Dealing with Heterogeneity in Cost-Effectiveness Analysis

Appraisal Committee View

Mark Sculpher *Centre for Health Economics University of York*

Outline

- Key concepts and starting points
- Heterogeneity in baseline risks
- Heterogeneity in treatment effect
- Other types of heterogeneity

Decision making context

- Objective to maximise value from limited health care budgets
- Health gains from new technologies are greater than
 health gains displaced
- Costs and effects differ between patients
- Restricted use: give to the sub-groups in which therapy most cost-effective
- Decision making needs analysis appropriate for its needs
- Results in some differences from conventional trials
 perspective

The gains from 'stratification'

Source: Coyle et al. Health Economics, 2002

What is net benefit?

$$NB_i = (QALY_i \times \lambda) - Cost_i$$

 λ = The 'value' of a QALY; e.g. the cost-effectiveness threshold

Alternatively: NB_i / λ = net health effect (in QALYs)

Sources of heterogeneity in patients

- Baseline risks
- Relative treatment effects (e.g. hazard ratios)
- Prognosis given an event
- Costs
- Preferences
- Location of treatment

Heterogeneity in baseline event rates Example of EUROPA analysis

- Cost-effectiveness of Perindopril versus usual care in stable angina
- Individual patient data on 12,218 patients from EUROPA trial
- Benefits driven by reduction in the risk of cardiac events
- Heterogeneity in baseline risk but not treatment effect

Briggs, Mihaylova, Sculpher *et al.* Cost-effectiveness of perindopril in reducing cardiovascular events in patients with stable coronary artery disease using data from the EUROPA Study. *Heart,* in press.

EUROPA example

Model structure

EUROPA example Equation 1(1,069 events)

	Hazard	Lower	Upper
Explanatory baseline characteristics	Ratio	95% limit	95% limit
Use of Perindopril	0.81	0.71	0.91
Age (years greater than age 65)	1.06	1.04	1.08
Male	1.54	1.28	1.87
Smoker	1.49	1.27	1.74
Previous MI	1.44	1.26	1.66
Previous revascularisation	0.88	0.77	0.99
Existing vascular disease ^b	1.69	1.44	1.98
Diabetes Mellitus	1.49	1.28	1.74
Family history of coronary artery disease	1.21	1.05	1.38
Symptomatic angina ^c or history of heart failure	1.32	1.16	1.51
Systolic blood pressure	1.00	1.00	1.01
Units creatinine clearance below 80ml/min	1.01	1.00	1.02
BMI > 30 (obese)	1.41	1.22	1.63
Total cholesterol	1.13	1.07	1.20
Using nitrates at baseline	1.42	1.25	1.63
Using calcium channel blockers at baseline	1.20	1.06	1.36
Using lipid lowering therapy at baseline	0.86	0.75	0.97
Constant term (on the log scale)	-12.27	-12.97	-11.57

Composite endpoint: Primary trial endpoint of cardiovascular mortality, myocardial infarction or cardiac arrest.

EUROPA example

Predicted cost-effectiveness of perindopril

When are such methods appropriate?

- Clear heterogeneity in baseline risks
 - Relevant to some diseases more than others
 - How do we select covariates?
- Need access to individual patient data
 - Control group from RCT
 - Longitudinal observational studies
- Acceptability of assumption of no interaction with treatment effect
- Not just when 'average' cost-effectiveness is hard to show

Heterogeneity in relative treatment effects RITA-3 example

	First	Second	Third	Fourth lower	Fourth upper
	quartile*	quartile*	quartile*	quartile*	quartile*
Age	45	52	52	61	66
Diabetes	0	0	0	0	1
Previous myocardial infarction	0	0	1	1	1
Smoker	0	1	0	1	0
Pulse	8	10	10	11	13
ST depression	0	0	1	1	1
Angina	1	0	1	0	0
Male	0	1	1	1	1
Left bundle branch block	0	0	0	0	0
ICER (no interaction) ICER (interaction)	49,754 783,283	22,145 42,877	20,765 27,626	11,682 11,702	12,490 10,190

Henriksson *et al.* The cost-effectiveness of an early interventional strategy in non-ST-elevation acute coronary syndrome based on the RITA 3 trial. Presented at Society of Medical Decision Making, October 2006

Heterogeneity in costs

EUROPA example - cost equation

Covariate	Cost	SE
NFE	9,775	428
NFEhistory	816	117
Fatal event	3,015	367
NCD	10,285	889
Age in years	11	2
Existing vascular disease	325	62
Diabetes mellitus	209	56
Symptomatic angina or heart failure	234	41
Creatinine clearance below 80ml/min	7	2
Using nitrates at baseline	226	33
Using calcium channel blockers at baseline	157	34
Using lipid lowering therapy at baseline	100	32
Treated in UK	-88	39
(constant)	-17	121

Note: Costs include days in hospital and non-study drugs

What do we do when we have no individual patient data?

- Examples come from single source of individual patient data
- Often with a model will take baseline risks and relative treatment effect(s) from different sources
- Assumption of independence common
- In meta-analysis may be able to assess assumption and adjust accordingly

Example – glycoprotein IIb/IIIa antagonists in ACS The relationship between baseline risk and relative risk

Mortality @ 30 days Strategy 1

Sculpher MJ, *et al.* Generalisability in economic evaluation studies in health care: a review and case studies. *Health Technology Assessment* 2004;8(49).

Different views on heterogeneity in treatment effect

EBM	Decision analysts
Clinically plausible	Clinically plausible
Pre-defined	Pre-defined
Statistically significant	Implementable (at a cost)
Accompanied by a statistically significant overall effect	Uncertainty expressed

Rules on the use of sub-groups impose costs

Few of them

Other types of heterogeneity

- Prognosis
- In preferences
- Between locations
- Variability in responses (post baseline)

What about equity/ethical issues?

- Socio-demographic variables (e.g. age, sex, race) can affect cost-effectiveness in a number of ways
 - Relative treatment effects
 - Baseline event risks
 - Prognosis
- In terms of equity, (some of) these may not be appropriate
- But equity rules impose costs
- For decision making:
 - Have clear rules of what is considered appropriate
 - Present costs of operating 'equity rules'

Issues of NICE process

- Clear statement principles
 - Importance of sub-groups
 - Costs of ignoring
 - Appropriate means of identification and analysis
- What is the role of pre-specification
 - What types of sub-groups?
 - How much can be agreed in the scope?
- Quantification of uncertainty
 - Decision rather than parameter uncertainty
 - How is it to be used by the Appraisal Committee

Summary

- Heterogeneity prevails in most clinical context
- Different types of heterogeneity
- Mismatch between trials orthodoxy for sub-groups and needs of decision making
- But this does mean 'anything goes'
 - Plausibility is essential
 - There is a role for pre-specification
 - (Decision) uncertainty needs to be reflected