DANGEROUS OMISSIONS: The consequences of ignoring decision uncertainty

Susan Griffin, Karl Claxton, Stephen Palmer, Mark Sculpher

Introduction

When determining which technologies to reimburse within a health care system there are two conceptually distinct but simultaneous decisions:

- 1) Should a technology be adopted given the existing evidence (and the current uncertainty)?
- 2) Is additional evidence required to support the adoption decision?

Overview

- Decision theory
- The policy environment
- Decision rules incorporating the opportunity losses of adoption and rejection
- Incorporating uncertainty
- Discussion and Conclusions

Decision theory and value of information

Decision-making with uncertainty

- The decision to adopt a technology
 - Objective of health care system
 - Maximise health subject to budget constraint
 - Cost-effectiveness analysis
 - Compare health gained with new intervention to health displaced in transferring resources from existing programmes
- The decision to acquire more evidence
 - Value of information
 - Compare value of reducing expected cost of uncertainty to health displaced by allocating resources to research

The adoption decision

- Objective: maximise health gains from available resources
 - Simplifying conditions: absence of irreversibility and sunk costs (*Palmer and Smith 2002, Eckermann and Willan 2008*)

Decision to adopt technology, j, depends on

- expected cost, C_i
- expected outcomes, Qi
- cost-effectiveness threshold, λ

Net benefit framework: $NB_j = Q_j - C_j/\lambda$

Assume NB is function of uncertain parameters, θ

The irrelevance of inference

- Decision made before it is known how uncertain parameters in the model, θ, resolve.
- With current information should adopt technology that maximises expected NB

 $\max_{j} E_{\theta} NB(j,\theta)$

 Failure to adopt simply because differences in NB are not regarded as statistically significant will impose opportunity costs on patients who could benefit

However....

- Making decisions on expected NB does not mean that uncertainty is irrelevant
- The second question of whether additional evidence is required must be addressed, otherwise:
 - decisions made on limited evidence
 - decisions made on poor quality evidence

The decision to acquire more evidence

- Same objective and conditions as adoption decision
- With decision uncertainty, the technology selected on current evidence may not have maximum NB
 - In these cases patients forgo potential health gains
 - In absence of uncertainty, could always pick technology that maximised health
- Expected value of perfect information (EVPI)
 - Difference between expected NB of the decision made with perfect information about 0, and the decision made with current information

Expected Value of Perfect Information

- With perfect information can select technology that maximises NB for a particular value of
 - true values of θ are unknown
- Expected value of decision with perfect info found by averaging maximum NB over the joint distribution of θ :

$$E\left(NB^{**}\right) = E_{\theta} \max_{j} NB(j,\theta)$$

• EVPI is difference between this and expected NB of decision with current info

Population EVPI (and NB)

- Information has public good characteristics
- EVPI for the population based on:
 - Effective lifetime of technology, T
 - Incidence over this period, It
 - Discount rate, r $EVPI_{pop} = EVPI.\sum_{t=1}^{T} \frac{I_t}{(1+r)^t}$
- population EVPI provides upper bound for value of additional research
 - provides necessary condition for additional research
 - EVPI_{pop} must exceed costs of further investigation

The policy environment

Background

- Economic evaluation increasingly used to inform reimbursement/adoption decisions made by funders of health care
 - For example

The policy environment

- Institutions with remit for making adoption decisions often separated from those responsible for prioritising and commissioning research
 - cannot directly arrange funding for research
 - cannot issue/enforce conditional approval
- In these circumstances the adoption decision is the only policy instrument available
 - not clear that question of whether further evidence needed is being addressed simultaneously and consistently

Expected NB decision-making

- Decisions can continue to be based on expected NB if the prospects of further research are unaffected by the adoption decision
- However this is unlikely because:
 - adoption removes incentives for manufacturer of technology to conduct further research
 - diffusion of technology, particularly when mandatory, means future clinical trials less likely to be supported or regarded as ethical
 - adoption can damage recruitment to ongoing trials

Implications

- Adoption can remove an option to acquire additional evidence
- The opportunity loss of adopting a technology can be measured by the value of information that may be forgone
 - this opportunity loss could be greater than the net benefits offered by the technology
- If reimbursement authorities are not given remit to commission/demand research then may be better to deny approval of apparently cost-effective technology

Calculating the opportunity losses of adoption and rejection

Context

- Decision maker whose role is limited to granting approval for reimbursement of mutually exclusive alternatives, **j**
- New technology, j*, has greater expected NB than current practice, j0
- To estimate value of information forgone need assessments of:
 - Probability that research will be conducted, α
 - Time at which research will report, τ

Population to benefit

- Split future patient population into
 - Those who benefit from treatment decision based on current evidence: $\tau = \tau$

$$P_{t<\tau} = \sum_{t=1}^{\tau} \frac{I_t}{\left(1+r\right)^t}$$

Those who can benefit from decision incorporating results from further research:

$$P_{t>\tau} = \sum_{t=\tau}^{T} \frac{I_t}{\left(1+r\right)^t}$$

Expected net benefits of rejection

- If approval of j* is withheld, patients receive j₀ and the associated NB, E_θ NB(j₀,θ)
- If research conducted and reports at time, τ, decision can be revised and the maximum future patients will receive is E_θ max_j NB(j,θ) :
- The expected net benefits of rejecting j* are then:

$$B_{R} = E\left(NB_{j^{0}}\right) \cdot P_{t<\tau} + \left(1 - \alpha_{R}\right) \cdot E\left(NB_{j^{0}}\right) \cdot P_{t>\tau} + \alpha_{R} \cdot E\left(NB^{**}\right) \cdot P_{t>\tau}$$

