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Abstract. In this paper we propose a solution to the Bayesian problem of a
decision maker who chooses, while observing trial evidence, an optimal stopping
time at which either to invest in a newly developed health care technology or
abandon research.

We show how optimal stopping boundaries can be computed as a function of
the observed cumulative net benefit derived from the new health care technology.
At the optimal stopping time, the decision taken is optimal and the decision
maker either invest or abandon the technology with consequent health benefits to
patients. The model takes into account the cost of decision errors and explicitly
models these in the payoff to the heath care system. The implications in terms
of opportunity costs of decisions taken at sub-optimal time is discussed and
put in the value of information framework. In a case study it is shown that
the proposed method, when compared with traditional ones, gives substantial
economic gains both in terms of QALYs and reduced trial costs.

Keywords: Optimal stopping, HTA, Bayes, Value of Information
JEL codes:

1. introduction

Health technology assessment (HTA) decisions are based on evidence of rela-
tive costs and effectiveness of alternative interventions. Decision makers, when
evidence suggests that the incremental net benefit of the new intervention is pos-
itive, are faced with the decision of whether to adopt the new intervention over
the existing one or, given the uncertainty surrounding the evidence, wait for more
information. When uncertainty about the net benefit of alternative treatments is
present, there is a positive probability that the decision taken is wrong. Claxton
(1999) argued that there are two conceptually separate but simultaneous decisions
that must be made within a health care system: i) should a technology be adopted
or reimbursed on the basis of existing evidence (and uncertainty surrounding out-
comes and resources used) and ii) is further evidence required to support this
adoption or reimbursement decision, and if existing evidence is deemed insufficient
and further research is needed, what is the appropriate design for it ?

∗Department of Economics and related studies, University of York, YO10 5DD, York. e-mail:
db566@york.ac.uk

†Department of Economics and related studies, University of York, YO10 5DD,York. e-mail:
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In this paper we introduce a sequential value of information (S-VoI) Bayesian
model for the evaluation of health care technologies. In our sequential approach
the decision maker takes the reimbursement decision at a time when postponing
the decision further in order to collect more evidence looses its value and, at the
decision time, selects a strategy that gives maximal health benefit to patients,
relative to the costs. Traditional sample size calculations for randomised clinical
trials are based on arbitrary rules of inference such as probability of type I and
type II errors. The values typically chosen for these error probabilities do not
reflect the cost of making such error (William and Pinto, 2005).

In response, the value of information approach developed by Raiffa and Schlaifer
(1961) and applied to HTA by Claxton and Posnett (1996) and Claxton (1999),
proposes to assess whether more research is needed by weighing the value of new
evidence with the cost of undertaking new research. In this framework, an upper
estimate to the benefit of the healthcare technology is computed either analytically
or by simulation and if the value of the upper estimate is greater than cost of new
research additional evidence is required in order to take a decision.

It has been argued that in the absence of sunk cost or irreversibilities the decision
to adopt a technology can be based on expected cost effectiveness. However, when
reversing erroneous decisions is costly consideration of uncertainty become more
important (Griffin et al., 2011).

The explicit inclusion of a sunk investment cost is important as in the absence
of such costs decision makers could switch between technologies as new evidence
becomes available. The implication of uncertainty and cost associated with the
investment is that the decision makers need to be sufficiently confident that the
selected policy is sustainable, as reversing the decision involves an economic cost.
The presence of uncertainty and the degree of irreversibility mean that there is
economic value in employing a modelling approach that has flexibility in the timing
of a decision (Palmer and Smith, 2000). Palmer and Smith (2000) apply the Dixit
and Pindyck (1994) real option approach to the adjustment (under a certain degree
of irreversibility and uncertainty) of the incremental cost-effectiveness ratio for a
drug. The conclusion is that for innovations with high uncertainty, large reversal
cost and low opportunity costs of delay should be reimbursed at a lower rate than
treatments with opposite characteristics.

The investment option approach has been implemented as a watchful waiting
regime for diseases with slow progression (Driffield and Smith, 2007). In this case
the patient management strategy involves postponing curative treatment. The
patient undergoes a period of close observation and periodic tests that monitor
the progression of the disease.

Forster and Pertile (2012) illustrated through a combined real-option and decision-
theoretic approach to HTA that view adoption, treatment and research decision
as a single economic project that existing models found in the HTA literature con-
sider only some of the dimensions relevant to optimal decisions, thus leading to
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potential efficiency losses in resources allocation. When adoption treatment and
research decisions are viewed as a single economic project, the optimal rule must
account for a number of dimensions such as i) the expected costs and benefits of
additional research ii) the size of the treatment population over the stages of the
project iii) flexibility and irreversibility of actions iv) the dynamic nature of the
decision process.

