

Dimensions of Design Space:

a Decision-Theoretic Approach to

Optimal Research Portfolio Design

S. Conti^{†a} K. P. Claxton^a N. S. Hawkins^a

^aCentre for Health Economics, University of York (UK)

Methodology

Strategy

A Test-Bed: Zanamivir vs. Standard Care

Concluding Remarks

Backdrop

- Sample size determination (SSD) is a key issue in medical study design
 - in some cases (i.e. a RCT) patient allocation needs to be tuned too
- Research designs can be experimental or non-experimental
 - a research 'portfolio' combines studies of different nature
 - SSD jointly optimises design sizes <u>and</u> allocations within the portfolio
- From a CEA perspective, EVI lends itself as an optimality criterion
 - the design portfolio expressing maximum payoff to research is sought
 - both *financial* and *opportunity* costs are recognised
 - fits coherently within a Bayesian decision-theoretic setting

Page 4

Methodology

- Suppose a medical decision model, indexed by parameters ϑ , yields net-benefits $NB_t(\vartheta)$ under treatment option t
- The gain of information about ϑ following collection of samples x of patients of sizes n increases the value of the decision by

$$EVSI(\boldsymbol{n}) = \mathbb{E}_{\boldsymbol{x}} \Big\{ \max_{t} \mathbb{E}_{\boldsymbol{\vartheta} \mid \boldsymbol{x}} [NB_t(\boldsymbol{\vartheta})] \Big\} - \max_{t} \mathbb{E}_{\boldsymbol{\vartheta}} [NB_t(\boldsymbol{\vartheta})] \Big\}$$

- A cost of sampling function C(n) is introduced to account for
 financial (fixed and reporting) costs attaching each sample
 opportunity costs
 - (i) enrolled patients forgo the study's value of research
 - (ii) net-benefit lost by patients on sub-optimal treatments

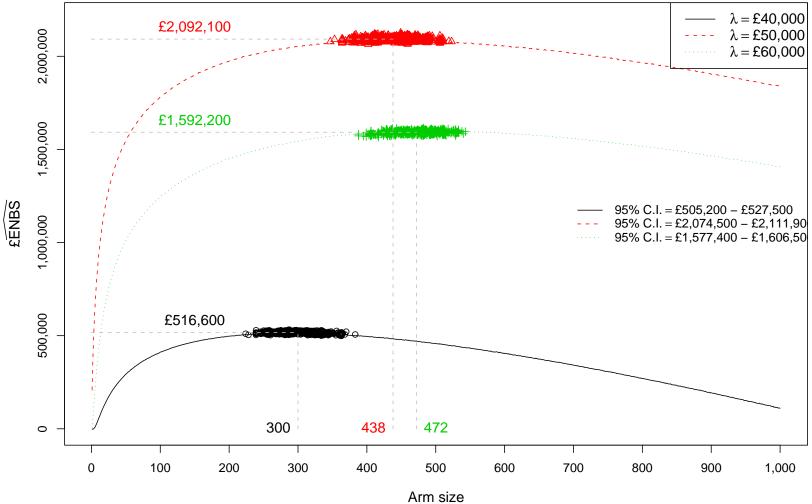
• After upscaling EVSI to its population counterpart PEVSI, the societal payoff to proposed research is measured by

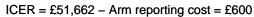
$$ENBS(\boldsymbol{n}) = PEVSI(\boldsymbol{n}) - C(\boldsymbol{n})$$

- further research based on studies of sizes ${\pmb n}$ would be efficient iff $ENBS({\pmb n})>0$
- desired research portfolio features $n^{\star} = rg \max_{n} ENBS(n)$
- In principle this defines a standard integer programming problem
 - objective function normally not available in closed form
 - a MC estimator $ENBS(\cdot)$ is typically used as a proxy
 - rough response surface (due to MC noise) complicates optimisation

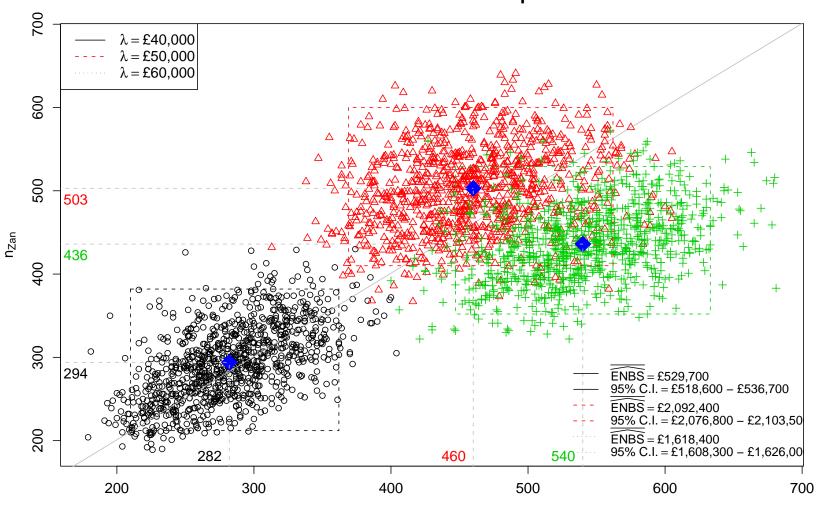
Strategy

- General stochastic optimisation *can* be pursued via 'brute-force' MC (Shapiro, 2000)
 - repeated optimiser runs produce sample of 'candidates' $\hat{m{n}}_1,\ldots,\hat{m{n}}_m$
 - mean $ar{m{n}}$ may be selected, and inferences on $\widehat{ENBS}(ar{m{n}})$ drawn
 - the higher the MC resolution (and m), the more reliable the outcome
- MC noise attaching $\widehat{ENBS}(\cdot)$ induces uncertainty around resulting $ar{m{n}}$
 - a maximin LHS $ilde{m{n}}_1,\ldots, ilde{m{n}}_L$ is selected from previous stage
 - inferences from samples of $\widehat{ENBS}(\tilde{n}_l)$ estimates are obtained

