THE UNIVERSITY of York

Bayesian Multivariate Modelling of Patient Level Healthcare Resource Use Data in RCTs

S. Conti^{†a}, A. Manca^a, P. C. Lambert^b, K. R. Abrams^b

^aCentre for Health Economics, Alcuin 'A' Block, University of York, Heslington, York YO10 5DD, UK ^bDepartment of Health Sciences, University of Leicester, 22-28 Princess Road West, Leicester LE1 6TP, UK

Backdrop

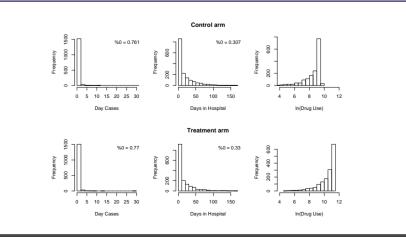
- ♦ CEA informs allocation decisions in UK health policy
 - RCTs typically offer (a wealth of) IPD on health-care resource use
 analyses often proceed from converting data into monetary figures
- By direct modelling of health-care resources
 - 1. a more efficient and transparent analytic perspective is enabled
 - 2. features of the underlying distributions are explicitly addressed
 - 3. relationships between the different cost drivers are accounted for
- The Bayesian approach provides sound and powerful model building, criticism and selection tools

Modelling Approach

- ♦ Patients $r = 1, ..., n_t$ in arm $t \in \{C, T\}$ of a RCT consume health-care resource items i = 1, ..., I
 - individual resource uses R_{rit} are recorded
 - their distributions are characterised by unknown parameters $\boldsymbol{\vartheta}_t$
- Experience and tractability drive model choices for $R_{1t}, \ldots, R_{It} \mid \boldsymbol{\vartheta}_t$
 - joint modelling of heterogeneous variables is not viable
 - conditioning facilitates the model structuring process
 - reliance on (arguable) Normal approximations is not required

ATLAS: a Test-Bed

- The ATLAS trial compared low- versus high-dose ACE-inhibitor lisinopril in the study of chronic heart failure
- Focus is upon "Day Cases", "Days in Hospital" and "Drug Use", with $n_C = 1571$ and $n_T = 1554$
 - discrete variables R_1, R_2 are over-dispersed and strongly concentrated at zero \implies N, Poi, HPoi, NBin, HNBin, ZINBin
 - continuous variable R_3 is strongly asymmetric and negatively (!) log-skewed \implies N, LN, G, LSN, LST



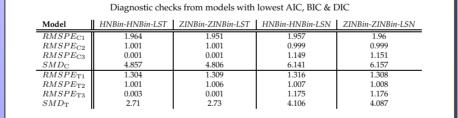
Model Formulation

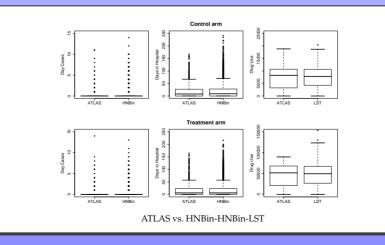
$$\begin{cases}
R_{1t} \sim \text{Dist}_1(\vartheta_{1t}, \vartheta_{2t}) \\
R_{2t} \mid R_{1t} \sim \text{Dist}_{2|1} \Big(\vartheta_{3t} + \vartheta_{4t} \big[R_{1t} - \mathbb{E}(R_{1t}) \big], \vartheta_{5t} \Big) \\
R_{3t} \mid R_{1t}, R_{2t} \sim \text{Dist}_{3|1,2} \Big(\vartheta_{6t} + \vartheta_{7t} \big[R_{1t} - \mathbb{E}(R_{1t}) \big] \\
+ \vartheta_{8t} \big[R_{2t} - \mathbb{E}(R_{2t} \mid R_{1t}) \big], \vartheta_{9t} \Big)
\end{cases}$$

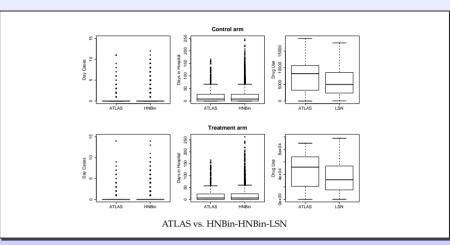
- locations are linear in their conditioning variables (as in Normal case)
- reviewed distributions were fitted with 'vague' priors
- parametrisation meets constraints on variables (e.g. non-negativity)
- non-Normal distributions are fitted by means of McMC simulation

Model Validation and Selection

- ♦ Conventional Bayesian diagnostics are based around residuals
- RMSPEs measure the fit of marginal predictive distributions
 SMDs account for how well the observed relationships are modelled
- Various statistical tools for model selection are available off-the-shelf
 - AIC, BIC and DIC offset model adequacy and complexity
 - consistent scores to be expected in non-hierarchical contexts
 - models should not just be ranked at their score's face value







Drawing Predictions

Arm	Resource Use	ATLAS	HNBin-HNBin-LSN
Control	R_1	0.434 (2.063)	0.436 (1.053)
	R_2	19.022 (26.797)	19.022 (26.8)
	R_3	7244.613 (4183.973)	5691.996 (3886.575)
Treatment	R_1	0.381 (1.185)	0.382 (0.902)
	R_2	16.936 (25.569)	16.845 (25.44)
	R_3	45893.03 (26216.35)	35838.7 (23913.19)

Concluding Remarks

- Estimated distributions appear to fit the data reasonably well
 - proposed models outperform more popular instances (e.g. Normal)
 added complexity of multivariate structure is offset by its efficiency
- Promising start can be fruitfully followed by additional refining work
 - original distributions are still to some extent misrepresented
 - only fairly standard (and parametric) distributions were reviewed
- What comes next?
 - hierarchical models would naturally account for multi-centre scenarios
 - introduction of covariates would lead into a regression framework

References

- A. H. Briggs, R. M. Nixon, S. Dixon, and S. G. Thompson. Parametric Modelling of Cost Data: Some Simulation Evidence. Health Economics, 14(4):421–428, 2005.
- [2] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Texts in Statistical Science Series. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2004.
- [3] M. J. Sculpher, L. Poole, J. Cleland, M. Drummond, P. W. Armstrong, J. D. Horowitz, B. M. Massie, P. A. Poole-Wilson, and L. Ryden. Low Doses vs. High Doses of the Angiotensin Converting-Enzime Inhibitor Lisinopril in Chronic Heart Failure: a Cost-Effectiveness Analysis Based on the Assessment of Treatment with Lisinopril and Survival (ATLAS) Study. European Journal of Heart Failure, 2:447–454, 2000.

Centre For Health Economics