More recently Pertile et al. (Forthcoming) discussed the use of real option as
a way to view adoption, treatment and research decisions as a single economic
project and argue that the dynamic approach to HTA can provide efficiency gains
in resource allocation. However, presently the real option approach has not been
implemented in any systematic way (Meltzer and Smith, 2012).

In this paper we introduce a sequential value of information (S-VoI) Bayesian
model for the evaluation of health care technologies that allows to find an optimal
stopping time at which the decision maker (i) knows that the value of further
evidence is zero (i.e. zero value of waiting) and (ii) selects a strategy (either invest
or abandon research) that gives maximal health benefit to patients. The S-VoI
framework involves observing a trial and at each observation update a Bayesian
posterior probability about the effectiveness of the healthcare technology. With
only prior information the value of (further) information is a the maximum and it
gradually reduces to zero as the trial continues.

In contrast to traditional approaches found in the literature the proposed frame-
work introduces a dynamic sequential Bayesian approach to decision making under
uncertainty when the objective of the DM is to maximise health benefit. The pro-
posed model has a number of advantages over existing methodology (i) by finding
an optimal stopping time the decision is taken at the point where there in no value
for further waiting (ii) error probabilities can be computed and the decision maker
can assess the cost of error (iii) sample size is reduced to the minimum necessary
in order to make a decision with minimal error. As a consequence the proposed
method maximises expected gains both in terms of health to the population and
minimised trial costs. Traditional decision tools such as the expected value of
perfect information (EVPI) are based on ex-ante calculation and therefore con-
sider only the deterministic time dimension. The proposed methodology improves
decision making by enlarging the strategy space to stopping times.

In the paper clinical evidence is modelled as a noisy process: we start with a
discrete binomial tree and, by allowing the number of observation within a time
interval to increase, on the limit the random variable’s distribution is obtained
reflecting the uncertainty surrounding each clinical outcome. The methodology
presented in the paper is based upon the work of Shiryaev (1978) and Peskir and
Shiryaev (2006). However, there are some crucial difference between our approach
and Peskir and Shiryaev’s work: (i) we maximise health benefits (i.e. monetary
payoffs) rather than minimising a risk function which has Type I and Type II
error probabilities as arguments (ii) we observe an arithmetic Brownian motion

3



and define the likelihood ratio process as the Radon-Nikodyn derivative and while
Peskir and Shiryaev (2006) solve the risk function via the posterior probability
process, in our approach, given that the likelihood ratio process follows a geometric
Brownian motion, it is possible to formulate the solution of the optimal stopping
problem in terms of the likelihood ratio (iii) we depart from the traditional rules of
statistical inference by incorporating a rate of discounting for the expected payoffs;
in this way the optimal stopping problem fully incorporates the economic nature
of decision making in HTA.

The paper is organised as follows: section two gives some background, section
three deals with the probabilistic environment required for sequential hypothesis
testing, section four specifies the decision problem while section five presents the
solution to the optimal stopping problem. Section six discusses results implications
for the value of information and the irrelevance of inference and section seven
presents a case study comparing the model decision with a traditional decision
making approach for robot-assisted laparoscopic prostaectomy.

2. Clinical trials

The decision maker wishes to test whether a newly produced health technology
has effectiveness greater than the minimum required for reimbursement. The de-
cision maker wishes to test if the newly developed health-care technology exceeds
the health care system threshold value λ and sets up a a set of tests aimed at
uncovering whether the new technology provides the increased effectiveness.

Within such scenario we observe a sequence of outcomes from a clinical trial. The
trial evolves through time and at regular points we observe an outcome representing
information about the effectiveness of the healthcare technology.

The outcome of a clinical trial is measured in terms of the cumulative benefit
to the population and is denoted by Xi for each step i. We model the uncertainty
of the trial’s outcome by allowing Xi to go either up by a factor u or down by a
factor d.

Trials evidence is noisy, which implies that trend in the sequence of observed
outcomes cannot be clearly observed. The two factors are given by

u = θµdt+ σ
√
dt

d = θµdt− σ
√
dt

(1)

where θ ∈ [0, 1] and dt is obtained by splitting an interval [0, t] into n parts (i.e.
dt = t/n) and µ is the value of the effectiveness threshold for the health care
system.

Following the above we model the evolution of the health benefit as binomial
tree. The random variable Xi can take values Xi−1 + u or Xi−1 + d with equal
probability p = 0.5. The factor σ

√
dt determines the size of the noise. The total
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accumulated evidence after n steps is equal to Xn =
∑n

i=1Xi. The sequence
X0, X1, X2, . . . describes a stochastic process, where X0 is the initial value.