Expected net benefits of adoption

- Patients receive j* and the associated net benefits, \textbf{E}_{θ} $\textbf{NB(j^*,\theta)}$
- If research conducted and reports at time, τ, decision can be revised and the maximum future patients will receive is E_θ max_i NB(j,θ) :
- The expected net benefits of adopting j* are then:

$$B_{A} = E\left(NB_{j^{*}}\right) \cdot P_{t<\tau} + \left(1 - \alpha_{A}\right) \cdot E\left(NB_{j^{*}}\right) \cdot P_{t>\tau} + \alpha_{A} \cdot E\left(NB^{**}\right) \cdot P_{t>\tau}$$

Condition for immediate adoption

Benefits of adoption should exceed benefits of reject:

$$B_{A} - B_{R} = \left[E\left(NB_{j^{*}}\right) - E\left(NB_{j^{0}}\right) \right] \left(P_{t<\tau} + (1-\alpha_{R})P_{t>\tau}\right) - (\alpha_{R} - \alpha_{A}) \left[E\left(NB^{**}\right) - E\left(NB_{j^{*}}\right) \right] P_{t>\tau}$$

- Standard condition for adoption is special case
 - Adoption does not affect prospects for research, $\alpha_A = \alpha_R$ - Approve if $E(NB_{j^*}) \ge E(NB_{j^0})$

New decision rule

Examples

- Will now demonstrate:
 - Difference with decision making based on expected NB
 - Incentives offered by decision rule that incorporates opportunity cost of research forgone
 - Price
 - Uncertainty
 - Implications for different types of research

$$\alpha_R = 1$$
 $\alpha_A = 0$ $\tau = 2$

Combinations of α_R and τ for which $B_A = B_R$

The decision to adopt

- Technologies for which research prospects lie to the north-east of the boundary should be approved
- Technologies that lie to the south-west may require further consideration
- Boundary based on value of perfect info
 - Boundary based on sample info lies to south-west
 - Computationally expensive to assess EVSI
 - However, given α and τ can calculate threshold for EVSI as a guide

Impact of the threshold on the boundary for approval

Impact of price and uncertainty

- Reducing price increases the benefits of immediate adoption, E_θ NB(j*,θ)
 - If uncertainty associated with incremental cost, reducing price also reduces value of information
- Reducing uncertainty reduces the value of any information forgone by immediate adoption
- Reducing price or uncertainty will in most cases increase B_A - B_R

Incentives to manufacturers

To review:

- Decision rules based solely on expected NB
 - set price so that ICER just below threshold
 - thus minimising R&D costs and capturing surplus
- Decision rules that consider the opportunity loss of adoption
 - provide more evidence to support technology
 - reduce price

What type of research?

Research decision space

- Different parameters contribute to overall decision
 uncertainty
 - Type of evidence determines appropriate research design
 - Different research designs affected in different ways by adoption
- Suppose $\theta_1, \theta_2 \cup \theta$
 - If θ_1 relative effect of j* \rightarrow RCT; $\alpha_R^{\theta_1} > \alpha_A^{\theta_1} = 0$
 - If θ_2 quality of life \rightarrow observational study; $\alpha_R^{\theta_2} = \alpha_A^{\theta_2}$
 - Time to research $\tau_{\theta 1} > \tau_{\theta 2}$

Uncertainty in α and τ

- Characterise uncertainty associated with τ and α by assigning appropriate prior distributions
 - allows calculation of expected payoff from immediate adoption, $E(\Pi_{\text{A}})$
- For example:
 - trial registry indicates ongoing trial
 - protocol indicates when results expected to be reported $\tau \sim \text{gamma}(25,0.1); \quad \alpha \sim \text{beta}(2.4,0.6)$
 - no information about potential further research

 $\tau \sim unif(0,T);$ $\alpha \sim unif(0,1)$

Figure 5. Expected net benefits of immediate adoption

Cost-effectiveness threshold, λ

Discussion

Recap

- If objective is to maximise health gains from available resources
 - has been argued that decision to adopt be based on expected cost, expected outcomes and an assessment of the cost-effectiveness threshold
- However this is only justified
 - if question of whether additional evidence required assessed simultaneously
 - or adoption decision does not affect prospects for future research

Recap

- Adoption decision is likely to affect prospects for further research
 - adoption decision cannot be separated from question of whether evidence is sufficient
 - not clear whether this is recognised in current policy environment
- Where adoption decision only policy instrument
 - adoption decision cannot be based on expected NB
 - require assessment of opportunity loss of immediate adoption

Benefits of formal approach

- Have demonstrated formal framework for evaluating the opportunity losses
 - provides incentives for manufacturers to reduce price or provide additional evidence
- Current 'informal' approach
 - lack of legal standing to back-up recommendations
 - not transparent
 - problems with consistency, predictability, incentives

Other issues

- Rely on EVPI and assessment of threshold for EVSI
- Consider only current decision problem
 - value of additional information may be underestimated