THE UNIVERSITY of York

Dimensions of Design Space: a Decision-Theoretic Approach to Optimal Research Portfolio Design

S. CONTI^{†a}, K. P. CLAXTON^a, N. S. HAWKINS^a ^aCentre for Health Economics, Alcuin 'A' Block, University of York, Heslington, York YO10 5DD, UK

Backdrop

- Sample size determination (SSD) is a key issue in medical study design
 in some cases (i.e. a RCT) patient allocation needs to be tuned too
- Research designs can be *experimental* or *non-experimental*
 - a research 'portfolio' combines studies of different nature
 - SSD jointly optimises design sizes <u>and</u> allocations within the portfolio
- ♦ From a CEA perspective, EVI lends itself as an optimality criterion
 - the design portfolio expressing maximum payoff to research is sought
 - both *financial* and *opportunity* costs are recognised
 - fits coherently within a Bayesian decision-theoretic setting

Methodology

- Suppose a medical decision model, indexed by parameters ϑ , yields net-benefits $NB_t(\vartheta)$ under treatment option t
- The gain of information about *v* following collection of samples *x* of patients of sizes *n* increases the value of the decision by

 $EVSI(\boldsymbol{n}) = \mathbb{E}_{\boldsymbol{x}} \Big\{ \max_{\boldsymbol{\vartheta}} \mathbb{E}_{\boldsymbol{\vartheta}|\boldsymbol{x}} [NB_t(\boldsymbol{\vartheta})] \Big\} - \max_{\boldsymbol{\vartheta}} \mathbb{E}_{\boldsymbol{\vartheta}} [NB_t(\boldsymbol{\vartheta})]$

- A cost of sampling function C(n) is introduced to account for financial (fixed and reporting) costs attaching each sample opportunity costs
 - (i) enrolled patients forgo the study's value of research
 - (ii) net-benefit lost by patients on sub-optimal treatments
- After upscaling EVSI to its population counterpart PEVSI, the societal payoff to proposed research is measured by

 $ENBS(\boldsymbol{n}) = PEVSI(\boldsymbol{n}) - C(\boldsymbol{n})$

- additional research based on studies of sizes \pmb{n} would be efficient iff $ENBS(\pmb{n})>0$
- desired research portfolio features $\boldsymbol{n}^{\star} = \arg \max_{\boldsymbol{n}} ENBS(\boldsymbol{n})$
- ♦ In principle this defines a standard integer programming problem
 - objective function normally not available in closed form
 - a MC estimator $\widehat{ENBS}(\cdot)$ is typically used as a proxy
 - $-\,$ rough response surface (due to MC noise) complicates optimisation

Strategy

- ♦ General stochastic optimisation *can* be pursued via 'brute-force' MC³
 - repeated optimiser runs produce sample of 'candidates' $\hat{n}_1, \ldots, \hat{n}_m$
 - mean $ar{n}$ may be selected, and inferences on $\widehat{ENBS}(ar{n})$ drawn
 - the higher the MC resolution (and *m*), the more reliable the outcome
- MC noise attaching $\widehat{ENBS}(\cdot)$ induces uncertainty around resulting $\bar{\boldsymbol{n}}$
 - a maximin LHS $ilde{n}_1, \dots, ilde{n}_L$ is selected from previous stage
 - inferences from samples of $\widehat{ENBS}(\tilde{n}_l)$ estimates are obtained

A Test-Bed: Zanamivir vs. Standard Care

- A decision tree has been proposed to model the effect of zanamivir for treating influenza in British adults²
- ϑ_{trl} LOR of complications and hospitalisation, symptom days reduction
- $\vartheta_{\rm epi}$ probabilities of complication, hospitalisation and influenza-positive
- ϑ_{utl} utility of symptom day
- Examined research scenarios, each with a *specific* EVI load, comprise
 1d/2d balanced/unbalanced trial of all endpoints
- 2d, 1d, 1d separate clinical trial, epidemiological study and utility survey
- 4d joint portfolio of clinical trial, epidemiological study and utility survey

Centre For Health Economic

Concluding Remarks

- \blacklozenge Proposed approach offered useful insights on n^{\star} and $ENBS(n^{\star})$
 - relaxing allocation constraints generally yields higher EVI
 research portfolio can express higher EVI than trial of all endpoints
- Joint research portfolio appeared to outperform separate SSD
 - optimal portfolio ≠ ensemble of independently optimised studies
 intrinsically economic factors (costs, λ) are key
- CPU-intensive estimation and/or complex models may limit applicability
 - there is scope for improvement (e.g. MC noise appeared Gaussian) a balance is required between accuracy and efficiency

References

- A. E. Ades, G. Lu, and K. Claxton. Expected Value of Sample Information Calculations in Medical Decision Modeling. Medical Decision Making, 24:207–227, 2004.
- [2] A. Burls. Zanamivir for the Treatment of Influenza in Adults: a Systematic Review and Economic Evaluation. Health Technology Assessment, 6(9):1–87, 2002.
- [3] A. Shapiro. Stochastic Programming by Monte Carlo Simulation Methods. Stochastic Programming E-Print Series, 2000. URL: http://hera.rz.hu-berlin.de/speps/.