Denote Xt = limn→∞Xn(t) where the limit is understood to be in distribution
and n → ∞ implies dt ↓ 0. According to the CLT, the distribution of Xt exists
and is given by

Xt ∼ N(θµt, σ2t)

implying that in the continuous time limit the process Xt follows the arithmetic
Brownian motion

(2) Xt = θµt + σWt,

where (Wt)t≥0 is a standard Brownian motion. The decision maker problem is
to find an optimal time at which to make an investment/abandonment decision
about the new technology. If the trial’s outcome supports the hypothesis H1 that
the effectiveness of the new technology is greater than the health care system
minimum requirement there is investment, else, under the alternative H0 research
is abandoned and there is no adoption. The problem is then to sequentially test
for H0 : θ = 0 vs H1 : θ = 1.

3. Sequential hypothesis testing

The sequential testing problem of two hypotheses is discussed in Shiryaev (1978)
and Peskir and Shiryaev (2006). As in their setup we assume that what follows
takes place on a probability space (Ω,F , Qp) and that we are given mutually
independent random variables θ = θ(ω) and a standard Wiener process W =
(Wt)t≥0 under the probability measure Qp.

The probability measure Qp has the following structure

(3) Qp = pQ1 + (1− p)Q0

for p ∈ [0, 1].

Since we take a Bayesian viewpoint θ is considered a random variable taking
the value of 1 or 0, and Qp is such that Qp{θ = 1} = p and Qp{θ = 0} = 1 − p.
As outlined above, we observe a process X = (Xt)t≥0 taking the form

(4) Xt = θµt + σWt,

where µ > 0 and σ2 > 0 are given and fixed. The conditional distribution of Xt

is

Xt | θ ∼ N(µθt, σ2t)
5



and thus p and 1 − p play the role of a priori probability for the statistical hy-
potheses

(5) H1 : θ = 1 and H0 : θ = 0

respectively.

The process Xt generates the filtration FX
t = σ(Xs : 0 ≤ s ≤ t), which is

augmented with the Qp-null sets. The likelihood ratio process Λt is defined as the
Radon-Nikodym derivative

(6) Λt =
d(Q1 | FX

t )

d(Q0 | FX
t )

Proposition 3.1. The likelihood ratio process admits the following representation:

(7) Λt = exp
( µ

σ2

(

Xt −
µ

2
t
))

, t ≥ 0

Proof. See Appendix �

Note that under hypotheses H1 and H0 the corresponding probability measures
are Q1 and Q0 respectively. These measures are mutually singular since it holds
that

Λt −→
{

0, a.s. under Q0

∞, a.s. under Q1

as t → ∞

In other words, if we can observe (Xt)t≥0 we can take these distributions apart
from the limiting value of the likelihood ratio and decide between the two hypothe-
ses.

The likelihood ratio process can be expressed as a stochastic differential equa-
tion (SDE).

Proposition 3.2. The likelihood ratio process (Λt)t≥0 solves the stochastic differ-
ential equation

(8) dΛt =
µ

σ
ΛtdWt

Thus the likelihood ratio Λ follows a geometric Brownian motion on the state
space E = [0,∞). In addition the process (Λt)t≥0 is a martingale.
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Proof. See Appendix �

Peskir and Shiryaev (2006) express the posterior probability process πt = Qp(θ =
1 | FX

t ) as a function of the likelihood ratio process using Bayes rule:

(9) πt(Λ) =

(

p

1− p
Λt

)

/

(

1 +
p

1− p
Λt

)

.

Therefore, we can also write the likelihood ratio process as a function of the
prior and the posterior probability process

Λt =
πt

1− πt

1− p

p
.

(10)

In the remainer we will work with (Λt)t≥0 or (πt)t≥0 interchangeably.

4. Decision problem

The observed process (Xt)t≥0 represents the outcome of the randomised clinical
trial (RCT) in terms of cumulative health benefit and expresses the extent of
effectiveness of the health care technology. The decision maker seeks to test if the
new technology is more effective than the minimum required by the heath care
system. The value µ represents the health benefit derived from adopting this new
technology. If the new technology is more effective than the threshold λ specified
by the health care system the decision maker will invest into this new technology.

The decision maker values payoffs in terms of Quality of Adjusted Life Years
(QALY). This is a standard measure3 for health benefit in health care technology
assessments and allows to attach a monetary value to the benefits derived from
adopting the technology, conditional on the technology being effective.

We seek to establish an optimal stopping time τ at which the decision takes
an investment or abandonment decision about the health care technology. In the
model adoption/abandonment decisions are based upon the present net monetary
value of QALY gained/lost.

When undertaking the investment the decision maker incurs a sunk cost I.
In the investment equation (11) below P1 represents the monetary benefit from
adopting the new health care technology conditional on θ = 1 and P0 represents
the monetary loss of adopting the technology conditional on θ = 0. Thus, −P0

is the opportunity cost of adopting the new technology when this is in fact not
better than the standard care, in effect making a type I error.

