condition, which states that when exit of lockdown is undertaken 

the option value equals 𝐼௅ − 𝐼௛. The other two conditions are the smooth pasting conditions 

which ensures 𝑖∗ to be optimal, since if f was not continuous at 𝑖∗ then one could do better 
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by deciding at a different point. Notice that Equation (A9) imposes a supplementary 

boundary condition: 𝑓(0) = 0, i.e. if the value of exiting lockdown goes to 0 it remains at 0. 

A.I.3 Solution to the Optimal Decision to Stop the Lockdown 

To solve the optimal stopping problem given by Equation (A8) and the respective boundary 

conditions, one must search for a solution and test its validity by substituting it into Equation 

(A8). Considering 𝑓(𝑖) =  𝑃𝑖గ, one finds that it constitutes a solution to Equation (A8) if and 

only if 𝜋 is a root of the following quadratic form of equation (A9). 

𝑄(𝜋) = ቂ
ఏమటమ൫ఙ೓

మାఙ೘
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ଶ
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మ

ଶ
− 𝜇 = 0. (A10) 

The general solution for Equation (A10) is then, 𝑓(𝑖∗) =  𝑃ଵ𝑖∗గభ + 𝑃ଶ𝑖∗గమ, where P1, 

P2 are constants, and 𝜋ଵ, 𝜋ଶ are the roots of the characteristic equation. Since for −1 <  𝜌 <

 1 the coefficient of 𝜋ଶ in Equation (A10) is positive, 𝑄(𝛽)  is an upward pointing parabola. 

Moreover, since 𝑄(1) =
ఏ

ଶ
(𝜙(𝜃𝜙 − 1)𝜎௛

ଶ + 𝜓(𝜃𝜓 − 1)𝜎௠
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ଶ
− 𝜇 are both negative by previous assumptions, it follows that 𝜋ଵ > 1 and 

𝜋ଶ < 0. 

The solution is  𝜋ଵ =
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Making use of the value-matching and smooth-pasting conditions, the expression for 

the critical ratio is obtained and likewise for the constant P1 as: 

𝑖∗ =
గభ

గభିଵ
, (A11) 

𝑃ଵ =
(గభିଵ)ഏభషభ

గభ
ഏభ

. (A12) 

Now, since 𝜋ଵ > 1, Equation (AA11) implies that 𝑖∗ > 1, meaning that the government will 

engage in relaxing the social distancing measures if 𝐼௠ < 𝐼௅ , i.e. the expected infected 

population when just using masks is lower than that attained when in lockdown. This solution 

depends on a restriction on 𝜋ଵ in relation to 𝜃, such that: 𝜋ଵ > 𝜃, related to superharmonicity 

of the value function. This condition shows that the value function can only be superharmonic 

if the PDV does not increase faster than the value of waiting, i.e. if 𝑓(𝑖) is more convex than 

PDV (Thijssen, 2013). 

A.I.4 Threshold in Terms of Exposed population 

In order to obtain the critical value as a function of the ratio of the model’s state 

variables, i.e. the exposed population subject to be at home and exposed just using masks, 

Equations (A4) and (A5) are used to obtain 𝑖∗ =
ூಽ

ூ೘
. Then, substituting Equation (AA11) for 

𝑖∗, the critical value is: 
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 (A13) 

Equation (A13) is the trigger value of exposed population separating the region in 
ா೓ 

ா೘
 space 

where the decision-maker’s option of relaxing the social distancing measures (i.e. for 
ா෨೓ 

ா෨೘
>
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ா೓ 

ா೘
) from the one where immediate exercise of that option is perceived as optimal (i.e. for 

ா෨೓ 

ா෨೘
≤

ா೓ 

ா೘
).  

