

Bayesian Multivariate Modelling

of Patient Level Healthcare

Resource Use Data in RCTs

S. Conti^{†a} A. Manca^a P. C. Lambert^b K. R. Abrams^b

^aCentre for Health Economics, University of York (UK)

^bDepartment of Health Sciences, University of Leicester (UK)

Outline

- Modelling Approach
- ATLAS: a Test-Bed
 - Model Formulation
 - Model Validation and Selection
 - Drawing Predictions

Backdrop

- CEA informs allocation decisions in UK health policy
 - RCTs typically offer (a wealth of) IPD on health-care resource use
 - analyses often proceed from converting data into monetary figures
- By direct modelling of health-care resources
 - 1. a more efficient and transparent analytic perspective is enabled
 - 2. features of the underlying distributions are explicitly addressed
 - 3. relationships between the different cost drivers are accounted for
- The Bayesian approach provides sound and powerful model building, criticism and selection tools

Modelling Approach

- Patients $r = 1, \ldots, n_t$ in arm $t \in \{C, T\}$ of a RCT consume resource items $i = 1, \ldots, I$
 - individual resource uses R_{rit} are recorded
 - their distributions are characterised by unknown parameters $oldsymbol{artheta}_t$
- Experience and tractability drive model choices for $R_{1t},\ldots,R_{It}\mid oldsymbol{artheta}_t$
 - joint modelling of heterogeneous variables is not viable
 - conditioning facilitates the model structuring process
 - reliance on (arguable) Normal approximations is not required

ATLAS: a Test-Bed

- The ATLAS trial compared low- versus high-dose ACE-inhibitor lisinopril in the study of chronic heart failure
- Focus is upon "Day Cases", "Days in Hospital" and "Drug Use", with $n_C = 1571$ and $n_T = 1554$
 - discrete variables R_1, R_2 are over-dispersed and strongly concentrated at zero \implies N, Poi, HPoi, NBin, HNBin, ZINBin
 - continuous variable R_3 is strongly asymmetric and negatively (!) log-skewed \implies N, LN, G, LSN, LST

Control arm

Treatment arm

Model Formulation

 $\begin{cases} R_{1t} \sim \mathsf{Dist}_1(\vartheta_{1t}, \vartheta_{2t}) \\ R_{2t} \mid R_{1t} \sim \mathsf{Dist}_{2|1} \Big(\vartheta_{3t} + \vartheta_{4t} \big[R_{1t} - \mathbb{E}(R_{1t}) \big], \vartheta_{5t} \Big) \\ R_{3t} \mid R_{1t}, R_{2t} \sim \mathsf{Dist}_{3|1,2} \Big(\vartheta_{6t} + \vartheta_{7t} \big[R_{1t} - \mathbb{E}(R_{1t}) \big] \\ + \vartheta_{8t} \big[R_{2t} - \mathbb{E}(R_{2t} \mid R_{1t}) \big], \vartheta_{9t} \Big) \end{cases}$

- locations are linear in their conditioning variables (as in Normal case)
- reviewed distributions were fitted with 'vague' priors
- parametrisation meets constraints on variables (e.g. non-negativity)
- non-Normal distributions are fitted by means of McMC simulation

Model Validation and Selection

- Conventional Bayesian diagnostics are based around residuals
 - RMSPEs measure the fit of marginal predictive distributions
 - SMDs account for how well the observed relationships are modelled
- Various statistical tools for model selection are available off-the-shelf
 - AIC, BIC and DIC offset model adequacy and complexity
 - consistent scores to be expected in non-hierarchical contexts
 - models should not just be ranked at their score's face value

Table 1: Diagnostic checks from models with lowest AIC, BIC & DIC

Control	HNBin-HNBin-LST	ZINBin-ZINBin-LST	HNBin-HNBin-LSN	ZINBin-ZINBin-LSN
RMSPE_1	1.964	1.951	1.957	1.96
RMSPE_2	1.001	1.001	0.999	0.999
RMSPE_3	0.001	0.001	1.149	1.151
SMD	4.857	4.806	6.141	6.157

Treatment	HNBin-HNBin-LST	ZINBin-ZINBin-LST	HNBin-HNBin-LSN	ZINBin-ZINBin-LSN
RMSPE_1	1.304	1.309	1.316	1.308
RMSPE_2	1.001	1.006	1.007	1.008
RMSPE_3	0.003	0.001	1.175	1.176
SMD	2.71	2.73	4.106	4.087

ATLAS vs. HNBin-HNBin-LST

Day Cases

10

15

5

0

ATLAS vs. HNBin-HNBin-LSN

Day Cases

10

15

5

0

Page 12

Drawing Predictions

Table 2: Predictive means (std. dev.) from preferred model

Arm	Resource Use	ATLAS	HNBin-HNBin-LSN
	R_1	0.434 (2.063)	0.436 (1.053)
Control	R_2	19.022 (26.797)	19.022 (26.8)
	R_3	7244.613 (4183.973)	5691.996 (3886.575)
	R_1	0.381 (1.185)	0.382 (0.902)
Treatment	R_2	16.936 (25.569)	16.845 (25.44)
	R_3	45893.03 (26216.35)	35838.7 (23913.19)

Page 13

Concluding Remarks

- Estimated distributions appear to fit the data reasonably well
 - proposed models outperform more popular instances (e.g. Normal)
 - added complexity of multivariate structure is offset by its efficiency
- Promising start can be fruitfully followed by additional refining work
 - original distributions are still to some extent misrepresented
 - only fairly <u>standard</u> (and parametric) distributions were reviewed
- What comes next?
 - hierarchical models would naturally account for multi-centre scenarios
 - introduction of covariates would lead into a regression framework