3This is the standard in the UK. Other measures that are specific to the heath care technology
can also be used. We use QALY to keep the analysis tractable in terms of monetary benefits/costs.
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The table below summarises the various payoffs under investment and abandon-
ment

θ = 1 θ = 0
Investment P1 > 0 P0 > 0

Abandonment −P1 0

The net present value of the investment, denoted by, FI , is

FI(Λ) = π(Λ)P1 − (1− π(Λ))P0 − I

=

[(

p

1− p
Λ

)

/

(

1 +
p

1− p
Λ

)]

P1

−
[(

1−
(

p

1− p
Λ

)

/

(

1 +
p

1− p
Λ

))]

P0 − I,

(11)

If research is abandoned there is no investment. In equation (12) below −P1

describes the monetary loss incurred when research is abandoned conditional on
θ = 1, in effect making a type II error. It is assumed that forgone benefits and
costs are the same. Therefore the expected payoff of abandoning, denoted by FA

is negative as it identifies the expected QALY loss due to keeping standard care
when in fact the new health care technology is more effective. So,

(12) FA(Λ) = −π(Λ)P1 = −
[(

p

1− p
Λ

)

/

(

1 +
p

1− p
Λ

)]

P1

Figure (1) show FI and FA as function of the likelihood ratio. It can be noted
that both payoffs are non-linear in Λ (even though they are affine in the posterior
probability, π). Additionally the function FA is concave and the function FI is
convex.

Assuming that all payoffs and trial costs are discounted at a rate r > 0 the
decision maker needs to find a stopping time τ ∗ that solves the following optimal
stopping problem
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Figure 1. Payoffs of investment and abandonment as a function of
the likelihood ratio, Λ

F ∗(Λ) = supτEΛ

[

−c

∫ τ

0

e−rtdt+ e−rτ (max [FI(Λτ ), FA(Λτ )])

]

= −c

r
+ supτEΛ

[

e−rτ [max (FI(Λτ ), FA(Λτ))] + e−rτ c

r

]

= −c

r
+ supτ

{

EΛ[e
−rτ (FI(Λτ ) +

c
r
)] if Λτ ≥ Λ̄

EΛ[e
−rτ (FA(Λτ) +

c
r
)] if Λτ < Λ̄

(13)

where Λ̄ is the unique point for which FI(Λ̄) = FA(Λ̄). The term c represents the
cost stream connected to running the trial. This includes sampling costs and the
forgone health benefits associated with allocating resources to the trial rather than
treating patients. These costs are incurred up to the time at which a decision of
investment or abandonment is made.
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The solution to (13) can intuitively be though of taking the following form. The
state space will be split in 3 regions. The first one is a region around Λ̄ where
continuation of the trial is optimal, hence called continuation region, denoted by

C = {Λ ∈ R+|F ∗(Λ) > max(FA(Λ), FI(Λ))}.
When Λ gets large enough we enter the investment region, where adoption of the
health-care technology is optimal. This region is denoted by

DI = {Λ ∈ R+|F ∗(Λ) = FI(Λ)}.
Conversely, when Λ gets low enough, we enter the abandonment region, where
abandoning the clinical trial is optimal. This region is denoted by

DA = {Λ ∈ R+|F ∗(Λ) = FA(Λ)}.

5. Problem Solution

The likelihood ratio process (Λt)t≥0 follows a geometric Brownian motion for
which it is possible to find a solution to the optimal stopping problem (13). At
the heart of the approach lie functions of the form

(14) ϕ(Λ) = AΛβ1 +BΛβ2,

which solve the differential equation

(15) AΛϕ = rϕ.

Here A denotes the generator (or characteristic operator) of the process (Λt)t≥0,

(16) AΛf =
1

2

µ2

σ2

∂2f

∂Λ2
,

A and B are arbitrary constants (to be determined as part of the solution) and
β1 > 1 and β2 < 0 are the roots of the quadratic equation

(17) Q(β) =
1

2

µ2

σ2
β(β − 1)− r = 0.

The following proposition gives sufficient conditions for the existence of a solu-
tion to the optimal stopping problem (13). For each pair (ΛA,ΛI), ΛA < Λ̄ < ΛI ,
define the functions

ϕ̂(Λ) = A
(

Λβ1 − Λβ1−β2

A Λβ2

)

, and ϕ̌(Λ) = B
(

Λβ2 − Λβ2−β1

I Λβ1

)

.