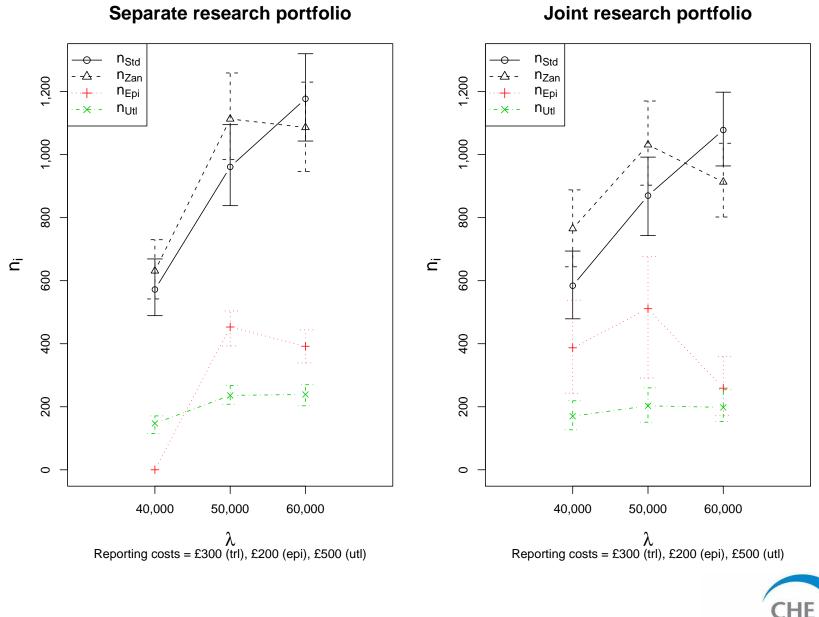

A Test-Bed: Zanamivir vs. Standard Care

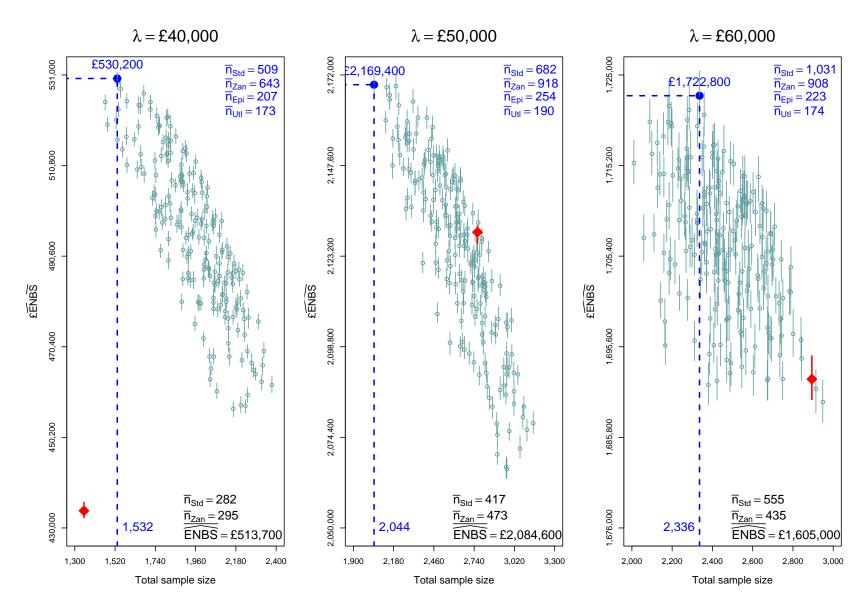

- A decision tree has been proposed to model the effect of zanamivir for treating influenza in British adults (Burls, 2002)

 *v*_{trl} LOR of complications and hospitalisation, symptom days reduction
 *v*_{epi} probabilities of complication, hospitalisation and influenza-positive
 - ϑ_{utl} utility of symptom day
- Examined research scenarios, each with a specific EVI load, comprise 1d/2d balanced/unbalanced trial of all endpoints
 - 2d, 1d, 1d separate clinical trial, epidemiological study and utility survey
 - 4d joint portfolio of clinical trial, epidemiological study and utility survey



Balanced trial of all endpoints




Unbalanced trial of all endpoints

n_{Std} ICER = £51,662 – Arm reporting cost = £600

Centre For Health Economics

Page 12

Concluding Remarks

- igstarrow Proposed approach offered useful insights on $m{n}^{\star}$ and $ENBS(m{n}^{\star})$
 - relaxing allocation constraints generally yields higher EVI
 - research portfolio can express higher EVI than trial of all endpoints
- Joint research portfolio appeared to outperform separate SSD
 - optimal portfolio \neq ensemble of independently optimised studies
 - intrinsically economic factors (costs, λ) are key
- CPU-intensive estimation and/or complex models may limit applicability
 - there is scope for improvement (e.g. MC noise appeared Gaussian)
 - a balance is required between accuracy and efficiency

References

- A. E. Ades, G. Lu, and K. Claxton. Expected Value of Sample Information Calculations in Medical Decision Modeling. *Medical Decision Making*, 24: 207–227, 2004.
- A. Burls. Zanamivir for the Treatment of Influenza in Adults: a Systematic Review and Economic Evaluation. *Health Technology Assessment*, 6(9): 1–87, 2002.
- A. Shapiro. Stochastic Programming by Monte Carlo Simulation Methods. Stochastic Programming E-Print Series, 2000. URL: http://hera.rz.hu-berlin.de/speps/.