A.I.5 Comparative Statics 

In order to do some comparative statics, the original setup will be simplified and it will be 

considered that 𝜎 = 𝜎௛ = 𝜎௟. It follows from Equation (A13) that: 

ா೓
∗

ா೘
∗ = ቊ

థటఏమఙమ(ଵିఘ)

ఓି
ഇ(ഇషభ)

మ
ఙమ

×
ఏఙ(ଵିఘ)ାඥ(ଵିఘ){ସఓିఏఙమ[ఏ(ଵିఘ)ାଶ(ଵିఏ)]}

ఙ(ଵିఘ)థାඥ(ଵିఘ){ସఓିఏఙమ[ఏ(ଵିఘ)ାଶ(ଵିఏ)]}
ቋ

భ

ഇഝ

 (A14) 

The greater the volatility of the exposed (i.e. the higher σ2), the higher the critical 

value has to be to make it optimal for the decision-maker to use only masks as the social 

distancing measure, i.e.: 

డ൬
ಶ೓

∗

ಶ೘
∗ ൰

డఙమ > 0 and limσ→∞ 𝑖∗ = ∞. (A15) 

The more correlated are the shocks affecting the exposed both staying at home and 

just using masks, the less the change of policy option is worth and so the lower is the value 

of the relative exposed that triggers the use of mask, i.e. 

డ൬
ಶ೓

∗

ಶ೘
∗ ൰

డఘ
< 0 (A16) 

The reason is that the more correlated shocks are, the more closely both exposed 

processes move and so the lower the uncertainty that results from the switch from a situation 

in which social distancing measures of staying at home and using masks to a situation in 

which the population can live freely and just use masks in closed spaces and public 

transportation. This means that just using masks is likelier to succeed in cases when exposed 

at home are similar to exposed using masks. 
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With regard to the discount rate, the greater the decision-maker’s time discount rate, 

the less it values the change of social distancing measures option, and thus the lower the 

value 
ா೓ 

ா೘
 that triggers optimal change, i.e.: 

డ൬
ಶ೓

∗

ಶ೘
∗ ൰

డఓ
< 0. (A17) 

This result stems from the fact that a higher time preference increases the government’s 

opportunity cost of not immediately changing the policy. The economic intuition for this is 

that, if the decision-maker cares more about the future (low μ), he wants to use just masks 

instead of both social distancing measures; and if he cares more about the present, he wants 

to lock down instead of using masks. In the extreme case in which the decision-maker cares 

only about the present moment, so that µ →∞, then 𝑙𝑖𝑚
ఓ→ஶ

ቀ
ఉభ

ఉభିଵ
ቁ = 0 and 

ா೓
∗

ா೘
∗ = 0, so that 

uncertainty is disregarded and the value of the change of policy option collapses to zero. 

The higher the share of population staying at home and the higher the threshold for 

changing the policy, the higher the critical value, i.e.: 

డ൬
ಶ೓

∗

ಶ೘
∗ ൰

డఏ
< 0 and 

డ൬
ಶ೓

∗

ಶ೘
∗ ൰

డథ
< 0,  (A18) 

Intuition suggests that it should be the case. This means that when in lockdown (high 𝜙 and 

low 𝜃), the more the change of policy option is worth. This is because change of policy 

always includes some degree of irreversibility such that an increase in the share of population 

using just masks (not staying at home) raises the society’s overall risk of exposure. 
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Appendix II Flowchart 
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Figure A1. Real option model derived from the SEIR model. The variables and 
parameters are defined in Table II. 
 
 
 
 

Mitigation measures to stop the infected population from increasing, i.e.  
ௗூ

ௗ௧
 = 0 ⇔ 𝐼௧  =  

ఋா೟
ഇ

ఊ
 

Exposed population at home: 𝑑𝐸௛  =  𝜎௛𝐸௛𝑑𝑧௛ 
Exposed population just using masks: 𝑑𝐸௠  =  𝜎௠𝐸௠𝑑𝑧௠ 
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Exposed population 
under lockdown is a 
weighted average of 
both exposed at home 
and using masks 

𝐸௧  follows a Driftless 
stochastic process. 

Infected 
population 
under 
Lockdown 

Expected present 
discount value for 
infected population 
under Lockdown 

The value of the option, 
𝑓(𝑖), to exit lockdown as 
a function of the relative 
infected population, 
𝑖 = 𝐼௅/ 𝐼௠ , for different 
levels of uncertainty The threshold 

value of 
exiting 
lockdown, 𝑖∗ 

Expected present 
discount value for 
infected population 
just using masks 

The threshold value of 
exiting lockdown in 
terms of exposed 

population, 
ா෨೓ 

ா෨೘
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