Then define the function ϕ by

ϕ(Λ) =
ϕ̂(Λ)

ϕ̂(ΛI)
FI(ΛI) +

ϕ̌(Λ)

ϕ̌(ΛA)
FA(ΛA).
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It follows from Thijssen (2013, Proposition 6) that

ϕ(Λ) =EΛ

[

e−rτ̂(ΛI )
∣

∣

∣
τ̂(ΛI) < τ̌(ΛA)

]

QΛ(τ̂ (ΛI) < τ̌(ΛA))FI(ΛI)

+EΛ

[

e−rτ̌(ΛA)
∣

∣

∣
τ̂(ΛI) > τ̌(ΛA)

]

QΛ(τ̂ (ΛI) > τ̌ (ΛA))FI(ΛI),

where
τ̂(ΛI) = inf{t ≥ 0|Λt ≥ ΛI},

is the first hitting time of ΛI from below and

τ̌(ΛA) = inf{t ≥ 0|Λt ≤ ΛA},
is the first hitting time of ΛA from above.

So, if one defines the function

F (Λ) =

{

FI(Λ) if Λ ≥ Λ̄

FA(Λ) if Λ < Λ̄,

and the stopping time τ ∗ = τ̂(ΛI)∧ τ̌ (ΛA), then ϕ is simply the unconditional ex-
pectation of the present value of abandonment or investment, whichever threshold
is reached first:

ϕ(Λ) = EΛ

[

e−rτ∗F (Λτ∗)
]

.

Proposition 5.1. Suppose that the system of equations

− ϕ̂′(ΛI ,ΛA)

ϕ̂(ΛI ; ΛA)
FI(ΛI) + F ′

I(ΛI) +
ϕ̂′(ΛI ,ΛI)

ϕ̂(ΛA; ΛI)
FA(ΛA)(18)

− ϕ̌′(ΛA,ΛI)

ϕ̂(ΛA; ΛI)
FA(ΛA) + F ′

A(ΛA) +
ϕ̌′(ΛA,ΛA)

ϕ̂(ΛI ; ΛA)
FA(ΛA)(19)

has a solution (ΛA,ΛI), with ΛA < Λ̄ < ΛI . Suppose, in addition, that

(1) ϕ is strictly convex, and
(2) ϕ is more convex than FA on (0, Λ̄), i.e. F ′′

A/F
′
A > ϕ′′/ϕ′ on (0, Λ̄).

Then the optimal stopping problem (13) has the solution

(20) F ∗(Λ) =











FA(Λ) if Λ ≤ ΛA
ϕ̂(Λ)
ϕ̂(ΛI )

FI(ΛI) +
ϕ̌(Λ)
ϕ̌(ΛA)

FA(ΛA) if Λ ∈ (ΛA,ΛI)

FI(Λ) if Λ ≥ ΛI ,

and the optimal stopping time is τ ∗ = τ̂ (ΛI) ∧ τ̌(ΛA).

Proof. Note that
AΛϕ̂− rϕ̂ = AΛϕ̌− rϕ̌ = 0,

and that
ϕ̂(ΛA) = ϕ̌(ΛI) = 0.
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Also, since FI is concave it is less convex than ϕ on [Λ̄,∞). Therefore, the result
follows immediately from Thijssen (2013, Proposition 7).

�

Figure 2 shows the solution for a case with cost of sampling equal to c = 10,
a prior set to p = 0.5, discount rate of r = 0.15, payoff of investment P1 = 130,
Investment cost of I = 60 and losses from adoption when in fact the technology
is not more effective than standard care of P0 = 60. The process Xt has standard
deviation σ = 0.2 and mean µ = 0.25. For this base-case scenario it turns out that
the conditions of Proposition 5.1 are satisfied for p ∈ [0, 0.72]. For higher values
of p, FA is more convex than ϕ, which implies that the value function F ∗ is no
longer superharmonic. Since superharmonicity of the value function is a necessary
condition for optimal stopping, no solution exists for high values of p. Essentially,
for such values it is always optimal to adopt the technology immediately.

Λ

P
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Optimal stopping bounds

0 0.5 1 1.5 2 2.5 3
−100
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50

Figure 2. Value function F ∗ and bounds ΛI , ΛA for the case with
c = 10, p = .5, r = .15, P1 = 130, P0 = 60, I = 50, µ = .25, and
σ = .2.
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Figure 3 shows some simulated sample paths for the likelihood ratio process
and some hypothetical bounds. Different values for µ and σ in the likelihood ratio
process lead to different hitting times.

Time

Λ

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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0.9

1

1.1

1.2

1.3

1.4

Figure 3. Some sample paths of the likelihood ratio process. Pa-
rameters are similar as for Figure 2.

6. Analysis of the model

It has been argued (see Claxton (1999)) that classical statistical inference (and
its Bayesian counterpart) is arbitrary and irrelevant to clinical decision making.
He suggests to use the expected value of perfect information (EVPI) as a way to
deal with uncertainty in health-care technology (HCT) assessment. The EVPI is
given by the probability that a decision based on mean net benefit is incorrect (i.e.
not cost effective) and the size of the opportunity loss of this wrong decision. It
should be noted however, that the EVPI represents the maximum value of addi-
tional information (clinical research) and it is used to decide whether to fund more
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research. In particular, if the estimated costs of additional research (e.g. another
trial) are higher than the EVPI, proposed research should not be undertaken and a
decision for adoption by the health care system can be made on existing evidence.

This approach involves checking if sufficient information has been gathered and
belongs to a framework where there is irreversibility of investment and where the
decision maker is confronted with a ’invest now or never’ type of decision (Pratt
et al., 1995). Where reversing policy is costly and the decision maker has the
possibility of deferring decision a sequential approach arises naturally.

6.1. Option value and waiting for more information. In between the thresh-
olds the solution (20) gives the value of the investment / abandonment option at
any point in the trial. When this value is compared to the investment/abandonment
payoff, equation (20) reflects the value of waiting for more evidence (i.e. the value
of information or the opportunity cost of investment with current evidence).

Figure 4b shows the function ϕ(Λ) for different values of σ. It can be noted that
the value of the investment option (i.e. the option of investing now or investing
later with more evidence) increases with σ. As uncertainty increases, there is more
to be gained in waiting, and Figure 4b shows that it is possible to quantify the
waiting value for different levels of uncertainty. Figure 2 shows the investment
option value against the investment payoff FI(Λ) and FA(Λ). As the value of
waiting for more evidence decreases, at the investment point ΛI , the value of the
investment option ϕ(Λ) and the payoff FI(Λ) coincide and the value of waiting
goes to zero. Similarly, on the other side, when the value of waiting for more
evidence decreases, at the abandonment point ΛA, the value of the abandonment
option ϕ(Λ) and the payoff FA(Λ) coincide and the value of waiting goes to zero.

Figure 4a shows the value of waiting (i.e. value of information) at different
values for Λ. The value of information is at the highest around the initial point
Λ = 1 as at this point the evidence in favour of H0 and H1 are equal as there
is only prior information available. As Λ increases there is less and less value
in waiting and this reaches zero at the optimal adoption/abandonment time τ ∗.
Outside of the threshold region waiting has no value and the decision maker should
act immediately .

6.2. Posterior probability. In the health technology assessment literature one
of the relevant decision tools is the probability of a drug being cost-effective (i.e.
net benefit to be greater than the cost-effectiveness threshold).

While the standard approach is to compute the probability via simulation meth-
ods, in our proposed model the posterior probability π(Λ) of making a gain of P1

and the probability (1 − π) of making loss P0, can be obtained by looking at the
posterior value at the decision bound. In this way it is possible to assess the prob-
ability for the heath-care technology to provide a gain P1 or a loss P0, in turn
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Figure 4. Value of information

allowing to determine the probability for the heath-care technology to be cost
effective.

6.3. Comparative statics. It is possible to explore the impact of varying param-
eters on the decision bounds. In this section we explore the comparative statics of
the payoffs P1, P0, parameters µ, σ, cost c and the discount rate r. The prior has
been set to a neutral value of 1/2 for all cases.

Figure (5a) show the variation in bounds due to changing the payoff P1. The
payoff P1 enters both the adoption and the abandonment payoff consequently af-
fecting both upper and lower bounds. As the benefit from adoption increases the
loss from not adopting a beneficial technology increases accordingly. It should be
noted that as the payoff P1 increases the upper bound eventually goes below the
starting value for the likelihood ratio and the posterior process. As one would ex-
pect, holding P0 and the required initial investment costs constant while increasing
substantially the payoff P1, due to the large gain to the healthcare system, above
a certain threshold value it becomes optimal to invest immediately.

Figure (5b) show the bounds variation due to changing the loss P0. This loss
enters the adoption payoff and thus affects only the upper bound. When the loss
P0 increases the adoption payoff decreases forcing the upper bound upwards to
reflect the penalty brought in by a larger decision error. A large negative payoff
to the healthcare system makes adoption more difficult, as one would expect.

Figure (5c) show the bounds variation due to changing the drift µ. It should be
noted that increasing µ and holding σ constant implies that the volatility of the
likelihood process given by µ/σ increases. As the volatility of the likelihood process
increases the probability of hitting the bounds increase and thus the bounds widen
allowing for the larger fluctuations. With a healthcare technology that has high
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Figure 5. Bounds variation for parameter change in terms of the
likelihood ratio.
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benefits for the health care system the likelihood ratio becomes more volatile and
the larger bounds allow for the wider fluctuation of the likelihood ratio process.

Figure (5e) show the bounds variation due to changing the volatility σ. As for
µ, σ also determines the likelihood process volatility. In this case increasing σ
leads to a reduction in the likelihood process’ volatility. The likelihood ratio will
oscillate less, thus having a lower chance of hitting that is reflected by the narrower
bounds. As with the mean effectiveness, σ affects the volatility of the likelihood
process. A healthcare technology that has high uncertainty about its effectiveness
will cause the likelihood ratio to decrease its volatility with consequently narrower
bounds.

Figure (5d) show the bounds variation due to changing the discount rate r. The
discount rate r enters the payoff functions and a high r decreases the present value
of both the benefit and loss. Keeping all other parameters constant, increasing the
discount rate r has the effect of correspondingly decreasing both upper and lower
bounds. The discount rate affects project’s present value and a high discount rate
will decrease payoff values affecting decision bounds.

Figure (5f) show the bounds variation due to changing the sampling costs C.
Increasing the cost of sampling leads to narrower decision bounds. When the cost
of conducting the trial are high the decision bounds become narrower forcing an
earlier decision.

7. Some Probabilities

7.1. Probability of adoption/abandonment. We compute the probability of
hitting the adoption or investment bound. The expected discount factor, under
the posterior probability Qπ(Λ) (below simply noted as QΛ) is given by

EΛ[e
−rτ∗ ] = EΛ[e

−rτ̌(ΛA) | τ ∗ = τ̌ (ΛA)]QΛ(τ
∗ = τ(ΛA))

+ EΛ[e
−rτ̂(ΛI) | τ ∗ = τ̂ (ΛI)]QΛ(τ

∗ = τ(ΛI)).

=
ϕ̂(Λ)

ϕ̂(ΛI)
+

ϕ̌(Λ)

ϕ̌(ΛI)
(21)

Using the fact that

QΛ(τ
∗ = τ̌(ΛA)) = 1−QΛ(τ

∗ = τ̂(ΛI))

and writing the discount factors in (21) as

EΛ[e
−rτ̌(ΛA) | τ ∗ = τ̌(ΛA)] =

(

Λ

ΛA

)β2

and
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EΛ[e
−rτ̂(ΛI ) | τ ∗ = τ̂(ΛI)] =

(

Λ

ΛI

)β1

we obtain

(22) QΛ(τ
∗ = τ̌ (ΛA)) =

EΛ[e
−rτ∗ ]−

(

Λ
ΛI

)β1

[

(

Λ
ΛA

)β2

−
(

Λ
ΛI

)β1

] .

7.2. Error Probabilities. We can compute the ex ante probabilities that we
make an erroneous decision. These probabilities can be thought of as the Bayesian
sequential equivalents of the probabilities of Type I and Type II errors. One has
to be careful, however, in interpreting these probabilities as such, because the
approach to inference here is decidedly non-frequentist.

For abandonment and adoption bounds ΛA and ΛI , respectively, define the
probabilities

α = Q0 (τ
∗ = τ̂(ΛI)) , and β = Q1 (τ

∗ = τ̌(ΛA)) .

From Poor and Hadjiliadis (2009) it now follows that

(23) α =
1− ΛA

ΛI − ΛA

and β = ΛA

ΛI − ΛA

ΛI − ΛA

8. Case study: standard vs robot-assisted laparoscopic
prostaectomy

In this section we apply the model developed above to the HTA of robot-assisted
and standard laparoscopic prostaectomy from the perspective of the UK national
health service using data from a published study (Close et al., 2013). The appli-
cation of the model developed above to this case study if for illustration purposes
only and aims at showing the value that our approach can have for HTA.

Standard laparoscopic prostaectomy and robot-assisted laparoscopic prostaec-
tomy are favoured over the open technique as these cause less bleeding and allow
for a quicker return to activities. Robot assisted laparoscopic prostaectomy is in-
creasingly used compared to standard laparoscopic technique. However, the high
costs has led authorities to question the value of robotic-assisted procedure to
patients and the health care system.

Many of the existing cost studies on prostaectomy techniques do not include
cost effectiveness analysis that takes into account the value of relative gains that
men achieve if a particular technique has better outcomes.

Close et al. (2013)conduct a cost-utility analysis for two indipendent cohort of
5000 men undertaking respectively robotic or laparoscopic prostaectomy over 10
years. They report that the use of robotic prostaectomy was on average £1412
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Table 1. Cost-effectivness of standard vs robot-assisted laparo-
scopi prostaectomy

Parameter Description Source Value
E1 − E0 Incremental QALY gain Close et al 0.08 QALY
C1 − C0 Incremental cost Close et al £1412

σ Std. deviation Close et al £1071
µ Incremental QALY gain Set as NIMB > 0 £1413
p Prior Assumed 0.5
r Discount rate Close et al 3.5%
c Cost of sampling Assumed £10
I Close et al 0
n Number of patients Close et al 10000

more costly than laparoscopic prostaectomy and that it was also more effective
with mean gain of QALY of 0.08 (95% CI,0.01-0.15) over 10 years for a case load
of 200 patients per year. As we take the point of view of the UK health service, we
seek to establish if robot prostaectomy is cost-effective at the UK NICE threshold
of λ = £30, 000 at such threshold value the mean gain is of £2400.

Confidence intervals give a standard deviation σ of £1071 indicating considerable
uncertainty. We set the minimum required µ for adoption by the national health
service to £1413, just greater than the incremental cost of the robot assisted
surgery. In other words we set µ such that the net incremental mean benefit4 is
positive, ensuring a positive gain to the heath service if the technology is adopted.
The adoption excess benefit P1 is set for each patient at £2400 and the cost of
wrongly adopting the technology P0 is set equal to the incremental cost at £1412.
The prior is set to a neutral value of p = 0.5, the discount rate is set to r = 0.035
and initial investment I is assumed to be zero. Having no information on the
cost of following patients and reporting the outcome of the procedure, we assume
sampling costs for each observation c to be £50. Parameters are summarised in
Table 1.

Figure 7a shows the optimal stopping bounds obtained with such values. The
upper bound is ΛI = 1.30 and the lower bound ΛA = 0.0035. Correspondingly
these bounds in terms of the posterior are πI = 0.56 and πA = 0.003.

The value of the likelihood ratio at the point estimate is Λ = 8.24 and π = 0.89,
much higher than the required adoption bounds. These value suggest that there
is enough evidence to make a investment decision.

8.1. Probability of adoption/abandonment. Using formulas in section (7)
it is possible to compute the probability of abandonment and the probability of

4NIMB = (E1 − E0)λ− (C1 − C0)
20
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investment. The probability of abandonment PA(τ
∗ = τ̌ (ΛA)) = 0.69 and the

probability of investment PI(τ
∗ = τ̂(ΛI)) = 0.31.

The probability of committing a type I error α = 0.77 while the probability
of committing a type II error is β = 0.0035. These results seem to go against
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standard practice of keeping Type I error probabilities low. The reason for a high
α and low β in this model is as follows. A Type I error implies that one adopts
the technology if it’s not effective. This may be costly due to the additional cost
of the technology, but does not harm patients and, therefore, has no costs in terms
of health benefits. A Type II error, however, implies not treating with a superior
technology. This error carries with it large opportunity costs: the health benefits
that would have been realised if the technology had been accepted. The model,
therefore, does what one would expect: it keeps β low. As a consequence α will
be large.

9. Conclusion

The Bayesian Sequential Value of Information presented in this paper brings
together statistical and economic modelling, allowing for flexible decisions that
account for irreversibility costs. The model provides rules that allow the decision
maker to take the decision that maximise health benefits and reduce losses on the
health care system.

Our novel approach to healthcare technology assessment makes use of Bayes rule
in order to compute the posterior probability for the effectiveness of the healthcare
technology at each point during the randomised control trial. Decision bounds are
a function of uncertainty and prior information and follow from the parameters
of the model. Decisions are taken at the moment in which the net benefit of
the healthcare technology hits a pre-specified threshold value. At this optimal
stopping time there is not more gain to be made by further waiting.
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Appendix

A. Proof of Lemma 3.1

The Wiener process Xt under P1 and under P0 takes the form

dXt = σdWt Pp = P0

and

dXt = θµdt+ σdWt Pp = P1

Girsanov’s Theorem allows for the change of measure P1 to P0.

Define u(t, ω) = −µ

σ
and

Λt(t, ω) = exp

(

µ

σ

∫ t

0

dWs −
µ2

2σ2

∫ t

0

ds

)

= exp

(

µ

σ

∫ t

0

σdWs −
µ

2σ2
t

)

= exp

(

µ

σ2

[
∫ t

0

σdWs −
µ

2
t

])

= exp
( µ

σ2

(

Xt −
µ

2
t
))

Also, the (Λt)t≥0 process is a martingale.

EP0
[Λt | Fs] = EP0

[e
µ

σ2
(Xt−

µ
2
t) | Fs]

= EP0
[e

µ

σ2
[(Xt−Xs)−

µ
2
(t−s)]e

µ

σ2
(Xs−

µ
2
s) | Fs]

= ΛsEP0
[e

µ

σ2
[(Xt−Xs)−

µ
2
(t−s)] | Fs]

= Λse
−

µ2

2σ2
(t−s)

EP0
[e

µ

σ2
(Xt−Xs)]

= Λse
−

µ2

2σ2
(t−s)e

µ2

2σ2
(t−s)

= Λs(A.1)
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B. Proof of Lemma 3.2

Apply Ito’s lemma to Λt = exp
(

µ

σ

(

Xt − µ

2
t
))

gives

dΛt =
∂Λ

∂t
dt+

∂Λ

∂x
dx+

1

2

∂2Λ

∂x2
dx2

= −1

2

µ2

σ2
Λt +

µ

σ2
ΛtσdWt +

1

2

µ2

σ4
Λtσ

2
t dt

=
µ

σ
ΛdWt
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